

The Requirements Engineering
Handbook

For a listing of recent titles in the Artech House Technology Management and
Professional Development Library, turn to the back of this book.

The Requirements Engineering
Handbook

Ralph R. Young

Artech House
Boston • London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

Cover design by Igor Valdman

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

The following are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University: Capability
Maturity Model, CMM, and CMMI.

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 1-58053-266-7
A Library of Congress Catalog Card number is available from the Library of Congress.

10 9 8 7 6 5 4 3 2 1

For you

Let’s improve requirements engineering!

.

Contents

Foreword xi

Preface. xv

Acknowledgments xix

1 The Importance of Requirements 1

What Are Requirements and Why Are They Important? 1

Why Plan? 3

A Suggested Strategy 3

Requirements Activities in the System Life Cycle 3

Investment in the Requirements Process 5

A Process Approach 6

The Requirements Plan 7

Factors Affecting Your Career Decisions 10

A Comment Concerning Small Projects 11

Summary 11

Case Study 12

References 13

2 The Roles of the RA 15

Suggested Roles of the RA 15

Summary 23

Case Study 24

References 25

vii

3 Skills and Characteristics of an Effective RA . . . 27

Skills of the RA 27

Characteristics of an Effective RA 34

Summary 42

Case Study 43

References 44

4 Types of Requirements. 45

Views of Requirements Types 45

Definitions and Descriptions of Requirements Types 48

Business Requirements 49

Stated Requirements Versus Real Requirements 50

User Requirements 50

High-Level or System-Level Requirements 50

Business Rules 50

Functional Requirements 51

Nonfunctional Requirements 52

Derived Requirements 52

Design Requirements and Design Constraints 52

Performance Requirements 53

Interface Requirements 53

Verified Requirements 53

Validated Requirements 53

Qualification Requirements 53

The “Ilities” and Specialty Engineering Requirements 53

Unknowable Requirements 54

Product Requirements 54

Process Requirements 54

Logistics Support Requirements 54

Environmental Requirements 55

System, Subsystem, and Component Requirements 55

Terminologies to Avoid 55

Source or Customer Requirements 55

Nonnegotiable Versus Negotiable Requirements 55

Key Requirements 56

Originating Requirements 56

Other Guidelines 56

Examples of Requirements Types 56

Summary 57

Case Study 57

References 60

viii Contents

5 Gathering Requirements 61

Plan the Approach 62

Summary 104

Case Study 104

References 105

6 Best Practices for Requirements Development
and Management 109

Summary 123

Case Study 123

References 126

7 The RA’s Specialty Skills 127

Summary 159

Case Study 163

References 164

8 An Integrated Quality Approach 169

Business Drivers for Quality 170

Management’s Role 170

Guiding Principles 171

Priority Management 172

The Components of an Integrated Quality Approach 172

Quality Improvement Techniques 173

The PDCA Cycle 179

How to Design a Process 180

Teamwork 187

Summary 189

Case Study: An Example of Quality Improvement Sidetracked 189

References 191

9 A Vision for Requirements Engineering 193

How Should We Support PMs? 197

How Should We Support Customers? 198

How Should We Support Developers? 198

Summary 199

Case Study 200

References 202

Contents ix

10 Moving Forward: Knowable Requirements,
Manageable Risk 205

Where to Go from Here 207

Moving Forward 209

A Requirements Mandala 212

Summary 213

Case Study 213

References 215

Glossary 217

List of Acronyms 227

Bibliography 233

About the Author 243

Index 245

x Contents

Foreword

Some years ago, a successful company won a contract for a fifty million
dollar project. The product system had six operator consoles, another six

racks of electronics equipment, and a sophisticated set of remote radios and
computers. Development disciplines included software engineering, digital
electronics, communications electronics, and mechanical engineering.

Customer acquisition and user groups knew what operational capability
they wanted, but there had yet been no technical requirements. Early in the
project, the company developed and delivered a technical specification.
Customer reviewers provided dozens of changes, including six additional
requirements that they interpreted from the loose operational capability
statements. In later discussion, however, customer people agreed that these
additional requirements, although nice to have, were too expensive to add.

Time passed. The project had political and funding problems, bouncing
up and down over a period of four years like a short-hop shuttle airplane.
Personnel changed several times; in one such change, the project apparently
terminated and the entire acquisition group was reassigned. After two
months of hiatus, a new acquisition group resumed the project.

The technical specification went through several more revisions. Some-
how, the record of those six requirements remained. The record of the
agreement, however, was repeatedly lost. They were reinserted repeatedly
by customer reviewers. After each revision, those six requirements were
again deemed too expensive to add. But the specification was never quite
approved to reflect the agreement. In the throes of responding to the fre-
quent upheavals, the developers focused on completing the design and pro-
duction. The specification faded onto a dusty shelf.

Things on a dusty shelf have a way of coming back to haunt. Those six
requirements came to light one last time. During system acceptance testing,
customer monitors blew the dust off the specification and started a formal
verification.

The result of six missing requirements was a three million dollar overrun.
Ralph Young’s book provides the tools that company needed and did not

have. Building on Effective Requirements Practices and on his years of practical
experience, Ralph offers a set of tools and techniques that are essential
for modern requirements analysis, written into a handbook format for

xi

continued reference. This book describes both the philosophy and practice
of requirements analysis, with down-to-earth pragmatism that can help to
do the job in the face of today’s complex system challenges.

Human communications are imprecise. It is one aspect of nature of
humanity that we fail to understand each other completely.

Recall the campfire games of your childhood. In the game “Whispers,”
someone starts a short statement around the campfire circle by whispering
to his neighbor. In turn, each player passes on the statement, always in a
whisper. After only a few transfers, the original statement is modified
beyond recognition. In the game, the differences are so astonishing as to
bring laughter to all.

Recall the last time you went to a restaurant and ordered from a menu.
Written in front of you is a full description of the entree you want. Confi-
dently, you tell the waiter the entree. The waiter silently sighs and starts the
perennial sequence of questions about side items. “Salad or soup, ma’am?”
“New potatoes or French fries?” “Green beans or succotash?” All these
options were clearly written on the menu, but somehow you missed them.

Requirements are also a form of human communications, an attempt to
convey complex ideas from one mind to another. Requirements are also a
sparse form of communications, using bare written words to strive for preci-
sion. Like menu descriptions, requirements always fall short. It is literally
impossible to write any requirement, no matter how simple, that cannot be
misconstrued honestly by some recipient.

Even the word “requirement” is itself a miscommunication, for individ-
ual requirements are frequently flexible rather than required. If a trade-off
promises a significant benefit to a key performance parameter, specifiers will
gladly change lesser “requirements” to accommodate the trade-off.

And yet requirements are still the best method we know to convey the
complexity of a technical idea. To handle this complexity, we use require-
ments to perform three important roles, all of which are enhanced by the
tools and techniques in this book.

First, requirements are a contractual tool. This is the most commonly
understood purpose. In this role, a specification defines the technical scope
of a development contract. The legal impact of this role is far from small.
One recent lawsuit between a prime contractor and a subcontractor hinged
on the grammar of a single requirements statement, resulting in a multimil-
lion dollar settlement. For the protection of both acquirers and suppliers,
contractual requirements must be as clear as they can be.

Second, requirements are a configuration management tool. The exact
form and relationship of the requirements statements uniquely define a con-
figuration of the system. They embody the valid system functionality and
bounds. By controlling the requirements, we control the configuration defi-
nition. We see the importance of configuration definition each time a new
software tool fails to operate with our “open system” personal computer.

Third, requirements are an engineering tool. This essential role is fre-
quently not understood, being overshadowed by the contractual and

xii Foreword

configuration management roles. Yet it is in engineering that requirements
have their power. We use requirements during the engineering processes to
do the following:

◗ Communicate among development team members, acquirers, users,
and others;

◗ Describe and understand the operational need;

◗ Capture decisions about the technical solution;

◗ Define the product architecture;

◗ Check completion of the product elements;

◗ Verify completion of the product.

The problem of those six requirements happened due to many fac-
tors—the political changes to the program, the competing ideas among the
customer factions, the unusual pressures of start-and-stop development,
and the development team’s focus on completion. That problem also hap-
pened, however, because of the lack of the requirements management (RM)
methods that this book contains. A modern RM effort for the entire project
would have cost a fraction of the three million dollars of overrun experi-
enced. Even better, many other expenses would also have been avoided.

Like the children around the campfire, informality leads to miscommu-
nications. As a campfire game, we laugh at the problems. In building today’s
complex system products, though, we are no longer laughing.

Eric Honour
Former President, International Council on Systems Engineering

Foreword xiii

.

Preface

This book is intended as a concise but thorough ready reference for require-
ments analysts (RAs)—those who are assigned to determine the require-

ments for planned systems and software, both in computing and engineering.
It is a desk guide/handbook that focuses on how RAs can best perform their
work.

The requirements are key to the success or failure of technical projects.
They are the basis of all of the follow-on work. It’s been my experience that
most projects and organizations fail to use effective requirements practices
and a documented requirements process, and also that those assigned as
RAs are cast into the needed work without proper preparation, experience
and training, and without a good handbook that advises them on how to
perform their roles and what to do.

RAs are in a strategic position to influence the activities performed on a
systems or software engineering task or project:

◗ The requirements are vital to the initiation, conduct, and completion
of the needed work.

◗ They are of great importance in achieving the objectives of customers
and users.

◗ Trained, experienced RAs are valued advisors to the program, project,
or task manager and invaluable resources for other members of the
team.

This book addresses all of the areas that you will need to know about in
your work. Key topics include the following:

Topic

◗ The importance of requirements.

◗ Leveraging requirements-related activities to benefit your project.

◗ Identifying the real requirements.

xv

◗ Controlling changes to requirements and new requirements.

◗ Use effective requirements practices, processes, methods, techniques,
and tools.

◗ Invest in the requirements process.

◗ Evaluate your requirements against the criteria of a good requirement.

◗ Document the rationale for each requirement.

◗ Plan requirements-related activities.

◗ Use an industrial strength automated requirements tool.

◗ Work to improve communications. Use a project glossary and acro-
nyms list.

◗ In collaboration with the task or project leaders, select a set of best prac-
tices, and then implement them effectively.

◗ Develop a personal professional development plan, and enhance your
skills and capabilities.

◗ Learn and apply needed requirements analyst’s specialty skills.

◗ Define and use an integrated quality approach.

◗ Evolve your own personal vision for requirements engineering.

◗ Address requirements risks.

Chapter 2 describes nine roles of the RA and identifies where in the sys-
tem life cycle each should be applied. Requirements work requires a lot of
knowledge and skills—perhaps more than most people think. Chapter 3
identifies and describes skills that you may need to use and provides a refer-
ence in this book where you can learn more about each skill.

It’s important for the RA and others assigned to the task or project to
understand the different types of requirements. These are described in detail
in Chapter 4 and are broken down as follows:

◗ Business requirements;

◗ User requirements;

◗ Product requirements;

◗ Environmental requirements;

◗ Unknowable requirements.

Customer needs and expectations are analyzed and described in the fol-
lowing ways:

◗ High-level (or system-level) requirements;

◗ Functional requirements (what the system must do);

xvi Preface

◗ Nonfunctional requirements:

◗ System properties (e.g., safety);

◗ The “ilities/specialty engineering requirements”;

◗ Derived requirements and design constraints;

◗ Performance requirements (e.g., how fast?);

◗ Interface requirements (relationships between system elements).

Then the system requirements are allocated into the following:

◗ Subsystems (logical groupings of functions);

◗ Components of the system (hardware, software, training,
documentation).

Checks are done to ensure the system does what it is supposed to do,
incorporating the following:

◗ Verified requirements;

◗ Validated requirements;

◗ Qualification requirements.

The following are evident from this description of requirements activities:

◗ A common, shared understanding is needed on the task or project;

◗ Requirements-related training should be provided to three groups
with somewhat different needs, so that all can benefit from industry
experience and become aware of the methods, techniques, and tools
that work best: (1) RAs, (2) the members of the development team,
and (3) the customers and users.

These topics are addressed in Chapter 5.
The requirements gathering activities are complex and can easily

become ineffective, as you likely are already aware from your experience!
See Table 5.1 for a checklist that will help you in your vital roles.

Chapter 5 provides a discussion of each activity, explaining why it’s
important and how to get it done. References enable you to access more
information, should you want it. The intent of the book is to empower you to
make a valued contribution and also to be fulfilled in your work activities.

We hear and read a lot about “best practices.” Unfortunately, they are
too infrequently deployed, implemented, and institutionalized on real proj-
ects, for a variety of reasons, but most importantly, because it’s hard work.
Chapter 6 provides information concerning best practices for RAs, based on
my own and industry experience. Obviously, one can’t do everything, at
least not at one time. The information in Chapter 6 will enable you to initi-
ate discussions with your task or project team and to select the best practices

Preface xvii

that best support your project’s or your organization’s needs, activities, and
objectives.

There is a set of specialty skills of the RA that are required at different
times in your work. Chapter 7 describes these specialty skills and directs you
to the section in this book where each is discussed.

Chapter 8 explains the importance of an integrated quality approach.
An effectively implemented requirements process is necessary in order to
have an integrated quality approach, and an integrated quality approach is
required for the requirements process to work best. Chapter 8 explains what
is meant by these terms and, also, how to achieve them.

Chapter 9 provides a vision for requirements engineering. You will
become aware (if you are not already) that progress in requirements engi-
neering has been slow. This book is dedicated to you, with the challenge to
improve the practice of requirements engineering! This book is full of practi-
cal ideas, suggestions, approaches, and recommendations and will serve you
well as a handbook in your daily work. But, only if (1) you use it, and (2)
you are determined to work to make things better. This suggests that you
need to be committed to making changes that improve the way we develop
systems and software. Too often we don’t practice what we preach. We
know what we should do, but we don’t do it. The bottom line is that your
commitment and that of your peers and managers is required if we are to
make improvements. Use this book to guide you in your vital work. Further, you
will be able to create and implement your own professional-development
plan based on the characteristics and traits you choose to further strengthen
and improve. I encourage you to work in concert with your manager to
evolve a plan of action to enable you to understand comprehensively your
roles and, through experience and study, develop the expertise needed to
impact project success rates significantly and positively.

Chapter 10 provides a summary of the book and suggestions for moving
forward. The subtitle, “Knowable Requirements, Manageable Risk” suggests
that we really can do a commendable job when we are empowered and
apply the guidelines provided in this book. By doing so, you will be helping
the computing and engineering professions to improve.

Let’s acknowledge that we have a long way to go. But guidance is avail-
able concerning how to make improvements (in our policies, practices,
processes, methods, techniques, and tools, for example). In order for the pro-
fession to improve, practitioners need to take actions in their daily work that are dif-
ferent from what we are doing today. Only through gradual, but committed,
incremental actions will the profession advance to achieve a positive vision
of requirements engineering.

Are you ready?
Please share any of your own reactions to this book, ideas, suggestions,

and constructive criticisms with me at ryoungrr@aol.com. I will no doubt be
hard at work on another project, and your feedback will improve any con-
tributions I may make.

Good luck, and remember to have fun while you are doing all of this!

xviii Preface

Acknowledgments

I continue to be very thankful to my wife, Judy, for her incredible patience,
understanding, and love throughout the book writing process. Family and
friends are sometimes amazed at the joy and energy I derive from writ-
ing—for me, it’s as Maryanne Radmacher-Hershey characterizes it:

Writing is the process one follows to learn what is already known deep

within: it sharpens the spirit, disciplines the mind, and leads to solutions. In

the spaces between words and solitude observe what happens when words

and silence meet. Words matter. Pay attention. Write to learn what you

know.

As for those who have supported me, how can I appropriately acknowl-
edge reviewers and contributors who have given so generously and so much
to make this a better book? Suffice it to say that many people have become
close friends and valued advisors.

Speaking of advisors, there is one whose name I do not even know!
Artech House Publishers engaged an advisor to review my final drafts. This
person, obviously an expert in requirements engineering, chose to remain
anonymous and provided constructive and helpful comments on each
chapter.

Speaking of requirements-engineering experts, Ian Alexander gener-
ously provided thoughtful comments and insights in countless areas,
responding in almost real time to questions, inquiries, and requests for
review comments. Randall Iliff, engineering and project management men-
tor, also provided great insights in several areas. Jeff Grady, Earl Hoovler,
Capers Jones, John Moore, Rich Raphael, and Doug Smith contributed
thoughtful and useful ideas and wording.

Requirements analysts who are members of the Northrop Grumman
Information Technology Defense Enterprise Solutions Requirements Work-
ing Group provided valued review comments, contributions, and lent their
experiences and expertise—Terry Bartholomew, Michael Davis, David
Ebenhoeh, Bob Ellinger, Jim Faust, Graham Meech, Dick Pederson, Rich

xix

Raphael, Dave Reinberger, Ron Rudman, Charlie Rynearson, and John
Waters, in particular.

Other requirements analysts who made valued contributions include
Dorothy Firsching, Chris Fowler, Heather Gray, Skip Jensen, Wayne
O’Brien, Joy van Helvert, Charlie Wight, and Don Young.

The graphics, illustrations, tables, and figures are critical components of
any work because they convey ideas and summarize information. Thanks to
Rich Raphael for creating many of those in this book, for his expertise in
crafting and refining them, and for his constant willingness to help in any
way possible. Olga Rosario also contributed greatly.

Many of the “artifacts” in the book benefited from additions, corrections,
and review comments contributed by participants in my requirements engi-
neering courses, tutorials, presentations, and workshops that I love to pres-
ent. Thanks to all of you, particularly Pat Little.

Other friends and associates who lent a hand and mind include Barry
Boehm, Grady Booch, Dennis Buede, Pete Carroll, Tom Gilb, Ellen Gottes-
diener, Eric Honour, Alice Hill-Murray, Craig Hollenbach, Ivy Hooks, Ray
Huber, Charles Markert, Andy Meadow, Larry Pohlmann, Olga Rosario,
Penny Waugh, and Beth Werner.

Reviewers, including many of those previously mentioned, have
strengthened my writings. Other reviewers include Randy Allen, Jim Hay-
den, and Karl Wiegers. Writing a book is clearly a team effort!

Our President of Northrop Grumman Information Technology Defense
Enterprise Solutions, Kent R. Schneider, and my manager, Alan Pflugrad,
have gifts for creating and maintaining a TEAMWORKS environment (read
about this in Chapter 8!). It is very fulfilling and energizing to be a member
of several high-performance teams through Northrop Grumman. I am
thankful to Kent and Al for their leadership, support, and guidance.

I continue to be aware from my faith journey that prayer works. Thanks
to treasured friends Art Banks, Tom Foss, Craig Hollenbach, and Joe
Matney.

Thanks to family for their support, too—Kimberly and Mike Wallace,
Ann and Jeff Young, Matt Young, and Jan and Don Hoffer.

xx Acknowledgments

The Importance of Requirements

The purpose of this book is to help you improve the practice of
requirements engineering. Requirements engineering is dif-

ficult. It’s not just a simple matter of writing down what the cus-
tomer says he wants. A fundamental problem in business is that
requirements are inherently dynamic; they will change over
time as our understanding of the problem we are trying to solve
changes. The importance of good requirements and the underly-
ing dynamic nature of the process mean that we must be as accu-
rate as possible, and yet be flexible. Flexible does not mean
“weak,” but rather than we have a process for developing require-
ments and accommodating changed requirements as we clarify
the real requirements of customers. Ineffective requirements
practices are an industrywide problem. This is an area in which
you can have a major positive impact. A more disciplined
approach to requirements development and management is
needed in order to improve project success rates. An alarming
53% of industry’s investment in technical development projects
is a casualty of cost overruns and failed projects.

This chapter defines the term “requirement,” explains why
requirements are important, and advocates planning to define
the requirements strategy and activities. It suggests use of
a defined and documented requirements process, that investing
more in the requirements process will have a large payback,
and that requirements serve a crucial role in business in manag-
ing risk. It recommends that you consider certain factors in
making your career decisions. It suggests that much of the
advice provided in the book is applicable to projects of all sizes.

What Are Requirements and Why Are
They Important?
A requirement is a necessary attribute in a system, a statement
that identifies a capability, characteristic, or quality factor of a

1

1
Contents

What are Requirements and
Why Are They Important?

Why Plan?

A Suggested Strategy

Requirements Activities in the
System Life Cycle

Investment in the
Requirements Process

A Process Approach

The Requirements Plan

Factors Affecting Your Career
Decisions

A Comment Concerning Small
Projects

Summary

Case Study

References

C H A P T E R

system in order for it to have value and utility to a customer or user. Require-
ments are important because they provide the basis for all of the develop-
ment work that follows. Once the requirements are set, developers initiate
the other technical work: system design, development, testing, implementa-
tion, and operation.

Too often, there is a tendency to want to start what is often referred to as
“the real work” (developing, or programming, the software) too quickly.
Many customers and project managers (PMs) seem to believe that actual
programming work (“coding”) indicates that progress is being made.
According to industry experience, insufficient time and effort are spent on
the requirements-related activities associated with system development.
Industry experience confirms that a better approach is to invest more time
in requirements gathering, analysis, and management activities. The reason
is that, typically, coding work is started much sooner than it should be
because additional time is needed to identify the “real” requirements and to
plan for requirements-related activities (described below).

There is a significant difference between “stated” requirements and “real”
requirements. Stated requirements are those provided by a customer at
the beginning of a system or software development effort, for example,
in a request for information, proposal, or quote or in a statement of
work (SOW). Real requirements are those that reflect the verified needs
of users for a particular system or capability. There is often a huge differ-
ence between the stated requirements and the real requirements. Analy-
sis of the stated requirements is required to determine and refine real
customer and user needs and expectations of the delivered system. The
requirements need to be filtered by a process of clarification of their mean-
ing and identification of other aspects that need to be considered. To cite a
simple example, requirements analysts (RAs) are more familiar with the need
to state requirements clearly (see the criteria for a good requirement pro-
vided below). There are many ways in which the capability, understanding,
and communication of the meaning of each and every requirement may be
different to a user than to a developer. Therefore, it is vital (and time saving)
that all requirements be clarified through the mechanism of a joint cus-
tomer/user and RA effort. Customers and users need the support of techni-
cally trained and experienced professionals, and vice versa, to ensure
effective communication. Developers need to have that same understanding
so that the solution they define addresses the needs in the way everyone
expects. Misunderstandings of requirements result in wasted effort and
rework. Another important insight is that sometimes the requirements are
unknowable at the outset of a development effort because they are affected
by the new capabilities to be provided in the new system. This suggests the
need to plan for new and changed requirements—to provide a degree of
flexibility.

Identifying the real requirements requires an interactive and iterative re-
quirements process, supported by effective practices, processes, mecha-
nisms, methods, techniques, and tools. This book provides a description of
how the RA can use these in performing the needed work. In a previous

2 The Importance of Requirements

book, Effective Requirements Practices [1], I describe what should be done and
provide an extensive set of references to many of the best publications in the
industry literature. This book is intended to provide a concise handbook that
serves as a desk reference guide for the RA or engineer and requirements
manager in engineering and computing. It also provides updated references.

The requirements process need not be complicated or expensive. How-
ever, a requirements process is required for a project of any size. It’s most
important that a project or organization have a defined and documented
requirements process. The nature of the specific components of the defined
process can be improved based on experience.

Why Plan?
It’s well known and understood by most people that a bit of planning goes a
long way. For example, before leaving on an automobile trip, checking a
map to locate the destination and, perhaps, even planning a route may be
time well spent. Yet, we frequently charge ahead with the doing with little
or no planning, don’t we? It’s human nature to want to get on with the
needed work without doing much planning.

Systems development and software development managers and practi-
tioners are familiar with several types of plans: project plan, systems
engineering management plan (SEMP), quality assurance (QA) plan, con-
figuration management (CM) plan, software development plan (SDP), test
plan, and so on. However, the concept of a requirements plan may be new to
you. Leveraging requirements-related activities has great power and effect.
Writing a requirements plan maximizes value. A requirements plan defines
how the real requirements will evolve and how the requirements activities
will be addressed.

Writing a requirements plan (RP) facilitates an understanding of the
activities and efforts that need to be undertaken to implement an effective
requirements process for a particular development effort. Additional details
concerning the requirements plan are provided below.

A Suggested Strategy
I suggest a strategy that includes (1) writing a requirements plan, (2) design-
ing or tailoring a requirements process for your project, (3) investing in the
requirements-related activities in the system life cycle, and (4) utilizing the
effective requirements practices, mechanisms, methods, techniques, tools,
and training that are described in this book.

Requirements Activities in the System Life Cycle
Managers often think of requirements-related activities as consisting
primarily of gathering requirements and managing changes to those

Why Plan? 3

requirements throughout the life cycle. In reality, there are several other
requirements-related activities that need to be addressed in the system life
cycle:

◗ Identifying the stakeholders: This includes anyone who has an interest in
the system or in its possessing qualities that meet particular needs.

◗ Gaining an understanding of the customers’ and users’ needs for the planned
system and their expectations of it: This is often referred to as requirements
elicitation. Note that the requirements can include several types. Types
of requirements are discussed in Chapter 4. Requirements gathering
techniques are discussed in Chapter 5.

◗ Identifying requirements: This involves stating requirements in simple
sentences and providing them as a set. Business needs or requirements
are the essential activities of an enterprise. They are derived from busi-
ness goals (the objectives of the enterprise). Business scenarios may be
used as a technique for understanding business requirements. A key
factor in the success of a system is the extent to which it supports the
business requirements and facilitates an organization in achieving
them.

◗ Clarifying and restating the requirements: This is done to ensure that they
describe the customer’s real needs and are in a form that can be under-
stood and used by developers of the system.

◗ Analyzing the requirements: This is done to ensure that they are well
defined and that they conform to the criteria of a good requirement
(provided below).

◗ Defining the requirements in a way that means the same thing to all of the stake-
holders: Note that each stakeholder group may have a significantly dif-
ferent perspective of the system and the system’s requirements.
Sometimes this requires investing significant time learning a special
vocabulary or project lexicon. Often it requires spending considerable
time and effort to achieve a common understanding.

◗ Specifying the requirements: This requires including all of the precise detail
of each requirement so that it can be included in a specification docu-
ment or other documentation, depending on the size of the project.

◗ Prioritizing the requirements: All requirements are not of equal impor-
tance to the customers and users of the planned system. Some are criti-
cal, some of relatively high priority, some of normal or average priority,
and some even of lower priority. It is important to prioritize all of
the requirements because there is never enough time or money to do
everything we’d like to do in our developed systems. Prioritizing the
requirements provides the opportunity to address the highest priority
first and possibly release a version of a product later that addresses

4 The Importance of Requirements

lower-priority needs. Prioritizing helps ensure that an appropriate
amount of investment is made in meeting various customer needs.1

◗ Deriving requirements: There are some requirements that come about
because of the design of a system, but do not provide a direct benefit to
the end user. A requirement for disc storage might result from the need
to store a lot of data, for example.

◗ Partitioning requirements: We categorize requirements as those that
can be met by hardware, software, training, and documentation, for
example. Often this process turns out to be more complex than we
anticipate when some requirements are satisfied by more than one
category.

◗ Allocating requirements: We allocate requirements to different subsys-
tems and components of the system. The allocations may not always be
satisfied by just one subsystem or component.

◗ Tracking requirements: We need the capability to trace or track where in
the system each requirement is satisfied, so that we can verify that each
requirement is being addressed. This is most often accomplished
through use of an automated requirements tool.

◗ Managing requirements: We need to be able to add, delete, and modify
requirements during all of the phases of system design, development,
integration, testing, deployment, and operation. The requirements
repository consists of a set of artifacts and databases. It is described in
Chapter 5.

◗ Testing and verifying requirements: This is the process of checking require-
ments, designs, code, test plans, and system products to ensure that the
requirements are met.

◗ Validating requirements: This is the process for confirming that the real
requirements are implemented in the delivered system. The order of
validation of requirements should be prioritized since there is a lim-
ited amount of funding available.

Investment in the Requirements Process
The industry average investment in the requirements process for a typical
system is 2% to 3% of total project cost. It should be evident from the

Investment in the Requirements Process 5

1. See A. M. Davis, “The Art of Requirements Triage,” Computer (March 2003), for a discussion of the concept of

“requirements triage.” Davis defines requirements triage as the process of determining which requirements a

product should satisfy given the time and resources available. He provides extensive guidance and suggestions

that help prioritize requirements. Three product development case studies and 14 recommendations are

provided.

information already presented that this amount of investment is inade-
quate and in fact is the root cause of the failure of many projects. Data from
the U.S. National Aeronautics and Space Administration (NASA) described
in [2] provide a clear and powerful message: projects that expended the
industry average of 2% to 3% of total project cost/effort on the (full
life cycle) requirements process experienced an 80% to 200% cost over-
run, while projects that invested 8% to 14% of total project cost/effort
in the requirements process had 0% to 50% overruns [2, p. 9]. (Obvi-
ously, our goal is not to have overruns at all; however, a smaller overrun is
preferable to a larger one!) This book describes how to achieve an appropri-
ate level of investment in the requirements process and the associated
benefits.

A Process Approach
Over the past two decades, there has been considerable discussion of the
value of a “process approach.” By a process approach, I mean developing
and using a documented description—a process flowchart and an accompa-
nying process description (PD)—of a set of activities that results in the
accomplishment of a task or achievement of an outcome. Based on my
experience, there is great value to using a process approach:

◗ Those who support the activity document the actions or activities
involved in getting something done.

◗ Once documented, there is a common (shared) understanding of what
is involved.

◗ The documented process can be understood by all who are involved.

◗ Those involved, having a common understanding, can suggest
improvements to the process (enabling continuous improvement and
empowering those who are involved to contribute ideas for making
the process better).

Several general process models have been developed. For example, the
Capability Maturity Model (CMM) [3] developed by the Software Engineer-
ing Institute (SEI) at Carnegie Mellon University in the late 1980s provides an
industry standard framework for assessing the maturity/capability of a devel-
opment process. The current version of this model is called the Capability
Maturity Model Integration (CMMI) [4]. Its success is due to the model’s
capability to discern whether software is being developed more effectively.
One can tell whether the development effort is “better” or “worse” over time.
Some PMs may question the value of process improvement, believing that it
diverts resources from their main responsibility of satisfying the customer
needs and that process improvement costs too much money. Industry data
maintained by the SEI reflect a 7:1 return on investment (ROI) from process

6 The Importance of Requirements

improvement.2 Other industry data consistently report 40% to 50% rework
on development projects. Reducing rework is a lucrative target for process
improvement efforts. Reducing rework can provide the resources to under-
take process improvement initiatives.

Also, requirements process models are available; for example, one
is provided in my earlier book and available on my Web site (www.
ralphyoung.net); the spiral model for requirements engineering; and a
model is provided in Mastering the Requirements Process [5].

The Requirements Plan
A requirements plan should be developed by the RA early—either during
the proposal preparation phase or soon after a decision is made to proceed
with a development project or task. The purpose of the requirements plan is
to determine and document how the real requirements will be evolved and
how the requirements-related activities in the system life cycle (listed and
described above) will be addressed. Following is a list of suggested topics for
this plan and a description of each topic:

◗ Purpose (of the requirements plan): This was defined in the preceding
paragraph.

◗ Contract/project summary: A high-level summary of the objectives of the
system or software should be provided. This section can be extracted
from other documents such as a vision and scope document that may have
been written previously to describe the overall intent.

◗ Background: This section should describe the situation that led to the
decision to develop the system or software. It should identify the major
stakeholder groups—those who have an interest in the system, such as
the customer (the person or organization providing the funds to pay for
the project or its end products), various categories of users, developers,
and major suppliers.

◗ Evolution of the requirements: A mechanism should be agreed upon
between the customers/users and the development team to review the
stated requirements and evolve the real requirements. Customers may
resist this effort, believing that they already have a “good” set of
requirements. The RA should be familiar with industry experience con-
cerning how many projects have failed and how many more have been
seriously and negatively affected by a failure to invest in this critical
step [1, p. 48]. A mechanism is a way to get something done or to achieve

The Requirements Plan 7

2. See B. K. Clark’s “Effects of Process Maturity on Development Effort,” Center for Software Engineering,

University of Southern California, 1999, at www. ralphyoung.net/goodarticles, for an excellent summary of

the benefits of process improvement.

a result. The recommended mechanism to evolve the real requirements
is a cooperative or joint team composed of one or a few representatives
of the users and a similar number of technically proficient developers.
The members of the joint team should review the requirements to
ensure that they meet the criteria of a good requirement provided in
Table 1.1. Also the rationale for each requirement (why it is needed)
should be documented. Industry experience is that by taking this one
step, up to half of the requirements can be eliminated.

◗ Roles and responsibilities of the project’s personnel involved in requirements-
related activities: Even on a small project, it’s likely that more than one per-
son will be involved with requirements-related activities. It’s helpful to
clarify and document these roles, so that everyone understands his
or her unique and common responsibilities. For example, someone
should be designated to provide requirements training (the content of
this training is described in Chapter 5). Another person will be responsi-
ble for the automated requirements tool. Yet another person may have
responsibility for the key processes to be utilized on the project, includ-
ing the requirements process. Still another may be responsible for design-
ing the architecture (the underlying structure of the system or
software). Since the requirements and the architecture impact each
other, a recommended requirements practice is to iterate the require-
ments and the architecture repeatedly—this results in stronger require-
ments and a more robust architecture [1, pp. 131–158].

8 The Importance of Requirements

Table 1.1 Criteria of a Good Requirement

Each Individual Requirement Should Be

Necessary: If the system can meet prioritized real needs without the requirement, it isn’t necessary.

Feasible: The requirement is doable and can be accomplished within budget and schedule.

Correct: The facts related to the requirement are accurate, and it is technically and legally possible.

Concise: The requirement is stated simply.

Unambiguous: The requirement can be interpreted in only one way.

Complete: All conditions under which the requirement applies are stated, and it expresses a whole
idea or statement.

Consistent: It is not in conflict with other requirements.

Verifiable: Implementation of the requirement in the system can be proved.

Traceable: The source of the requirement can be traced, and it can be tracked throughout the system
(e.g., to the design, code, test, and documentation).

Allocated: The requirement is assigned to a component of the designed system.

Design independent: It does not pose a specific implementation solution.

Nonredundant: It is not a duplicate requirement.

Written using the standard construct: The requirement is stated as an imperative using “shall.”

Assigned a unique identifier: Each requirement shall have a unique identifying number.

Devoid of escape clauses: Language should not include such phrases as “if,” “when,” “but,” “except,”
“unless,” and “although.” Language should not be speculative or general (i.e., avoid wording such
as “usually,” “generally,” “often,” “normally,” and “typically”).

◗ Definition of the requirements process to be used: As noted above, a docu-
mented requirements process is essential. A process may be thought of as
a flowchart (indicating the steps performed and the person or organiza-
tion that performs each step) accompanied by a narrative PD that indi-
cates, for example, the name of the process, its customers, inputs to the
process, outputs from the process, tasks performed in the process, the
person or organization performing each task, and some measures (met-
rics) that can be used to evaluate the quality of the products produced by
the process and the performance of the process. Experience shows that
it’s a good practice to involve the major stakeholders of a process in its
construction. This approach encourages understanding, completeness,
and buy-in to the defined process, as well as commitment to using it.

◗ Mechanisms, methods, techniques, and tools to be utilized: Several examples
of each category will be described throughout this book. Obviously,
some are more appropriate in some cases than others, and some are
particularly useful in specific situations. The specific mechanisms,
methods, techniques, and tools should be determined and docu-
mented, and the project team should be familiarized with those selected
and the rationale for their selection.

◗ Integration of proven effective requirements practices: Experience has shown
that use of a set of proven effective requirements practices can make a
huge difference on a project [1]. For example, the practice of investing
time and effort to define the real customer needs has already been rec-
ommended. Recommended “best” requirements practices will be
described throughout this book and are summarized in Chapter 6.
Select and document a set of requirements practices that will serve your
project well.

◗ References: There will be a set of documents that are key references for
the requirements process. Examples include documents that describe
system goals and objectives, lists of requirements of different users,
standards that the customer has specified be applied, policies that are
applicable, and so forth. These references should be listed, and the loca-
tion where each can be accessed should be indicated.

◗ Recommended strategy: Based on analysis of the above information, a
strategy should be developed and set forth to optimally leverage
requirements-related aspects of the project. Elements of the strategy
might include the following:

◗ The partnering strategy;3

The Requirements Plan 9

3. The term “partnering” is often used to suggest a close, coordinated, effective working relationship. Here I refer

to a defined process of partnership effort in a project. I encourage you to familiarize with the references at [6]

and to consider use of the partnering process. You may find (as I have) that it holds one of the secrets to project

success.

◗ The “upfront process” to be used (to understand real customer needs
and the environment, understand and document the scope of the
project, define external interfaces, define system components, and
define the outline for specification of the system);

◗ Determining what drives the requirements (regulations; higher-
level specifications; standards; policies; existing systems and
processes; constraints, such as cost, schedule, technical viability;
customer and user needs and expectations);

◗ Definition of a project requirements policy;

◗ Definition of the requirements process (flowchart and PD) (A sam-
ple requirements process is provided in [1] and on my Web site
(www.ralphyoung.net). You may be able to utilize it to tailor a
requirements process for your environment or project.);

◗ Mechanisms to be utilized (e.g., the joint team and others that are
recommended in this book);

◗ Training concerning requirements for the project team (including
the customer);

◗ Selection of an appropriate automated requirements tool and how it
will be used;

◗ Definition of the target architecture;

◗ Plans to deal with new and changed requirements (e.g., use of a
mechanism to control them, as well as versions, releases, and
builds);

◗ Understanding of risks inherent to the requirements, as it’s likely
that lack of full understanding of some requirements creates major
project risks;

◗ Definition of guidelines for system development based on require-
ments considerations.

◗ Appendixes: These might include the following:

◗ Requirements process (flowcharts and PDs);

◗ Partnering process approach [6];

◗ Draft project requirements policy;

◗ Action plans and timelines for needed efforts (e.g., selection of a
requirements tool).

Factors Affecting Your Career Decisions
I recommend that you meet with your PM very early, perhaps even before
your assignment to the project is finalized. Discuss with him or her perspec-
tives concerning requirements. After digesting this book and my previous

10 The Importance of Requirements

one, you should have a sufficient understanding of requirements practices
to allow you to conclude whether you can be effective in your role.

◗ Does the PM believe that requirements, requirements practices, invest-
ing in the requirement process, controlling requirements changes and
new requirements, and minimizing rework are important?

◗ Do you sense that he or she will support you in the many roles in which
you can potentially contribute to the project (see Chapter 2)?

◗ Does he or she seem concerned about people, about motivating people,
acknowledging their efforts, empowering them, and supporting them?

◗ Does he or she have a good reputation in the organization as a PM?

◗ Is he or she concerned about personal and professional growth?

◗ Is he or she willing to delegate responsibility?

The point is that you are about to commit a portion of your professional
life to a project. Take the time and effort to satisfy yourself that your time
will be well spent. You should perceive that a new position will provide you
with learning experiences, opportunities to make valued and needed contri-
butions, to work with peers whom you respect, to derive self-satisfaction
and fulfillment, and to have fun at work.

A Comment Concerning Small Projects
Many people feel that the approach that is used on medium and large proj-
ects is an inappropriate guide for small projects—that the practices, policies,
mechanisms, methods, techniques, and tools can’t be applied. My experi-
ence is that professional judgment can be used to scale down and apply key
practices to achieve good results on small projects. I encourage members of
small projects, tasks, or teams to benefit from what they can learn from the
experiences of larger projects by tailoring the approach, rather than use
smallness as an excuse for not taking advantage of industry lessons. See [7]
for additional insights.

Summary
This chapter has focused on the importance of requirements and provided
an introduction to the critical role of the RA (the roles of the RA are further
detailed in the next chapter, and the skills and characteristics of an effective
RA are described in Chapter 3). It should be apparent from the material
presented already that there is great power and effect in leveraging
requirements-related activities in engineering and computing. An alarming
53% of industry’s investment in technical development projects is a casualty

A Comment Concerning Small Projects 11

of cost overruns and failed projects. Major contributing factors are a lack of
user input (13%), incomplete requirements (12%), and changing require-
ments (12%).4 The user community and particularly project management
do not realize the value of investing in the requirements process. I suggest
that it is not “okay” for an RA to be aware of this and not to discuss the
implications with his or her PM. As a concerned professional, you have the
responsibility to bring these facts and your recommended approach to your
PM and to ask him or her to support an effective requirements process that
incorporates effective requirements practices. RAs, engineers, and managers
are in a strategic position to improve industry’s performance. This book pro-
vides focused and specific guidance that can have a huge payoff. By apply-
ing the approach recommended in this book, you can have a very positive
impact on your project and organization.

Case Study
This first case study reports on a workshop involving facilitated discussions
among a group of PMs concerning the top reasons they believed systems
and software projects had difficulties, based on their experience. Here are
the top reasons that were reported by a set of PMs:

1. The requirements for the project are not explicit.

2. Requirements changes are made/accepted without addressing the
concomitant cost, schedule, and quality impacts.

3. A requirements process is not used.

4. There is no mechanism (such as a joint team) to reach agreement on
the definition of the requirements and to manage the requirements
through the project life cycle.

5. The “real” customer needs are not defined.

6. There is no mechanism to maintain communication between the
parties involved in the project.

7. Known, familiar, proven methods, techniques, and tools are not
utilized.

8. The customer is not involved as a partner throughout the project life
cycle.

I recommend that you keep these reasons in mind as you digest this
book. Ascertain what you might be able to do or to recommend that will
help overcome these problems.

12 The Importance of Requirements

4. The Standish Group, The CHAOS Report (Dennis, MA: The Standish Group International, 1995). See https://

secure.standishgroup.com/reports/reports.php?rid=1.

References

[1] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[2] Hooks, I. F., and K. A. Farry, Customer-Centered Products: Creating Successful
Products through Smart Requirements Management, New York: AMACOM, 2001.

[3] Paulk, M. C., et al., Capability Maturity Model for Software, Version 1.1, February,
1993, SEI, Carnegie-Mellon University, Pittsburgh, PA, 1993.

[4] CMMI Web site at www.sei.cmu.edu/cmmi.

[5] Robertson, S., and J. Robertson, Mastering the Requirements Process, Harlow, UK:
Addison-Wesley, 1999.

[6] Markert, C., “Partnering: Unleashing the Power of Teamwork,” 2002, briefing
available from markert@facilitationcenter.com. See also Frank Carr et al.,
Partnering in Construction: A Practical Guide to Project Success, Chicago: American
Bar Association Publishing, 1999.

[7] See Paulk, M. C., “Using the Software CMM with Good Judgment,” ASQ
Software Quality Professional 1(3) (June 1999): 19–29, at www.sei.cmu.edu/
publications/articles/paulk/judgment.html.

Case Study 13

.

The Roles of the RA

Chapter 1 emphasized the importance of requirements. It was
noted that customers, managers, and developers undervalue
requirements engineering. The RA is in a strategic position to
improve the practices in use on projects and in the organiza-
tion. The analyst can have a positive impact on project success
and also facilitate the organization’s improvement results by
performing in several roles. Making the RA’s role explicit con-
tributes to a smoother process. The RA’s role can be linked
readily to business goals, such as increasing customer satisfac-
tion with the delivered work products; reducing the time to
market of products; meeting cost, schedule, and quality objec-
tives; and utilizing the human resources of the enterprise more
effectively. The RA’s role needs to be understood and valued in
the minds of PMs and the technical communities (both com-
puting and engineering). Table 2.1 summarizes the roles of
the RA, noting the life-cycle phases in which each role is
performed.

Suggested Roles of the RA
1. Work collaboratively with customers, users, and system architects

and designers to identify the real requirements for a planned system
or software development effort to define the problem that needs to be
solved.

The concept of the real requirements was explained in
Chapter 1. Experience has shown that the number one prob-
lem in requirements engineering is the failure to identify the
real requirements prior to initiating system development
activities. Anyone who has had some experience in developing
systems or software will agree that identifying the real require-
ments is a significant problem. With respect to this role, the RA
needs to create an awareness of the problem and also provide a

15

2
Contents

Suggested Roles of the RA

Summary

Case Study

References

C H A P T E R

16 The Roles of the RA

T
a

b
le

2
.1

R
A

R
o

le
s

a
n

d
Li

fe
-C

y
cl

e
A

ct
iv

it
ie

s

R
A

R
ol

e
S

ys
te

m
In

it
ia

tt
io

n

S
ys

te
m

A
n

a
ly

si
s

a
n

d
D

es
ig

n

S
ys

te
m

C
om

p
on

en
t

D
es

ig
n

S
ys

te
m

Im
p

le
m

en
ta

ti
on

S
ys

te
m

In
te

gr
a

ti
on

,
T

es
t,

a
n

d
E

va
lu

a
ti

on

S
ys

te
m

O
p

er
a

ti
on

s
a

n
d

S
u

p
p

or
t

1
.

W
o

rk
co

ll
a
b

o
ra

t i
v

e
ly

w
it

h
cu

st
o

m
e
rs

,
u

se
rs

,
a
n

d
sy

st
e
m

a
rc

h
it

e
ct

s
a
n

d
d

e
si

g
n

e
rs

t o
id

e
n

t i
fy

t h
e

re
a
l

re
q

u
ir

e
m

e
n

t s
fo

r
a

p
la

n
n

e
d

sy
st

e
m

o
r

so
ft

w
a
re

d
e
v

e
lo

p
m

e
n

t
e
ff

o
rt

t o
d

e
fi

n
e

t h
e

p
ro

b
le

m
t h

a
t

n
e
e
d

s
t o

b
e

so
lv

e
d

.

X
X

A
A

A
A

2
.

W
o

rk
e
ff

e
ct

iv
e
ly

w
it

h
cu

st
o

m
e
rs

a
n

d
u

se
rs

t o
m

a
n

a
g
e

n
e
w

a
n

d
ch

a
n

g
e
d

re
q

u
ir

e
m

e
n

t s
so

t h
a
t

t h
e

p
ro

je
ct

st
a
y

s
u

n
d

e
r

co
n

t r
o

l.
I n

st
a
ll

a
m

e
ch

a
n

is
m

t o
co

n
t r

o
l

ch
a
n

g
e
s.

X
X

X
X

3
.

B
e

a
le

rt
t o

n
e
w

t e
ch

n
o

lo
g
ie

s
t h

a
t

m
a
y

h
e
lp

.
X

X
X

4
.

F
a
ci

li
t a

t e
t h

e
p

ro
je

ct
in

re
u

si
n

g
a
rt

if
a
ct

s
a
n

d
a
ch

ie
v

in
g

re
p

e
a
t a

b
il

it
y

.
X

X
X

X

5
.

A
ss

is
t

t h
e

p
ro

je
ct

a
n

d
it

s
cu

st
o

m
e
rs

in
e
n

v
is

io
n

in
g

a
g
ro

w
t h

p
a
t h

fr
o

m
t h

e
fi

rs
t

re
le

a
se

o
r

v
e
rs

io
n

o
f

a
p

ro
d

u
ct

t h
ro

u
g
h

a
se

t
o

f
st

a
g
e
d

re
le

a
se

s
t o

t h
e

“u
lt

im
a
t e

sy
st

e
m

o
r

p
ro

d
u

ct
s.

”

X
X

X
X

X
X

6
.

A
d

v
is

e
th

e
p

ro
je

ct
(a

n
d

cu
st

o
m

e
r)

o
f

m
e
th

o
d

s,
te

ch
n

iq
u

e
s,

a
n

d
a
u

to
m

a
te

d
to

o
ls

th
a
t

a
re

a
v

a
il

a
b

le
to

b
e
st

su
p

p
o

rt
re

q
u

ir
e
m

e
n

ts
-r

e
la

te
d

p
ro

je
ct

w
o

rk
a
n

d
a
ct

iv
it

ie
s.

X
X

X

7
.

U
se

m
e
tr

ic
s

to
m

e
a
su

re
,

tr
a
ck

,
a
n

d
co

n
tr

o
l

re
q

u
ir

e
m

e
n

ts
-r

e
la

te
d

p
ro

je
ct

w
o

rk
a
ct

iv
it

ie
s

a
n

d
re

su
lt

s.
B

X
X

X
X

X

8
.

B
e

a
b

le
to

fa
ci

li
ta

te
d

is
cu

ss
io

n
s

a
n

d
to

m
e
d

ia
te

co
n

fl
ic

ts
.

X
X

X
X

X
X

9
.

S
tu

d
y

th
e

d
o

m
a
in

o
f

th
e

a
re

a
in

w
h

ic
h

th
e

sy
st

e
m

o
r

so
ft

w
a
re

is
b

e
in

g
u

se
d

.
X

X
X

T
h

e
li

fe
-c

y
cl

e
p

h
a
se

s
sh

o
w

n
in

th
e

to
p

ro
w

a
re

n
o

t
in

te
n

d
e
d

a
s

a
re

co
m

m
e
n

d
a
ti

o
n

fo
r

a
w

a
te

rf
a
ll

li
fe

-c
y

cl
e

m
o

d
e
l.

R
a
th

e
r,

th
e

u
se

o
f

th
e

p
h

a
se

te
rm

in
o

lo
g
y

is
in

te
n

d
e
d

to
d

e
p

ic
t

th
e

a
ct

iv
it

y
b

e
in

g
p

e
rf

o
rm

e
d

;
th

is
a
ct

iv
it

y
is

e
q

u
a
ll

y
a
p

p
li

ca
b

le
to

v
ir

tu
a
ll

y
a
ll

li
fe

-c
y

cl
e

m
o

d
e
ls

(e
.g

.,
sp

ir
a
l,

ra
p

id
a
p

p
li

c a
ti

o
n

d
e
v

e
lo

p
m

e
n

t,
in

cr
e
m

e
n

ta
l,

ra
ti

o
n

a
l

u
n

if
ie

d
p

ro
ce

ss
),

a
lt

h
o

u
g
h

th
e

li
fe

-c
y

cl
e

p
h

a
se

n
a
m

e
s

w
il

l
d

if
fe

r.

A
—

C
o

n
ti

n
u

e
to

id
e
n

ti
fy

re
a
l

re
q

u
ir

e
m

e
n

ts
fo

r
su

b
se

q
u

e
n

t
re

le
a
se

s
a
n

d
re

v
is

io
n

s,
m

a
in

ta
in

in
g

co
n

fi
g
u

ra
ti

o
n

co
n

tr
o

l.

B
—

S
y

st
e
m

in
it

ia
ti

o
n

o
r

“p
ro

je
ct

o
r

ta
sk

st
a
rt

u
p

”
is

a
co

n
fu

si
n

g
ti

m
e
.

T
h

e
e
x

p
e
ri

e
n

ce
d

R
A

w
il

l
b

e
a
b

le
to

le
n

d
a
ss

is
ta

n
ce

.
F

o
r

e
x

a
m

p
le

,
th

e
R

A
sh

o
u

ld
p

ro
v

id
e

a
b

ri
e
fi

n
g

to
th

e
p

ro
je

ct
te

a
m

th
a
t

in
cl

u
d

e
s

th
e

to
p

ic
s

n
o

te
d

in
T

a
b

le
5

.4
.

So
ur

ce
:R

ic
ha

rd
R

ap
ha

el
.

suggested strategy to overcome the problem. This is a concrete example of a
situation that we know can be improved, but most often we don’t act on
this knowledge. We are impatient to get started on the so-called real work of
programming. We are content to allow the development effort to proceed
without taking the extra effort to evolve the real requirements. Note that I
have used the word “evolve.” This work involves more than identifying
requirements. The essential task is to use the stated requirements articulated
by customers and users as a base, couple this with a thorough understand-
ing of the business objectives, and iterate to evolve requirements that meet
the criteria for a good requirement and address prioritized real needs for the
system or software. Activities involved in performing this work include the
following:

◗ Identifying the stated needs of customers and users. This involves
reviewing things previously written about the proposed system, inter-
viewing customers and users, studying relevant legislation, and so
forth.

◗ Studying the business objectives for the proposed effort.

◗ Collaborating with customers and users in a joint or cooperative envi-
ronment to analyze the stated requirements, evolve better require-
ments, and prioritize them (see the suggested techniques that follow).

◗ Involving system architects in requirements development. Iterating the
draft or proposed requirements will result in a candidate architecture
with better requirements and a more robust architecture. For example,
systems need to be able to accommodate changing business needs. The
architecture should be designed and developed accordingly, or else the
delivered system soon will be outdated.

◗ Utilizing an industry-strength automated requirements tool to sup-
port this work.

The RA should work within the project organization to win the support
of the PM in gaining commitment to investing added time and effort to
evolve the real requirements. Here is a great opportunity for the RA to take
responsibility and, drawing upon industry experience, convince project
management and developers to invest more time and effort in the require-
ments process. Fortunately, data is available to help us manage by fact
rather than by intuition or the way we have always done things. Refer to
Effective Requirements Practices [1, p. 62] for these data.

Consider using collaborative requirements elicitation techniques that
work well in group sessions. Examples of good requirements elicitation
techniques are requirements workshops, electronic-based groupware or
electronic collaborative development tools, high-level data flow diagrams,
high-level IDEF0 diagrams (especially for business modeling), and high-
level use case diagrams (especially to distinguish requirements that are

Suggested Roles of the RA 17

outside the system versus behavior expected from the system). All of these
work well on a whiteboard, are easy to understand, and allow everyone
present to participate. See Dean Leffingwell and Don Widrig’s Managing Soft-
ware Requirements: A Unified Approach [2] for good discussions of these and
other techniques and how to use them. David Hay provides a useful com-
parison of techniques that can be used in Requirements Analysis: From Business
Views to Architecture (see [3, p. 194] and the preceding discussion).

2. Work effectively with customers and users to manage new and changed require-
ments so that the project stays under control. Install a mechanism to control
changes.

The next most serious problem in requirements engineering (after the fail-
ure to identify the real requirements) is failure to control requirements that
are identified after system development (programming) begins, both new
requirements and changes to existing requirements. Here we distinguish
between critical requirements (those that would have an impact on cost,
schedule, or the development effort if changed) and noncritical require-
ments, such as a derived requirement that further defines the system being
built, but serves to clarify a higher-level requirement and does not affect
cost, schedule, or functionality. All stakeholders should welcome a “no-
impact” requirement that further clarifies the system.

Again, we have data from industry experience to guide our actions:
a 20% change in requirements will result in a doubling of project-
development costs [4]. Therefore, it’s critical that a mechanism be put in
place to evaluate and adjudicate changes to requirements. Without an effec-
tive mechanism to control changes to requirements, the project will soon be
out of control in terms of schedule and cost. Several things must be done:

◗ The importance of controlling changes to requirements must be
explained to customers, users, and developers so that the partnership
commitment to project success is maintained.

◗ Developers must be trained not to accept unauthorized requirements
changes. All requests for changes, no matter how trivial, must be fun-
neled through the change control mechanism.

◗ The change control mechanism should be a joint team that includes
empowered decision makers representing the customer and the devel-
oper. The joint team should meet frequently enough to have a reason-
able number of change requests to consider. A target metric of 0.5%
requirements volatility is recommended to guide decisions made by the
joint team once a baseline of validated requirements has been estab-
lished.1 “Whoa,” you say, “that’s not much!” Right! This is another

18 The Roles of the RA

1. Chapter 10 of Effective Requirements Practices provides several ideas, suggestions, and recommendations for

controlling requirements changes.

reason to invest the needed time to evolve the real requirements prior
to starting the development activities.

◗ Partnering with your customer, evolve ways to deal with change. We
know the world is changing while we’re developing the system. What
are some ways to deal with this without jeopardizing project success?
Consider using releases, versions, and upgrades. Package increments of
requirements upgrades and changes in subsequent releases or system
upgrades.

◗ Ensure that your contract provides for additional time and budgeting
for all changes. This is a mechanism to maintain good relationships
throughout the contract work—to partner for success. Changes cost
time and money. This should be recognized up front and reflected in
the contract.

3. Be alert to new technologies that may help.

A role that is often underutilized is advising our customers concerning
evolving technology. While this is not solely the responsibility of the
requirements analysts or engineers, many involved in developing systems
for customers would be well advised to spend additional time and effort
learning about new technologies and how they can be applied to our work.
Customers are typically focused on what the system needs to do. We can
serve them best by being familiar with evolving technologies that improve
how the needed system is designed. This suggests that RAs will benefit from
having system designers review their work products. Concurrently with
requirements elaboration, involve a small team of designers to review the
real requirements for cost, schedule, technology, and risk impacts. Use trade
studies—the Decision Analysis Resolution (DAR) process in CMMI termi-
nology—to evolve alternatives. Keep the customer involved in these activi-
ties, so that when opportunities arise, the customer is there to partner with
you in making recommendations for decisions. An excellent reference that
describes the process of utilizing new technologies is Everett M. Rogers’s Dif-
fusion of Innovations (4th ed.) [5].

4. Facilitate the project’s reuse of artifacts and achieving repeatability.

There has been a lot of discussion in the industry literature about reuse.
Reuse has two meanings: (1) to take object X (e.g., an object, subroutine, or
COTS software) that was done by Y and use it directly in another project,
and (2) to tailor2 a developed work product (a specification, a plan, or
process, for example). Many organizations have invested in reuse strategies
only to conclude that they are not viable or practical. Others are wary of

Suggested Roles of the RA 19

2. By “tailoring,” we mean modifying, extracting pieces from, elaborating, or adapting a process or document for

another use. Reuse of tailored artifacts saves time and money and is an advantage of a process-oriented

approach.

reuse because they believe it precludes unprecedented solutions and incor-
porates the errors of the reused work products.

We can consider requirements themselves as reusable artifacts. Books that
discuss reusable requirement patterns include Data Model Patterns: Conventions
of Thought [6] (for a relational viewpoint) by David C. Hay, Analysis Patterns
(for an object oriented viewpoint) by Martin Fowler [7], and Design Patterns
by Eric Gamma, et al. [8]. Michael Jackson’s problem frames (described in his
book by the same name [9]) are in essence highly abstract requirements pat-
terns that can be connected, nested, and built into real world models. The
point is that many requirements are not unique; they have already been
identified in someone else’s environment and problem space.

I have found in my writing activities that starting with an example work
product gives me ideas about format, structure, content, and resources to
reference or contact. An example work product you might want to consider
is a requirements plan. As emphasized in Chapter 1, I advocate develop-
ment of a requirements plan for any system or software development effort.
This idea may be new to you, and it would be very helpful and instructive to
review one developed previously in order to consider its potential value to
your work. Another example from my experience is reusing documented
processes. If the organization or another project has a documented process
for doing something, why not tailor it as needed and then reuse it, rather
than create one’s own process? Others who have performed the process in
practice have incorporated their experience and the lessons they have
learned using it. Related to this is the value of peer reviews. I advocate a
peer review of every work product. (The extent of the peer review—the
number of people requested to review the work product and the time
invested to perform the peer review and report on defects and make sugges-
tions—is a function of the importance of the work product.) If one can reuse
the peer review process and checklists of another organization, this provides
a jump-start in getting the process designed, accepted, deployed, imple-
mented, and institutionalized.

An Example of Process Reuse

In teaching requirements courses and tutorials, I’m always interested to
learn how many of the participants are using a documented requirements
process on their project or in their organization. Typically, this turns out to
be 15% to 20% of the participants. A sample requirements process is pro-
vided in Effective Requirements Practices [1, pp. 110–118]. This process has
been tailored, deployed, and implemented on more than 50 projects. Its
integration with the system architecture process is described later in the
book [1, pp. 136–146].

Suggestion: Tailor this sample requirements process for your project or
organization. Involve the stakeholders to make the changes that best serve
their needs. Provide both flowcharts and narrative PDs as described in Effec-
tive Requirements Practices. Periodically update the documented process with
continuous improvement ideas and suggestions.

20 The Roles of the RA

5. Assist the project and its customers in envisioning a growth path from the first re-
lease or version of a product through a set of staged releases to the ultimate system
or product.

This role is related to role 3. The RA can serve an important and valuable
role in helping customers to envision and evolve a series of releases or ver-
sions of products. This approach is particularly appropriate in the situation
in which requirements are not well understood at the outset or the require-
ments are changing rapidly. This suggests that an “incremental development
approach” should be used, in which the full system is implemented over a
period of time through increments of delivered functionality. In a sense, no
system is ever done, so we have to help everyone see system development
as a journey. Independently of the system development methodology used
(waterfall, incremental, spiral, evolutionary, etc.), there has to be an agreed-
upon process for managing changes and determining the scope of individual
projects. No matter how much discussion and testing is done, there are
some missing requirements that won’t be discovered until the system is in
production.

6. Advise the project (and customer) of methods, techniques, and automated tools
that are available to best support requirements-related project work and activities.

This is an important role. Experience has shown that methods and tech-
niques vary in their applicability and effectiveness and that often automated
tools purchased by projects and organizations are not used or are underutil-
ized. Chapter 11 of Effective Requirements Practices [1] reports on industry
experience and provides several recommendations. Chapter 8 of Effective
Requirements Practices [1] recommends that the methods and techniques that
are used by a project be familiar to the project participants and proven in
their respective industry. It’s not advisable to undertake a project with
unproven, unfamiliar methods and techniques. The development work is
challenging enough without introducing the complexity of methods or
techniques that are not familiar and haven’t been used successfully on pre-
vious projects in the organization. At the project level, the team should stick
with the tools, processes, and techniques with which its members are famil-
iar. At the organizational level, the project should try to use the tools,
processes, and techniques that are known and proven in the organization.
When contractors are brought into an existing effort, they should adapt to
the tools that the customer already has in place (assuming they are working
effectively). If the last five projects were done with tool X, and everyone is
satisfied with the usefulness of the tool, then when you arrive, there are
good reasons to use it. Note that a resource issue may be involved. Ideally,
an RA would be a leveraged resource, moving from project to project and
taking her experience with her. However, often in practice, a project team is
built (or already exists) and someone from the current team with domain
knowledge is tasked with being the RA. While tried-and-true techniques
and tools exist, they may be unfamiliar to this person, requiring a lengthy
and sometimes painful learning curve, with significant disadvantages to the

Suggested Roles of the RA 21

project. This argues for the organization to provide a set of experienced RAs
that will provide a high return on the investment made to identify them,
train them, and provide them with experience.

I also recommend challenging customer directions to use specific meth-
ods or techniques that are not familiar to the project team or not previously
proven in practice. For example, a customer might direct that an object-
oriented (OO) development approach be employed (see [10] for thoughtful
guidelines on this topic) or that a particular automated tool or tool suite be
used. It’s valuable to be in a position to be able to advise your project and
your customer of the methods, techniques, and automated tools that will
best support the specific development situation. Draw on industry experi-
ence and don’t pretend that “everything will work out.”

7. Use metrics to measure, track, and control requirements-related project work ac-
tivities and results.

The industry literature concerning metrics is vast. I’d estimate that perhaps
20% of it provides helpful counsel. It’s easy to get into a situation of per-
forming measurement activities for their own sake, rather than to help
evaluate project work and take corrective actions. I recommend using a few
useful metrics. I have developed the following axiom in my work over the
years:

The things that are measured and tracked and that management pays atten-

tion to are the ones that improve.

This suggests that it’s not sufficient to have a few useful metrics—they
must be tracked, and they must be used by management to guide project
decisions.

There is a set of measures or metrics that should be used by all projects.
See Effective Requirements Practices [1, pp. 255–261] for specific suggestions.

There is another level of sophistication that should be used by mature
projects and organizations. As used here, “mature” means that processes
have been defined, documented, implemented, used, institutionalized, and
continuously improved over a period of at least two to four years. This
involves quantitative management (QM) of cost, schedule, quality, and
process metrics and baselines in support of specific business objectives. It is
fulfilling to see projects and organizations move from the situation in which
QM is not well understood to one in which QM is effectively used to achieve
business objectives. This is especially satisfying to process engineers, because
executives can see first hand the value of process improvement in meeting
business needs.

8. Be able to facilitate discussions and to mediate conflicts.

This role stresses the “people skills” of the RA. We’ve learned that being well
qualified technically is important, but that it’s also necessary to have strong,

22 The Roles of the RA

well-refined people skills. Experience has shown that two heads are better
than one—whenever we take the time to explore ideas and approaches with
others, we get even better ideas and approaches! Ergo, we can drop the
point of view that “we know best.” And we can make great use of this prin-
ciple by becoming good facilitators and mediators. There are courses avail-
able to assist (e.g., negotiating skills, team building, communications,
relationships, and leading). Much can be gained by practicing these skills in
our daily work. Having a “win-win” perspective is helpful—in fact, Barry
Boehm et al. have developed a win-win requirements development
approach in work done at the University of Southern California. See
http://sunset.usc.edu/research/WINWIN/winwin_main.html.

9. Study the domain of the area in which the system or software is being used.

Be able to grasp, abstract, and express ideas quickly in the users’ language. If
the RA does not understand the user domain almost as well as the users do,
he risks limiting his role to that of an order taker. I have seen different
groups come and go whose specialty was communication, consensus build-
ing, and so forth. Populating those groups was a set of people who were
trained facilitators, but who were not technically proficient. They moved
from project to project so frequently that they never achieved any deep
domain understanding. For example, what if, on a network communica-
tions project, the only way an RA can explain any concept to the users is by
giving analogies with building military aircraft? Answer: reduced effective-
ness and credibility.

Summary
The RA performs several important roles on a project and in an organiza-
tion. Nine important roles were identified and described in this chapter. The
first two are paramount and essential to project success. Accordingly, study
these, become proficient in them, and assist your project and organization in
adopting, implementing, and institutionalizing related practices. Organiza-
tions should consider taking specific steps to develop and leverage their RAs,
such as (1) ensuring that experienced RAs are assigned to each project; (2)
providing appropriate training for RAs; (3) assigning experienced RAs to
mentor new employees, junior RAs, and interns; and (4) having an organ-
izational requirements working group to share expertise and provide a
resource to the organization. The RA should be a trained, experienced, and
strong performer. Unfortunately, I’ve seen many cases where the new
employee or the summer intern is dispatched “to get the requirements.” The
role of the RA needs to be understood and valued in the minds of PMs and
the technical community. At this point, you may feel overwhelmed with
your responsibilities, as Figure 2.1 suggests. Be assured that with study and
experience, you will provide a very positive contribution to the efforts that
you support!

Summary 23

Case Study
This is the story of a project that failed because neither the customer nor the
contractor knew how to handle requirements. It is a negative example.
Although the people involved were professionals and were well inten-
tioned, things went horribly wrong because effective requirements practices
were not applied.

The project approach was one that is used with alarmingly frequency
and can be characterized as “get started programming and we will find out
what they want as we proceed.” The customer, a military organization,
handed the contractor a shelf-load of rules and regulations (“regs”) saying,
“These are the requirements.” The programmers, all on-site employees of a
contractor, were ready to start, and they did. Representatives of the military
organization were aware of the project, but they did not participate in it
until it was time to review the finished code.

While the code was being written, the contractor undertook to convert
the regs to a set of shall statements. This was faithfully and painstakingly
done, but as the code emerged, it was found that the verification of the shall
statements—matching them to parts of the different code modules—was
virtually impossible. They simply did not map.

Another complication encountered was a complete breakdown in com-
munication between the contractor and the subcontractor producing the
code. It wasn’t that they did not understand each other; they simply did not
communicate. The subcontractor viewed any inquiries as interference, and
in an atmosphere of hostility, communication simply died.

As the code came into review by the customer, the military representa-
tives were heard to say again and again, “No, that’s what we do, but that’s

24 The Roles of the RA

Figure 2.1 The challenges of the RA.

not how we do it.” And as the modules came into test by the contractor,
they failed repeatedly. The right things had been written the wrong way,
and they did not work.

After months of struggle, the first of about 20 modules was almost ready
for release. It was still a little shaky, and lots of people were unhappy with it,
but it was close to acceptance from the contractor’s perspective. However,
the customer gave up because relationships between the two parties had
become broken during the code development period. Not only was the
process broken, but also the platform and the operating system were out-
dated and inadequate. Three million lines of code were abandoned, the
hardware was scrapped, and the whole project was started all over again.

What had gone wrong?

◗ There was no partnership between the customer, contractor, and
subcontractor.

◗ There was no communication.

◗ There was not an atmosphere of mutual respect.

◗ There was no workable requirements plan.

◗ There was no mechanism for joint resolution of problems.

The project was begun anew, on a different platform, in a different lan-
guage, by a different mix of subcontractors. An improved set of require-
ments practices was used, which included the following:

◗ Mechanisms (similar to the joint team discussed in Chapter 1) to
facilitate partnering, identifying real needs and requirements, and pri-
oritization of requirements;

◗ An approach that involved the users in the development effort, pro-
vided for collaboration with them, and gained the buy-in of the users to
the project approach;

◗ Use of methods including use cases that facilitated understanding and
effective communication of user needs and requirements;

◗ Incorporating appropriate and updated technology that better served
the customer and the users.

References

[1] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[2] Leffingwell, D., and D. Widrig, Managing Software Requirements: A Unified
Approach, Reading, MA: Addison-Wesley, 2000.

[3] Hay, D. C., Requirements Analysis: From Business Views to Architecture, Upper Saddle
River, NJ: Prentice Hall, 2003.

Case Study 25

[4] Hooks, I., “Writing Good Requirements: A One-Day Tutorial,” Sponsored by the
Washington Metropolitan Area (WMA) Chapter of the International Council on
Systems Engineering (INCOSE), McLean, VA, Compliance Automation, Inc.,
June 1997.

[5] Rogers, E. M., Diffusion of Innovations, 4th ed., New York: The Free Press, 1995.

[6] Hay, D. C., Data Model Patterns: Conventions of Thought, New York: Dorset House,
1996.

[7] Fowler, M., Analysis Patterns: Reusable Object Models, Reading, MA: Addison-
Wesley, 1996.

[8] Gamma, E., et al., Design Patterns, Reading, MA: Addison-Wesley, 1995.

[9] Jackson, M., Problem Frames: Analyzing and Structuring Software Development
Problems, London, UK: Addison-Wesley, 2001.

[10] Webster, B. F., Pitfalls of Object-Oriented Development, New York: Hungry Minds,
Inc., 1995.

26 The Roles of the RA

Skills and Characteristics of an
Effective RA

This chapter describes the desired skills and characteristics of
an effective RA. As emphasized in the previous chapter, the RA
fulfills several critical project roles. On many projects, the RA is
a part-time individual who is otherwise engaged as PM, prod-
uct manager, system engineer, developer, or in some other
capacity. On other projects, there may be a full time RA or
even several RAs and a requirements manager. The size of the
project and the perceived complexity of the needed
requirements-related activities, as well as the funding avail-
able, are the major determinants of the number of RAs and
their needed skill levels. The roles of the RA may be divided
among those available to do the needed work, also considering
current skills, interests, and desired development needs. What-
ever the situation, RAs should consider themselves key
resources, able to contribute to the project in the roles
described in the previous chapter. The RA requires a unique
blend of skills that reflects knowledge and real-world orienta-
tion, as well as the ability to interpret and satisfy customers’,
users’, and management’s intent. Some of the skills are intrin-
sic in the way an individual works (such as analytical and
interpersonal skills) and others are learned (e.g., facilitation
skills).

Skills of the RA
As a framework for this chapter, refer to Table 3.1, RA’s Skills
Matrix.1 A list of RA skills is provided. Three levels of RAs are
shown:

27

3
Contents

Skills of the RA

Characteristics of an Effective
RA

Summary

Case Study

References

C H A P T E R

1. With thanks to senior RA Michael Davis of Northrop Grumman IT for

providing this artifact. The responsibility for modifications to the original

version is mine.

28 Skills and Characteristics of an Effective RA

Table 3.1 RA’s Skills Matrix

Line
Number RA’s Skills Matrix Reference

Entry/
Junior-
Level
Analyst

Mid-Level
Analyst

Senior-Level
Analyst

1 Types of requirements Ch. 4 K X X

2 Criteria of a good requirement Ch. 1 K X X

3 Customer/user involvement with
requirements joint team

Ch. 1 K X X

4 Identifying real requirements (from
the stated requirements)

Ch. 1 K X X

5 Anticipating and controlling
requirements changes

Ch. 1 K X X

6 Office automation tools Tutorials X X X

7 References concerning
requirements (books, articles,
standards)

See
Bibliography

K X X

8 Requirements attributes Ch. 5 K X X

9 Requirements baseline Ch. 6 K X X

10 Training in systems engineering
(e.g., life cycles, risk management)

Ch. 5 K X X

11 Requirements
justification/rationale

Ch. 5 K X X

12 Requirements management tools
(e.g., DOORS, RequisitePro)

Ch. 5 K X X

13 Requirements peer
review/inspection/walk-through

Ch. 5 K X X

14 Requirements syntax WBR, Ch. 7 K X X

15 Requirements traceability Ch. 5 K X X

16 Requirements verification and
validation (V&V)

Ch. 5 K X X

17 System/subsystem/software-level
requirements

Ch. 5 K X X

18 Developing and using metrics for
requirements activities/processes

Ch. 2 K X X

19 Technical writing of requirements
deliverables (RTM, SRS, IRS)

Ch. 4 K X X

20 Development, implementation, and
use of requirements processes

Ch. 5 K X

21 Familiarity with Microsoft Project Tutorial K X

22 QA of requirements Ch. 9 K X

23 Requirements allocation (to
components, applications,
packages)

Ch. 4 K X

24 Requirements change control and
change notification

Ch. 6 K X

25 Requirements repository Ch. 5 K X

26 Requirements errors (missing,
incorrect, infeasible, out of scope)

Ch. 6 K X

27 Requirements defect notification Ch. 6 K X

28 Requirements dissemination to
customers/users/developers/testers

Ch. 4 K X

1. Entry/junior-level analyst;

2. Mid-level analyst;

3. Senior-level analyst.

A “K” is used in this table to suggest that knowledge of the skill is needed
at a particular level of analyst expertise. An “X” suggests that experience in
using the skill is needed at a particular level. A mapping is provided to

Skills of the RA 29

Table 3.1 RA’s Skills Matrix (continued)

Line
Number RA’s Skills Matrix Reference

Entry/
Junior-
Level
Analyst

Mid-Level
Analyst

Senior-Level
Analyst

29 Requirements elicitation Ch. 5 K X

30 Requirements identification Ch. 5 K X

31 Use case development (with
customer/user and based on user’s
guides)

Ch. 7 K X

32 Requirements in customer/user
decision-making process

Ch. 1 K X

33 Requirements interaction with CM Ch. 6 X X

34 Requirements negotiation SL, EG1 X X

35 Requirements ownership WBR, EG2 X X

36 Requirements prioritization Ch. 5 X X

37 Requirements review board
(RRB)/configuration review board
(CRB)/configuration control board
(CCB)

Ch. 7 X X

38 Requirements
rough-order-of-magnitude (ROM)
costs

Ch. 7 X X

39 Requirements specifications Ch. 7 X X

40 Evaluating requirements for risks Ch. 7 X

41 Training the requirements
processes

Ch. 5 X

42 Requirements impact estimation
(IE) table

Gilb X

Knowledge of = K Experience with = X

References:

REH = Young, R. R., The Requirements Engineering Handbook, Norwood, MA: Artech House, 2004.
WBR = Alexander, I. F., and R. Stevens, Writing Better Requirements, Boston: Addison-Wesley, 2002.
SL = Lauesen, S. Software Requirements: Styles and Techniques, pp. 346–347.
EG1 = Gottesdiener, E., Requirements by Collaboration: Workshops for Defining Needs, Reading, MA: Addison-Wesley, 2002,

pp. 122–128.
EG2 = Gottesdiener, E., Requirements by Collaboration: Workshops for Defining Needs, Reading, MA: Addison-Wesley, 2002,

pp. 89–94.
Gilb: See material at www.result-planning.com.

sections in this book or to other sources where each skill is addressed. Addi-
tional references are provided in those places.

As with any framework or model, use this matrix as a guide, not as a
specification. It will help you evaluate your suitability for a project role and
provide a guide to and resource for strengthening and improving your skills.

Obviously, one could add other skills. However, the matrix serves as a
guide and suggests that there is a lot to learn in order to be an effective RA.
It is one thing to read about (gain knowledge of) skills and quite another
thing to garner experience in applying the skills in a project environment
that involves actual customers and users.

A junior or entry-level analyst (those with less than two years of experi-
ence) should be familiar with the following:

◗ The types of requirements (described in detail in the next chapter);

◗ The criteria of a good requirement (provided in Chapter 1);

◗ Office automation tools [e.g., Microsoft (MS) Office or Corel WordPer-
fect suite];

◗ The concept of using a requirements process;

◗ Some of the references concerning requirements-related activities;

◗ The purpose of requirements verification, and so forth.

She should understand that a rationale should be provided for each
requirement (why the requirement is needed in the system or software).

A mid-level analyst (those with two to four years of experience) should
have knowledge of more of the aspects and activities of requirements engi-
neering, coupled with additional experience in applying this knowledge.
High on this list are requirements activities involving customers and users
(such as the concept of a joint team), utilizing a requirements process, and
familiarity with an industry-strength requirements tool. The mid-level ana-
lyst should be proficient with peer reviews and inspections and should
ensure that all of her own work products are peer reviewed. She should
understand the value of bidirectional traceability of the requirements and be
learning how to develop a requirements traceability matrix (RTM).

A senior-level analyst (those with five or more years of experience per-
forming requirements-related activities) should have both knowledge of
and experience with using all of the skills in the matrix. She should be
familiar with all of the roles described in the previous chapter and have
well-developed interpersonal skills and characteristics as described later in
this chapter. She should understand the value and importance of independ-
ent QA and have a thorough understanding of CM activities. She should be
able to recommend and use requirements metrics and be able to apply met-
rics to requirements processes. She should be able to provide training ses-
sions for more junior RAs and for other members of the project team. She
should have a good familiarity with systems engineering and the system life

30 Skills and Characteristics of an Effective RA

cycle and an understanding of the many requirements-related activities that
need to be performed throughout the system life cycle.

Figure 3.1 summarizes the progression of the RA.
Another important document is the RA’s position or job description, pro-
vided in Table 3.2.2

This is a concise and useful summary of the role of the RA. It describes
the position, summarizes skills that are needed (although not in as much
detail or precision as Figure 3.1), indicates knowledge that is needed, sug-
gests several responsibilities, indicates some measures of performance, and
provides three useful references on which this artifact is based. I suggest that
you utilize this artifact to clarify your role and to develop position requisi-
tions of prospective RAs. Tailor it to reflect your responsibilities. Utilize it in
your performance reviews to discuss professional-development activities
that will enhance your skills with your manager.

Skills of the RA 31

2. With thanks to Karl Wiegers for allowing me to participate in the development of versions of this artifact.

• Knows the types of requirements
• Knows the criteria of a good requirement
• Understands how to provide rationale for a requirement;
• Has studied related references;
• Knows the purpose of requirements verification
• Is familiar with office automation tools

• Is familiar with a requirements process and an RTM;
• Is familiar with automated requirements tools;
• Is able to facilitate requirements definition activities between
developers and customers/users;

• Applies peer reviews and/or inspections to requirements
development efforts;

• Understands the value of bidirectional requirements traceability.

• Has a good understanding of the roles of the RA;
Is familiar with all roles described in Chapter 2;
Experienced in full life cycle activities;
Well-developed interpersonal skills and characteristics;
Has a through understanding of CM activities;
Understands the value and importance of independent
QA;
Able to provide requirements-related training to more
junior RAs and other project members.

•
•
•
•
•

•

Senior-level analyst

Mid-level analyst

Junior or entry-level analyst

4 or more
years

of experie
nce

2 to
4 years

of experie
nce

0 to
2 years

of experie
nce

Figure 3.1 Professional growth of the RA is based on cumulative experiences.
(Adapted from: Michael Davis.)

32 Skills and Characteristics of an Effective RA

Table 3.2 RA Job Description

Description The RA or engineer is the individual who has the primary responsibility to elicit,
analyze, validate, specify, verify, and manage the real needs of the project
stakeholders, including customers and end users. The RA/engineer is also known
as a requirements manager, business analyst, system analyst, or, simply, analyst.
The RA serves as the conduit between the customer community and the
software development team through which requirements flow.

An RA is involved at some level throughout the entire system or software
development life cycle. Upon establishment of the requirements baseline, the
focus is shifted towards the management of the requirements specification and
verifying the fulfillment of all requirements.

The requirements engineering function is a project role, not necessarily a job
title. The role may be performed by a dedicated RA or split among multiple team
members who have other primary job functions, such as a PM or product
developer. The RA is responsible for ensuring that the tasks are performed
properly.

Skills Needed Interviewing skills to talk with individuals and groups about their needs and ask
the right questions to surface essential requirements information.

Listening skills to understand what people say and to detect what they might be
hesitant to say.

Analytical skills to evaluate critically the information gathered from multiple
sources, reconcile conflicts, decompose high-level information into details,
abstract up from low-level information to a more general understanding,
distinguish presented user requests from the underlying true needs, and
distinguish solution ideas from requirements.

Facilitation skills to lead requirements elicitation workshops.

Observational skills to validate data obtained via other techniques and expose
new areas for elicitation.

Writing skills to communicate information effectively to customers, marketing,
managers, and technical staff.

Organizational skills to work with the vast array of information gathered during
elicitation and analysis and to cope with rapidly changing information.

Interpersonal skills to help negotiate priorities and to resolve conflicts among
project stakeholders (such as customers, product management, and engineering).

Modeling skills to represent requirements information in graphical forms that
augment textual representations in natural language, including using modeling
languages already established in the development organization.

Knowledge Needed An understanding of contemporary requirements elicitation, analysis,
specification, verification, and management practices and the ability to apply
them in practice.

Familiarity with requirements engineering tools and other resources.

An understanding of how to practice requirements engineering according to
several software development life cycles in a team environment.

Knowledge of product management concepts and how enterprise software
products are positioned and developed.

Application domain knowledge is a plus to have credibility with user
representatives and be able to work effectively with them.

Responsibilities Work with the PM, product manager, or project sponsor to document the
product’s vision and scope.

Identify project stakeholders and user classes, document user class
characteristics, and identify appropriate representatives for each user class and
negotiate their responsibilities.

Skills of the RA 33

Table 3.2 RA Job Description (continued)

Responsibilities Elicit requirements using interviews, document analysis, requirements workshops,
storyboards, surveys, site visits, business process descriptions, use cases, scenarios,
event lists, business analysis, competitive product analysis, task and workflow
analysis, and viewpoints.

Write requirements specifications according to standard templates, using natural
language simply, clearly, unambiguously, and concisely.

Decompose high-level business and user requirements into functional requirements
and quality requirements, specified in an appropriate level of detail suitable for use
by those who must base their work on the requirements.

Define quality attributes, external interfaces, constraints, and other nonfunctional
requirements.

Represent requirements using alternative views, such as analysis models (diagrams),
prototypes, or scenarios, where appropriate.

Lead requirements analysis and verification, ensuring that requirement statements
are complete, consistent, concise, comprehensible, traceable, feasible, unambiguous,
and verifiable and that they conform to standards.

Participate in requirements prioritization.

Participate in peer reviews and inspections of requirements documents.

Participate in peer reviews of work products derived from requirements
specifications to ensure that the requirements were interpreted correctly.

Enter, manipulate, and report on requirements stored in a commercial requirements
tool.

Define requirement attributes and facilitate their use throughout the project.

Manage requirements traceability information and track requirements status
throughout the project.

Identify requirements errors and defects, and write requirements defect
identification and notification reports.

Manage changes to baselined requirements through effective application of change
control processes and tools.

Establish and implement effective requirements practices, including use and
continuous improvement of a requirements process.

Assist with the development of the organization’s requirements engineering policies,
procedures, and tools.

Implement ways to reuse requirements across projects.

Identify ways to assist product management in product planning through
requirements development and analysis.

Propose new product features and updates.

Measures of
Performance

Evaluation from product and project management on overall product quality and
effectiveness in the marketplace of the requirements after the product has been
developed.

Feedback from key customer or marketing representatives on the way in which the
requirements engineering process was conducted.

Customer satisfaction measures.

Satisfying or exceeding requirements development schedules, resource constraints,
and quality goals.

Control of requirements creep attributable to missed requirements and leakage of
“unofficial” requirements into the project.

Characteristics of an Effective RA
In addition to learned, or “hard,” skills, there is a set of personal characteris-
tics that will serve the RA well. You may feel that some of these characteris-
tics are themselves really skills. I won’t argue this with you—let’s agree that
all of the skills and characteristics noted are helpful and useful. Table 3.3
summarizes the desired characteristics described below as countermeasures
you can apply to overcome barriers you are likely to encounter.

Table 3.4 provides suggestions for how to strengthen these
characteristics.

Consider the following characteristics, which you may choose to con-
tinue to refine, as well as the suggestions and resources proffered to help.

1. Engage in continuing education to acquire expert knowledge of
requirements engineering and requirements practices. Chapter 1
described the many components of the requirements process, a set of
activities that are performed throughout the system life cycle of a
project. My earlier book [1] provides a comprehensive set of refer-
ences in the requirements literature as of 2001 (many more recent
references are provided in this book). For each of the 10 recom-
mended practices described in the earlier book, a few key references
are provided at the end of each chapter, together with a short sum-
mary of the information provided by the reference. Ongoing study,
such as attending training seminars in areas related to expertise,
assignment, and activities, is helpful. Journals such as IEEE Software,
CrossTalk, Software Development Magazine, and INSIGHT provide infor-
mative articles and reviews of related books that you might purchase
and study. These are both informative and motivational—they

34 Skills and Characteristics of an Effective RA

Table 3.2 RA Job Description (continued)

References Ferdinandi, Patricia L., A Requirements Pattern: Succeeding in the Internet Economy,
Boston: Addison-Wesley, 2002, Chapter 8.

Wiegers, Karl, “The Habits of Effective Analysts,” Software Development 8(10)
(October 2000): 62–65.

Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001,
Chapters 4 and 5.

Notes:

Each team that uses this job description needs to weight the various skills and knowledge that are pertinent to its job. Certain skills
listed might be critical for one requirements engineer job and unimportant for another.

Each person considering hiring an individual to be a requirements engineer needs to consider which of these skills are intrinsic to
the way the individual works (e.g., analytical and interpersonal skills) and which can be learned (e.g., facilitation and listening
skills).

The users of this generic job description will need to modify some of the terminology to reflect their specific environments (e.g.,
corporate information-systems development, commercial product development, contract development).

This job description needs to be tailored to match the experience level for the position.

Source: Karl Wiegers et al.

provide encouragement to strengthen one’s own understanding.
Also, there are several Web sites that offer reviews of requirements-
related books (see for example Ian Alexander’s Web site [2]) and
“goodies” (reusable requirements-related artifacts) available at Karl
Wiegers’ Web site [3]. Attending conferences such as the annual
Institute of Electrical and Electronics Engineers (IEEE) Confer-
ence on Requirements Engineering [4] or the annual conference

Characteristics of an Effective RA 35

Table 3.3 Desired RA Characteristics as Countermeasures to Likely Barriers

Barriers You May Encounter Characteristics as Countermeasures

[A] Lacking a thorough knowledge of
requirements engineering,
requirements processes, and
requirements errors methodologies can
cause the RA to be less effective than is
needed.

[1] Engage in continuing education to acquire expert
knowledge of requirements engineering and requirements
practices.

[7] Initiate learning, applying, and using effective practices;
seek sponsorship for requirements-related activities from
the PM; be committed to project success.

[13] Maintain a good knowledge of evolving technology
and how it can be applied to meet customer needs.

[B] The end product does not meet the
customer’s needs. There are different
ideas and opinions as to what the real
requirements are.

[2] Be a good listener, communicator, and writer. Carefully
document decisions and action items.

[3] Have good facilitation and negotiation skills.

[4] Be persistent and persevering.

[5] Be proactive in engaging customers and users,
coworkers, and project management.

[15] Desire to make a difference in your professional work.

[C] Management does not always
understand what is being built and
what resources are needed to achieve
the end product.

[6] Develop the ability to communicate effectively with
management.

[10] Develop the ability to estimate the time and other
resources required to accomplish technical work.

[D] The requirements process does not
support the project’s needs.

[8] Develop and maintain an attitude of continuous
improvement.

[14] Set achievable goals and meet them. define and
describe methods to achieve the project’s goals in a
requirements plan.

[16] Develop your ability to contribute to the project’s risk
process.

[E] Strong personalities and strong
opinions can derail the effectiveness of
good requirements development and
management.

[2] Be a good listener, communicator, and writer. Carefully
document decisions and action items.

[9] Take responsibility for your views, attitudes,
relationships, and actions, and maintain respect for others.

[F] People often try to do more than is
called for and to make ad hoc changes
during work product development.

[11] Maintain focus on keeping the main thing the main
thing. Install a mechanism to control new requirements
and changes. Don’t invent requirements independently and
avoid gold plating. Avoid requirements creep.

[G] Project personnel can become too
vested in the work product solution to
analyze and decompose requirements
effectively.

[12] Develop the ability to think outside the box to provide
creative approaches that might not occur to people who are
close to the problem and the legacy system.

Source: Richard Raphael.

36 Skills and Characteristics of an Effective RA

Table 3.4 Characteristics of an Effective RA and Suggested Activities to Strengthen Them

Characteristic Suggested Activities

1. Engage in
continuing education.

Read requirements engineering literature, attend professional meetings and
conferences, visit Web sites, hold office in professional associations.

2. Good listener,
communicator, and
writer.

Attend seminars in listening skills, communications, and writing; practice
making presentations and writing.

3. Good facilitation
and negotiation skills.

Practice facilitating meetings, coordinating workshops, and managing
process design sessions.

4. Persistent and
persevering.

Practice evolving real requirements from stated requirements.

5. Proactive i.n
engaging others.

In performing daily assignments, think deliberately about (1) suggestions
for making things better, and (2) appropriate venues and approaches for
making them. Practice. Ask for feedback, and act on it.

6. Ability to
communicate
effectively with
management.

Practice looking at your responsibilities from the perspective of your
manager and senior management. Write down your perspective and
management’s perspective. Work to understand differences and modify
your communications accordingly.

7. Learn, apply and
use effective practices.

Select a practice that you believe will improve a work situation. Gather
support for trying it out (“piloting” it). Consider steps you and the project
or organization can take to give the pilot the best chance of success.
Implement the practice. Follow through to ensure it takes. Assess the value
of implementing the practice after one month.

8. Develop and
maintain an attitude
of continuous
improvement.

Practice the Plan-Do-Check-Act (PDCA) cycle at the conclusion of
meetings. Document the suggestions that are offered. Follow up on
suggestions to the extent feasible and possible. If this works, explore other
opportunities to inculcate an attitude of continuous improvement, such as
by documenting processes and improving them.

9. Take responsibility
for your views,
attitudes, relationships,
and actions.

Make known to coworkers an error you have made, in the spirit of
contributing to doing things better. Convey that your intentions were good
and that you have worked toward learning from the error. Also, work to
recognize the value provided by all coworkers.

10. Develop the ability
to estimate work
requirements.

Estimate the time you think you will require to accomplish work tasks
assigned to you. Track the actual time consumed, noting distractions.
Consider changes you might make in your work habits to be more
productive. Over time, try to have estimates be closer to actuals.

11. Maintain focus. Embrace the concept of real requirements. Understand how these are
different from stated requirements. Suggest prioritizing requirements on
your project, and evolve an approach to collaboratively prioritizing a set of
requirements. Evaluate the impact of this approach.

12. Strengthen your
ability to think outside
the box.

Meet with stakeholders to consider previously unconsidered potential
solutions to vexing problems. Use the brainstorming technique to get three
ideas from each participant. Multivote on the ideas suggested. Consider the
potential value in seriously pursuing one or more ideas.

13. Strengthen your
knowledge of available
technology.

Schedule a brown bag to consider technology possibilities. Invite a system
architect and other “technologists.” Discuss possible ways to accomplish
some system objectives by incorporating new technologies.

14. Set achievable
goals and meet them.

Plan your work for the next month. Set a few specific objectives for some
things that you believe are really important to accomplish. Keep these
specific objectives foremost in mind over the next month. Manage to the
specific objectives (i.e., ensure that you accomplish them).

15. Strive to make a
difference in your
work situations.

Explore with your manager how the tasks for which you are responsible at
work might make a difference to the project or organization. Identify some
specific achievements, and then pursue them in earnest. Solicit your
coworkers’ and your manager’s support in achieving them.

of the International Council on Systems Engineering (INCOSE) [5] is
another way to strengthen knowledge, learn about old and new
techniques, meet others who are working in this area, and find out
about the latest offerings available from vendors. Consider becoming
a member and active participant in professional associations and
societies such as INCOSE, IEEE, the American Society for Quality
(ASQ), the Society for Software Quality (SSQ), the International
Association of Facilitators (or associated local organizations), and the
Requirements Engineering Specialist Group (RESG) in Europe [6].
Often, professional organizations offer evening meetings, lunchtime
sessions, or Saturday tutorials that provide opportunities to learn
and to meet colleagues. For example, the Washington, D.C., chapter
of INCOSE provides superb opportunities to share experiences,
glean lessons learned, and find sources of information, as do many
other local and regional chapters [7]. Actively seek opportunities to
write articles and make presentations. The old adage that no one
learns more than the author, teacher, or presenter is true.

2. Be a good listener, communicator, and writer. Good communication
skills are important. It is important to understand the needs and
expectations of different stakeholders. Learn to listen carefully so as
to hear what users and customers are trying to say, even if they
aren’t very good at expressing it. You need to be able to verify under-
standing by repeating back your interpretation of statements. You
need to be able to write clearly and concisely so that the require-
ments are documented according to the criteria of a good
requirement provided in Chapter 1. Steven Gaffney’s Web site and
his seminars have been valuable resources for me—see the work-
shops and materials available at his Web site [8].

3. Have good facilitation and negotiation skills. Among the most effec-
tive requirements gathering techniques is the requirements
workshop. See Ellen Gottesdiener’s Requirements by Collaboration [9]
for a thorough treatment of this important technique. The RA often
may find him- or herself facilitating groups of people in such venues.
It’s important to be able to encourage the identification of ideas,
while not allowing one or a few people to dominate the discussion.
Often, you’ll find yourself needing to negotiate to achieve consensus

Characteristics of an Effective RA 37

Table 3.4 Characteristics of an Effective RA and Suggested Activities to Strengthen
Them (continued)

Characteristic Suggested Activities

16. Contribute to your
project’s risk process.

Volunteer to serve on the project’s risk management team. If your project
does not have one, suggest that the project consider initiating a risk
process. Identify the top risks, prioritize them, and develop risk mitigation
plans for those considered to be the most serious risks. Monitor the risks.

Source: Richard Raphael.

among individuals with divergent views. There are workshops you
can attend to learn and hone these skills. As noted above, there are
professional resources available to strengthen facilitation skills. See
the Web site for the International Association of Facilitators for
ideas [10].

4. Be persistent and persevering. Since customers and users provide us
their stated requirements, it’s vital that RAs be persistent and perse-
vering so that the real requirements are evolved. It’s not enough to
depend on being able to proffer the excuse that “we built the system
that you requested.” If the stated requirements are not acceptable,
do not wait until you have completed the system and the users reject
it. Cut the risks to your project by improving the requirements as
early as possible. The risks include doing wasted technical work, and
of course having the system rejected (with all the legal and commer-
cial risks that result). Identifying the real requirements is the one
most important thing that the RA can do to contribute the most to
customers.

5. Be proactive in engaging customers and users, coworkers, and proj-
ect management. You’ll soon appreciate that it’s not enough just to
go with the flow. The performance of the RA’s roles demands that
you be proactive. Customers and users need your initiative and per-
sistence to help them evolve the real requirements. Your coworkers
need your proactive support to help them select and use effective
processes, practices, methods, techniques, and tools. Project man-
agement needs you to speak for approaches that will best serve the
project, for example, investing more in the requirements process,
identifying the real requirements, and providing a mechanism to
control new requirements and changes to requirements.

6. Develop the ability to communicate effectively with management.
Too often, differences in perspective prevent good communication.
Management views information technology (IT) as a means to
achieve business objectives. Systems and software engineers view
their work in terms of work products that must meet specified
requirements. As noted earlier, it furthers neither your career nor
the project or organization to say yes, when impossible commit-
ments only guarantee failure in the future. Dorothy McKinney
offers suggestions in her article “Six Translations between Soft-
ware-Speak and Management-Speak” [11]. Another insight is that
sometimes RAs must concern themselves not only with their own
management, but also with the customer’s management.

7. Initiate learning and applying effective practices, and be committed
to project success. One needs to be willing to learn and use effective
practices. Learning comes from experience and study. Applying
practices on projects requires training to familiarize people with
them; mentoring people in their use; tracking their effectiveness;
and ensuring that their deployment and use is effective. A serious

38 Skills and Characteristics of an Effective RA

problem is that, most often, new and improved practices aren’t given
a real chance because it is human nature to revert to using practices
that are already in place.3 One needs to be committed to project suc-
cess and to advising when things need to be done differently or
better.

8. Develop and maintain an attitude of continuous improvement.
Related to the commitment described above is the idea of
maintaining an attitude of continuous improvement. The RA should
encourage the project to embrace mechanisms to instill the attitude
of “getting ever better.” At my company, we end every meeting with
an evaluation of how the meeting went: what worked and what
could have been done better. We call this “doing PDCA” in honor of
Dr. Deming and Walter Shewhart’s contributions to continuous
process improvement and our adoption of their teachings. Similarly,
at the end of each cycle of activities, consider having a workshop to
gather feedback concerning how things went. Use the ideas and sug-
gestions generated to improve how the work is done (i.e., to improve
the process that is being used). These mechanisms (in addition
to providing good ideas) serve to help everyone buy in to the pro-
cedures used, because participants help shape them—“I helped
improve that process!”

9. Take responsibility for your views, attitudes, relationships, and
actions. By taking responsibility, one establishes a sense of account-
ability. You’ll tend to exhibit pride in your work. You’ll not let
personalities and individual characteristics deter you from having
good relationships with everyone. Your actions will make a valued
contribution. You will be setting an example for others. You’ll be a
leader.

10. Develop the ability to estimate the time and other resources required
to accomplish technical work. One of the difficulties in making esti-
mates of technical work is that these estimates are needed early in
order to develop projections of the number of staff required to com-
plete the project. (The number of staff, their seniority, and their roles
are required to develop an estimate of the cost of the project.) The
difficulty is compounded by the fact that the real requirements are
not yet known. So, we often find ourselves making estimates with-
out an accurate basis for them. This can lead to a lot of work that is
not productive and also to confusion caused by the inability down-
stream to meet the estimates.

The RA can contribute to the estimation process by (1) working
with users in the joint team environment to identify the real

Characteristics of an Effective RA 39

3. See Watts Humphrey’s “Why Don’t They Practice What We Preach” for insights concerning this problem and

suggestions for how to deal with it. See www.sei.cmu.edu/publications/articles/practice-preach/practice-

preach.html.

requirements, and (2) working with PMs and the development staff
to make estimates of the time and other resources required to
accomplish the technical work. Using data based on previous experi-
ences (“managing by fact”) is best.

Coworker John E. Moore in the Defense Enterprise Solutions
(DES) business unit at Northrop Grumman IT is a valuable resource.
As project management (project planning, project tracking, and
integrated product management) “process owner,” Dr. Moore has
developed a “Brickchart” capability within MS Project that facili-
tates tracking progress for tasks.4 Another coworker, Rich Raphael,
developed the Risk Manager’s Assistant (RMA), a straightforward
database tool that supports standard risk management processes and
programs.5 Both of these are easily learned and useful project-
management tools. See the discussion in Chapter 5 concerning risk
management. As an RA gets more experienced performing require-
ments analysis, the RA should also be evaluating each new or
changed requirement for any risk that it may add to the project. As
projects get more complex and as customers become more mature in
specifying their needs, each new or changing requirement risks
adverse impact on the project. Note that the CMMI, as part of the
introduction to the requirements management (REQM) process
area (PA), specifies that one should “refer to the risk management
(RI) process area for more information about identifying and han-
dling risks associated with requirements.”

11. Maintain focus on keeping the main thing the main thing. One of the
pitfalls in developing systems and software is that we try to do too
much; another is that we try to incorporate changes as we work.
Customers and users will ask, Can you do this? Will the new system
do that? We don’t like to say no. We participate in creating a percep-
tion that the new system will be all things to all stakeholders. In so
doing, we jeopardize our ability to fulfill these commitments and the
success of the effort.

The RA can serve a critical role here. Very early, the RA should
facilitate establishing the concept that all requirements are not
equally important and that it’s the responsibility of all stakeholders
to prioritize needs collaboratively and to focus the intent of the proj-
ect (to keep the main thing the main thing). As suggested by Neal
Whitten in “Meet Minimum Requirements: Anything More Is Too
Much” [12], the RA should work to identify the minimum set of
requirements required to accomplish the business objectives. This
goal can be facilitated by doing the following:

40 Skills and Characteristics of an Effective RA

4. Contact Dr. Moore at john.moore@ngc.com.

5. Contact Mr. Raphael at RRaphael@ngc.com.

◗ Establishing and following a process of prioritizing all requirements;

◗ Establishing the concept of follow-on releases or versions that will
address lower-priority requirements and requirements that are
identified during development of increments of functionality later
in the development process;

◗ Ensuring that a mechanism is put in place and used to control new
requirements and changes to requirements.

These activities can have an enormous positive impact on keep-
ing the train on the tracks. One of the major causes of rework is
changes introduced after technical work has been completed or is
well underway.

Another aspect of this desired characteristic is that the RA
should not invent requirements independently and should avoid
“gold plating,” that is, adding features and capabilities to systems
and software when they are not required by the real requirements.
The RA or developer might think he knows something that will be
“way cool” for the users that could turn out to be unwanted or very
disruptive to the project (e.g., if increased costs are incurred to
provide it).

12. Develop the ability to think outside the box to provide creative
approaches that might not occur to people who are close to the prob-
lem and the legacy system. One of the advantages an RA brings to a
new assignment is that he does not have the same vested interest
that a user or customer has and, therefore, can act as an impartial or
unbiased agent. The RA arrives without expectations, without nec-
essarily having much knowledge of the domain, and without being
attached to any particular outcome. Unhindered by years of associa-
tion with a problem domain and unconfined by the constraints of the
legacy system, you are free to think more freely about what needs to
be done and how it can be addressed best. Leverage these opportuni-
ties to think of new and different ways the system objectives might
be addressed.

13. Maintain a good knowledge of evolving technology and how it can
be applied to meet customer needs. Some experienced RAs believe
that a strong technical background is very helpful for an RA. As men-
tioned earlier, understanding current technologies is not solely the
responsibility of the RA, but we can contribute to the system design
by involving architects in reviews of the requirements and by assist-
ing them in developing technical solutions. Another reason this is
important is that incorporating some new technologies creates new
requirements that must be considered. Other experienced RAs
believe that a strong technical background is not as important to the
RA as the other characteristics, especially when eliciting require-
ments and understanding the real needs and expectations of
customers and users. These people believe that a strong technical

Characteristics of an Effective RA 41

perspective may actually inhibit the RA and that utilizing a person
with a more general background is a better approach.

14. Set achievable goals and meet them. This is related to the characteris-
tic of maintaining focus. The RA should set achievable goals and
meet them. Having a documented requirements plan and process
and following them will help.

15. Desire to make a difference in your professional work. We shouldn’t
be content to just go to work or to put in a set number of hours at our
jobs. Rather, it should be one of our values to want to make a differ-
ence in our professional work. It’s vital that control of the project be
maintained. Having this value affects others and inspires us to
become increasingly effective in our own roles.

Occasionally, we find ourselves in a situation in which we are
powerless to make a difference. For example, I participated on a proj-
ect for a period of several months during which I sensed that I made
an important, needed, and valued contribution. Suddenly, the PM
seemed to withdraw his support for my role. I discussed the situation
with him and was unable to change it. It was time for me to move on
to a different project. Sometimes we need to take the responsibility
for change and act on it.

16. Develop your ability to contribute to the project’s risk process. Every
project should have a risk process to identify, evaluate, prioritize,
and mitigate existing or potential risks. Consider participating in
your project’s risk management team and process. Requirements-
related risks are important to the project. You can contribute to the
dialogue that will help your project deal with its risks successfully.

Summary
Suggested skills of the RA are listed and categorized in an RA’s skills matrix
(Table 3.1) according to those needed by a junior-level, mid-level, or
senior-level analyst. This matrix will help you evaluate your suitability for a
specific project role. You may use it as a guide to further strengthen and
improve your skills or as a reference to sources of information concerning
each skill. Table 3.2 provided an RA job or position description that should
help you clarify the many ways in which the role of the RA can be leveraged
to benefit both your project and your organization. Making the RA’s role
explicit helps a project to run more smoothly. The RA’s role needs to be
understood and valued in the minds of PMs and the technical commu-
nity—this job description should help! Sixteen characteristics of an effective
RA were presented and described. Suggestions are provided concerning
how to strengthen these characteristics. Consider these in the context of
your own personal and professional development, as well as of your current
assignments and responsibilities, and select one or a few characteristics to
strengthen each year. Yes, being an effective RA involves learning many

42 Skills and Characteristics of an Effective RA

skills and having many desired personal characteristics. This chapter, cou-
pled with thoughtful introspection, should provide a useful road map.

Case Study
A requirements engineering consultant was invited to assist a particular
location of a large U.S. Government organization. Senior management at
that location indicated, “millions of dollars had been wasted” in repeated
efforts to develop systems and software solutions internally. The consultant
met with senior management, managers, users, and developers to gather
information and gain an understanding of the situation. Following analysis
and development of a tailored requirements course, he presented formal
training for all stakeholders that addressed existing problems in the organi-
zation from the perspective of relevant industry experience. On the surface,
there seemed to be a sincere desire on the part of all stakeholders to improve
the situation, although many issues existed. The training addressed how
these issues could be resolved. At the conclusion of the training, the senior
manager concluded that the situation could not be improved. Many of the
other participants in the training were perplexed by this conclusion: they
felt they were off to a fresh start.

Analysis: The senior manager himself was the key issue that prevented
the situation from improving. Although there were issues relating to all
parties, management was willing to allow parochial interests of users, an
overly bureaucratic development process, and power struggles of some key
stakeholders to paralyze efforts and render improvement of the situation
impossible. In Dr. Deming’s framework, there were “too many red beads.”6

Users and the development organization were powerless to improve the
situation without management’s support and management’s expectation
for better results. Management must enable and empower its workers (all
the rest of us) in order for work to be productive and effective. Indus-
try studies report that lack of appropriate senior management support is
a factor in most IT failures. This vignette has much to offer senior manag-
ers. Industry experience is that senior management must sponsor and sup-
port IT and systems/software development initiatives if they are to be
successful. See the discussion in Chapter 8 and a recent Harvard Business
Review article, “Six Decisions Your IT People Shouldn’t Make,” [13] for fur-
ther insights and specific suggestions. The RA can be helpful here by offering
these insights, suggestions, and industry experience to his or her manage-
ment team and by helping to clarify the specific roles that senior manage-
ment should provide.

Case Study 43

6. Be sure to familiarize yourself with Dr. Deming’s teachings. See, for example, Mary Walton’s The Deming

Management Method (New York: The Putnam Publishing Group, 1986). In Chapter 4, Walton explains how Dr.

Deming used “The Parable of the Red Beads” in his seminars to drive home that the workers in any

organization [most of us] are powerless without management’s support.

References

[1] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[2] Alexander, I. F., and Richard Stevens, Writing Better Requirements, Boston:
Addison-Wesley, 2002, www.easyweb.easy.net.co.uk/~iany/index.htm.

[3] Wiegers, K., Web site, at www.processimpact.com (for requirements-related
“goodies” and other useful information).

[4] IEEE Requirements Engineering Conference , Web site, at conferences.computer
.org/RE.

[5] INCOSE national organization’s Web site, at www.incose.org/se-int.

[6] Requirements Engineering Specialist Group (in the United Kingdom), Web site,
at www.resg.org.uk.

[7] INCOSE WMA Chapter, Web site, at www.incose-wma.org/info.

[8] Gaffney, S., Web site, at www.StevenGaffney.com.

[9] Gottesdiener, E., Requirements by Collaboration: Workshops for Defining Needs.
Reading, MA: Addison-Wesley, 2002.

[10] International Association of Facilitators, Web site, at www.iaf-world.org.

[11] McKinney, D., “Six Translations between Software-Speak and Management-
Speak,” IEEE Software 19(6) (2002): 50–52. See www.computer.org/software.

[12] Whitten, N., “Meet Minimum Requirements: Anything More Is Too Much,” PM
Network (September 1998), p. 19.

[13] Ross, J. W., and P. Weill, “Six IT Decisions Your IT People Shouldn’t Make,”
Harvard Business Review (November 2002): 85–91.

44 Skills and Characteristics of an Effective RA

Types of Requirements

It’s important for the RA or requirements engineer to settle on
definitions of the types of requirements that he will use consis-
tently. He should advocate consistent meanings for these types
on his project and in his organization. Much confusion can be
avoided by agreeing on a set of definitions and by not using
certain terms. In this chapter, we’ll review several types of
requirements and suggest definitions for them. We’ll suggest
why some terms shouldn’t be used and provide other guide-
lines. One important reason for agreeing on the definitions of
the types of requirements is to avoid lengthy and heated
debates about terminology while we are working together.
Establish a project glossary that everyone can live with (even if
some definitions are not everyone’s favorites) and utilize it in
your work. Consider the glossary provided with this book as a
starting point, and tailor it as needed.

First, let’s recall our simple and useful definition of a
requirement from Chapter 1. A requirement is a statement that
identifies a capability, characteristic, or quality factor of a sys-
tem in order for it to have value and utility for a user. A
requirement is well defined and more specific than a need,
which is a capability desired by a user or customer to solve a
problem or achieve an objective. The authors of the Systems
Engineering Capability Maturity Model (SE-CMM) [1] were
insightful when they created Process Area 06, “Understand
Customer Needs and Expectations.” The purpose of this process
area is to elicit, stimulate, analyze, and communicate customer
and user needs and expectations and translate them into a veri-
fiable set of requirements.

Views of Requirements Types
Next, let’s provide three different ways to organize requirements
types. These views will help you put your work into context and

45

4
Contents

Views of Requirements Types

Definitions and Descriptions of
Requirements Types

Terminologies to Avoid

Examples of Requirements
Types

Summary

Case Study

References

C H A P T E R

perspective. The views are provided courtesy of Jeffrey O. Grady, author and
instructor of systems engineering and requirements courses. The definitions
of the various types are provided later in this chapter.

Table 4.1 provides the first view. Here requirements types are divided
into hardware and software. Hardware requirements are then characterized
as either performance requirements or constraints. Performance require-
ments define how well the system must perform a requirement. Constraints
are further characterized as interface requirements, specialty engineering
requirements, and environmental requirements. Software requirements are
characterized as either functional or nonfunctional. Functional requirements
specify an action that a system must be able to perform. A nonfunctional
requirement specifies system properties, such as reliability and safety (see the
discussion of “ilities and specialty engineering requirements” below).

Figure 4.1 provides a more detailed context for the RA. The require-
ments types that are noted are production process requirements (e.g., the
physical facilities needed), requirements of the products to be provided by
the system or software, the requirements of the processes utilized to pro-
duce the products (e.g., the testing process), and operational and logistics
support requirements (e.g., equipment, training, and procedures). All of
these requirements must be identified before work on the detailed system
design is started. While the product engineers are developing specifications
for the product elements, the manufacturing engineers must define the
manufacturing requirements, the logistics engineers the logistics require-
ments, and the verification engineers the qualification requirements. While
doing so, these engineers must communicate among themselves and jointly
resolve the best aggregate expression of the requirements from the product
and process perspective.

It’s important to note that several steps or walk-throughs of the identi-
fied real requirements must be made1 to ensure, for example, the following:

46 Types of Requirements

Table 4.1 Requirements Types

Hardware requirements:

Performance requirements

Constraints:

Interface requirements

Specialty engineering requirements

Environmental requirements

Software requirements:

Functional requirements

Nonfunctional requirements

Source: Jeffrey O. Grady. Used with permission.

1. Industry practitioner and advisor Ellen Gottesdiener, president of EBG Consulting, Inc., recommends three or

four iterations of requirements development, each incorporating a formal or informal review by internal and

external customers. Her experience emphasizes the value and importance of identifying the real requirements

before starting other work.

◗ The requirements are mutually consistent;

◗ The requirements are prioritized (there is never enough time and
money to do everything).

Figure 4.2 provides a total requirements taxonomy. Grady describes his
figure as follows:

Views of Requirements Types 47

Production
process
requirements

Production
requirements

Test process
requirements

Performance requirements
constraints:

Interface
Environmental
Specialty engineering

Operational process
and logistics support
requirements:

Support
Equipment
Tools
Training
Procedures
Facilities
Spares

Figure 4.1 Another view of requirements types.

Process
interface
requirements

Process
specialty
requirements

Process
environmental
requirements

Process
functional
requirements

Product
functional
requirements

Process performance requirements

Process performance requirements

Attr
ib

ut
es

Product
interface
requirements

Product
specialty
engineering
requirements

Product
environmental
requirements

E
n

te
rp

ri
se

m
is

si
o

n
st

at
e

m
e

n
t

C
us

to
m

e
r

n
e

e
d

st
at

e
m

e
n

t

SO
W

s
an

d
p

la
n

s
Sp

e
ci

fi
ca

ti
o

n
s

Product
design
constraints

Part I

Part II

Computer software functional requirements
Computer software nonfunctional requirements
Computer software attributes
Grand system and hardware requirements

Verification requirements paired with product and process requirements

Figure 4.2 Total requirements taxonomy. (Source: Jeffrey O. Grady.)

The top layer corresponds to development requirements, often called

design-to requirements that must be clearly understood before design. The

lower layer corresponds to product requirements, commonly called build-to

requirements. The requirements above the heavy middle line correspond to

process requirements captured in statements of work and plans. The process

requirements fall into program plans and procedures. The product require-

ments are captured in program specifications starting with the ultimate

requirement, the customer need. We need effective methods to expand the

need statement into a more refined view of the customer need, thus defin-

ing more detailed performance requirements. In addition, we must identify

additional requirements called constraints of three kinds that require special

models. The specifications we create may have to be released in two parts:

(1) development or performance specifications, and (2) product or detail

specifications. The former kind drives design and qualification. The latter

kind drives acceptance [8].

Another view with which the RA should be familiar is provided
in Electronic Industries Association (EIA) Standard 632 [2], Section 4,
(“Requirements”), and in IEEE Standard 12207 [3], Section 5.3.2 (“Sys-
tem Requirements Analysis”) and Section 5.3.4 (“Software Requirements
Analysis”). You should digest these standards and consider the categories
that are suggested.

Another approach is the Zachman Framework (ZF) [4, 5]. John Hay
describes the ZF in his book Requirements Analysis—From Business Views to
Architecture [6]. Hay describes the RA’s work as moving from rows one and
two to row three on the ZF, and the book is dedicated to the analytic tech-
niques used in each column. A review may help in clarifying and under-
standing the various types of requirements.

Also compatible with the ZF are the CMMI [7] categories of customer,
product, and product component requirements. Both the CMMI and the ZF
treat requirements analysis as a continuing progression from customer
needs and expectations to system specifications. This progression is useful in
understanding what an RA does.

Definitions and Descriptions of Requirements Types
The remainder of this chapter provides definitions and descriptions of many
types of requirements. I reiterate my earlier suggestion that you establish a
glossary of terms to be used on your project. Working with the other devel-
opers, add words and definitions of them that you can all support as you
proceed with your work. Don’t spend a lot of time coming to consensus on
the definitions: simply use the technique in project meetings of each person
indicating her or his agreement with a thumbs up, down, or sideways to
reach agreements that people can live with. I’ve suggested that some of
these terms (requirements types) provided below should not be used
because they tend to confuse people and create misunderstandings that

48 Types of Requirements

jeopardize successful completion of work activities. These are just my own
opinions and biases based on my experience. You may have different opin-
ions and that’s okay!

Table 4.2 provides an RA’s view of many of the types of requirements. It
may help you to gain and apply a helpful understanding of the different
types of requirements.

Business Requirements

Business requirements are the reason for developing systems and software
in the first place. Business requirements are the essential activities of an
enterprise. Business requirements are derived from business goals (the
objectives of the enterprise or organization). Business scenarios may be used
as a technique for understanding business requirements. A key factor in the
success of a system is the extent to which the system supports the business
requirements and facilitates an organization in achieving them. If our sys-
tems and software do not support the business requirements effectively and
efficiently, they have no reason for being. Businesses exist to make money

Definitions and Descriptions of Requirements Types 49

Table 4.2 An RA’s View of Requirements Types

Customer needs and expectations:

Business requirements;

User requirements;

Product requirements;

Environmental requirements;

Unknowable requirements.

These are analyzed by the requirements analyst and described in different ways:

High-level (or system-level) requirements;

Functional requirements (what the system must do);

Nonfunctional requirements:

System properties (e.g., safety);

The “ilities/specialty engineering requirements.”

Derived requirements and design constraints;

Performance requirements (e.g., how fast?);

Interface requirements (relationships between system elements);

The system requirements are allocated into:

Subsystems (logical groupings of functions);

Components of the system (hardware, software, training, documentation).

Checks are done to ensure the system does what it is supposed to do, incorporating:

Verified requirements;

Validated requirements;

Qualification requirements.

for stockholders; organizations exist to meet the needs of their members. It’s
vital that we consider our systems and software development work totally
within the context of business and organizational objectives.

Stated Requirements Versus Real Requirements

We have already clarified the difference between these:

◗ Stated requirements are provided by a customer at the beginning of a
system or software development effort.

◗ Real requirements reflect the verified needs for a particular system or
capability. Note that some real requirements may be identified that
the customer and users omitted in the stated requirements. In fact,
identifying omitted requirements is a key task of the RA.

User Requirements

Users are the individuals or groups that use a system or software in its envi-
ronment. User requirements are their verified needs for that system or
software.

High-Level or System-Level Requirements

To enable comprehending a needed system, we refer to the high-level or
system-level requirements. This term relates to those requirements that
are foremost in importance, capture the vision of the customer, enable
defining the scope of the system, and allow estimating the cost and schedule
required to build the system. (Some system architects believe that the
requirements specification should contain every performance requirement.)
It’s recommended that a workable number of requirements (on the order of
50 to 200) system-level requirements be identified for a large system. In
Chapter 8, we will discuss a set of business drivers that may be considered
high-level customer requirements, which often are not expressed.

Business Rules

Business rules2 provide the basis for creating the functional requirements.
They are as follows:

◗ The policies, conditions, and constraints of the business activities sup-
ported by the system;

◗ The decision processes, guidelines, and controls behind the functional
requirements (e.g., procedures);

50 Types of Requirements

2. This discussion is summarized from materials developed by Ellen Gottesdiener, including “Capturing Business

Rules,” “The Value of Standardization of Business Rules,” and “Turning Rules into Requirements.” These

materials are available at her Web site, www.ebgconsulting.com.

◗ Definitions used by the business;

◗ Relationships and workflows in the business;

◗ Knowledge needed to perform actions.

One guideline to follow is to document the business rules correctly and
early. Active sponsorship and leadership by your customer are required to
achieve this, because there will likely be “undiscussables,” unclear and con-
flicting business policies and rules, which need to be clarified and resolved
in order to provide an adequate basis for the development of the real
requirements for the system or software. It’s important to identify business
rules that are inconsistent, in conflict, inefficient, redundant, nonstandard-
ized, noncompliant with regulations or company policy, or that have no
owner.

Business rules must be captured explicitly by the RA and baselined dur-
ing requirements analysis. Focusing on business rules as the core functional
requirements speeds requirements analysis and promotes validation and
verification. The RA should use the “Documenting Business Rules” process
described in Figure 4.3 to select or tailor a taxonomy and a business-rule
template for any given business problem. The template provides a standard
syntax for writing business rules in natural language (English).

If you find yourself in a situation where help is needed, consider contact-
ing Ellen Gottesdiener (ellen@ebgconsulting.com) to facilitate a business-
rules requirements workshop.

Functional Requirements

Functional requirements is an important category of the real requirements.
Functional requirements describe what the system or software must do. A
function is a useful capability provided by one or more components of a sys-
tem. Functional requirements are sometimes called behavioral or opera-
tional requirements because they specify the inputs (stimuli) to the system,
the outputs (responses) from the system, and behavioral relationships
between them. The document used to communicate the requirements to
customers, system, and software engineers is referred to as a functional

Definitions and Descriptions of Requirements Types 51

The RA collaborates with:

Whom:
Business domain
experts

Other business
domain experts Executive sponsors System developers

To do:

Steps:

Document
business
rules

Validate
business
rules

Approve the
business rules
model

Include in the
system requirements
repository

Yes

No

Figure 4.3 Documenting Business-Rules Process. (Adapted from: Ellen
Gottesdiener.)

document (FD) or specification. This refers to a comprehensive collection of
the characteristics of a system and the capabilities it will make available to
the users. It provides a detailed analysis of the data the system will be
expected to manipulate. It may include a detailed definition of the user
interfaces of the system.

Nonfunctional Requirements

Nonfunctional requirements specify system properties, such as reliability
and safety.

Derived Requirements

A derived requirement is one that is further refined from a higher-level
requirement or a requirement that results from choosing a specific imple-
mentation or system element. In a sense, all requirements are derived from
the system need; thus, the derived distinction tends to have little signifi-
cance. However, many systems engineers distinguish between externally
identified requirements and requirements that are derived under the con-
trol of the engineer.

Design Requirements and Design Constraints

For most system development efforts, design requirements/constraints appear
right at the beginning of the system formulation. Here are examples of why
it’s difficult to separate requirements engineering from design activities:

◗ New systems are often installed in environments that already have
other systems. The other systems usually constrain the design of the
new system. For example, a requirement (design constraint) may be
that the system to be developed must obtain its information from
an existing database. The database has already been designed and
parts of its specification will usually be included in the requirements
document.

◗ For large systems, some architectural design is often necessary to iden-
tify subsystems and relationships. Identifying subsystems means that
the requirements engineering process for each subsystem can go on in
parallel.

◗ For reasons of budget, schedule, or quality, an organization may wish
to reuse some or all existing software systems in the implementation of
a new system. This constrains both the system requirements and the
design.

◗ If a system has to be approved by an external regulator (e.g., systems
in civil aircraft), it may be necessary to use standard certified design
that has been tested in other systems.

52 Types of Requirements

Performance Requirements

One of the most difficult challenges in system development is defining and
meeting the performance requirements (sometimes referred to as depend-
ability requirements). The performance requirements define how well the
functional requirements must perform. Performance requirements analysis
components are beyond the scope of this book, but are described by Jeffrey
O. Grady in Systems Requirements Analysis [8, pp. 238, 313, and 324]. Grady
also provides a set of guidelines helpful in the identification of performance
requirements [8, pp. 323–324]. Dependability requirements correspond to
system-level needs for availability, security, performance, reliability, and
safety.

Interface Requirements

Another difficult challenge in system development is finding and defining
the interface requirements. Interface requirements analysis identifies physi-
cal and functional relationships among system elements and between sys-
tem elements and the system environment. One project team member
should be assigned principal responsibility for assuring coordination of
interface requirements. See [8, pp. 270–297] for a good discussion of inter-
face analysis and techniques.

Verified Requirements

Verified requirements are real requirements that are met or satisfied in the
design solution.

Validated Requirements

Validated requirements are requirements that are implemented in the deliv-
ered system. See Jeffrey O. Grady’s System Validation and Verification [9] for
clear definitions of these terms, detailed information concerning how to use
these fundamental problem-solving tools, and practical methods for each
step of the process.

Qualification Requirements

Qualification refers to the verification or validation of item performance in a
specific application and results from design review, test data review, and
configuration audits.

The “Ilities” and Specialty Engineering Requirements

One often hears references to the “ilities” of a system, sometimes called
quality attributes, such as the following:

◗ Designability;

◗ Efficiency;

Definitions and Descriptions of Requirements Types 53

◗ Human engineering;

◗ Modifiability;

◗ Portability;

◗ Reliability;

◗ Testability;

◗ Understandability;

◗ Capacity;

◗ Degradation of service;

◗ Maintainability;

◗ Memory;

◗ Timing constraints;

◗ Modifiability;

◗ Usability.

These are the nonfunctional or nonbehavioral requirements of a system
or the software. See Alan Davis’s Software Requirements: Objects, Functions, &
States [10, pp. 307–340] for a detailed discussion and suggested techniques.

Unknowable Requirements

Experience has shown that there are requirements that are unknowable at
the beginning of a system development effort. Some requirements become
apparent only as the system evolves. We discover that we have a require-
ment that we could not envision previously.

Such unknowable requirements may be real requirements, which must
be included.

Product Requirements

These are requirements of the products that are produced by a system.

Process Requirements

There are requirements that exist because of the processes being used to
develop the system or software.

Logistics Support Requirements

These are requirements that exist because of such things as tools, training,
procedures, facilities, and spares. One often hears of them in references to
the integrated logistics support (ILS) requirements.

54 Types of Requirements

Environmental Requirements

These are requirements that result from the physical setting and social and
cultural conditions of the system development effort and the setting in
which the system or software will be used.

System, Subsystem, and Component Requirements

This refers to requirements associated with different levels of the system.
The system is the highest level and is divided into subsystems; the subsys-
tems are made up of components, such as hardware, software, training, and
documentation.

Terminologies to Avoid
Source or Customer Requirements

One sometimes hears people refer to source requirements or customer
requirements. I prefer instead to specify the source of the require-
ment—that is, from whom or where the real requirement was identi-
fied—as an attribute3 of a real requirement. Having the source identified for
each real requirement enables us to go to the person or document for ques-
tions and clarifications. I suggest avoiding use of the terms source require-
ments or customer requirements.

Nonnegotiable Versus Negotiable Requirements

A nonnegotiable requirement implies that if it is not met, the system is of lit-
tle use. Clearly, the requirement is a real requirement. A negotiable require-
ment implies that it’s really okay if it’s not satisfied in the delivered system.
Clearly, negotiable requirements are not real requirements. This classifica-
tion is not useful. Neal Whitten’s article, “Meet Minimum Requirements:
Anything More Is Too Much” [11] is instructive. Meeting minimum real
requirements is in everyone’s best interests, because this approach reduces
risk, cost, schedule, complexity, and so forth. Keep in mind the CHAOS
Report [12] conclusion that 45% of system features provided in developed
systems are never used once!

Terminologies to Avoid 55

3. See Young’s Effective Requirements Practices [13, pp. 85–87] for a discussion of the attributes of a requirement and

a sample requirements attributes matrix one might use in a requirements tool such as the Dynamic

Object-Oriented Requirements System (DOORS). Examples of attributes of each requirement include unique

ID, source, owner, rationale (why the requirement is needed), priority, status (approved, pending approval,

rejected, being reconsidered), cost, difficulty, stability, assigned to, location, author, revision, date, reason,

traced-from, traced-to, root tag number, history, verification, validation, release, module, and others that

depend on the specific needs of your project. See also step 19 in Chapter 5.

Key Requirements

The term key requirements is sometimes used to refer to requirements that are
important in order to understand a system’s essential capabilities or func-
tions.4 It is appropriate to analyze requirements in terms of their benefit-to-
cost ratio, risk, or the estimated time and effort needed to address them, so
that we can have informal discussions within the joint team to negotiate the
requirements to be included. However, I suggest avoiding use of this term,
because it’s unclear.

Originating Requirements

In The Engineering Design of Systems: Models and Methods [14], Dennis Buede
uses the term originating requirements to refer to the requirements initially
established by the system’s stakeholders with the help of the systems-
engineering team. The term is not as clear as the term real requirements, and
therefore I suggest not using it.

Other Guidelines

◗ Avoid using vague terminology, such as “usually, often, typically,
generally, user friendly, versatile, flexible, reliable, and upgradeable,”
in writing requirements.

◗ Avoid putting more than one requirement in a requirement (often
indicated by the presence of the word “and”).

◗ Avoid clauses like “if that should be necessary.”

◗ Avoid wishful thinking: 100% reliability, running on all platforms,
pleasing all users, handling all unexpected failures.

See Alexander and Stevens’s Writing Better Requirements [15] for excellent
guidelines based on extensive experience.

Examples of Requirements Types
The following scenario provides examples of the requirements types dis-
cussed above that will facilitate an understanding of the different types.

ABC, Inc. has experienced phenomenal growth over the last three years
due to mergers and acquisitions of companies that are similar or comple-
mentary in nature. To enhance ABC’s competitive position, management

56 Types of Requirements

4. Industry expert Ian Alexander advises that it is practice of the United Kingdom (UK) Ministry of Defense

(MoD) to use very few “key requirements”—there might be five for a warship, for example. “These become the

most strongly sought goals for the system: if all else fails, these goals remain, and the other requirements can be

evaluated in their light. It might not suit everybody but it contains something of the essence of prioritisation.”

Personal communication to the author, January 18, 2003.

desires an HR system to identify employees with needed skills and training
across all company locations.

ABC management has determined that developing a new comprehen-
sive HR system across the company would be cost prohibitive. Instead, man-
agement wishes to leave the legacy systems of each acquired company in
place and integrate the data contained in them into an IT framework. The
framework will consist of an IT infrastructure at headquarters, the public
telephone network, and communications equipment at each company loca-
tion necessary to support the framework processes.

The framework, code named SATURN (for Skills and Training Unified
Referral Network), will not replace any of the legacy systems of the individ-
ual companies that ABC has acquired. The presentation of the new compa-
nywide employee data will be transparent to the local user. In other words,
each local user will see the selected employee information for the whole
company in the same format as it would be if stored locally on their own
legacy system.

In addition, SATURN will be able to determine whether all legacy sys-
tems are available at the time a query is made. Should a particular legacy
system be unavailable for any reason, the user will be notified so that a
query can be made at a later time. Each query should be complete and all
available information returned to the user within one minute. The SATURN
system should be able to support up to 20 concurrent users without any
degradation of performance.

The following Table 4.3(a–d) provides examples of requirement types for
the development of the SATURN system. Table 4.3(a) provides requirement
examples for the hardware/software requirements view shown in Table 4.1.
Table 4.3(b) provides examples for the more detailed context described in
Figure 4.1. Table 4.3(c) provides examples from the total requirements tax-
onomy view described in Figure 4.2. Finally Table 4.3(d) provides examples
for the RA view of requirements described in Table 4.2.

Summary
It’s apparent from this discussion that there are a lot of different types of
requirements. It helps to agree to use a selected few types. Agree within
your project team on the types that will be most useful. Use your project
glossary, which provides defined and agreed-upon terminology. Use simple,
understandable words. Write requirements that meet the criteria of a good
requirement (see Chapter 1). Study the references provided for this chapter
if you aren’t already familiar with them.

Case Study
We had a known requirement for Web site performance. It involved a finite
set of user scenarios that had to be executed by a specific number of

Summary 57

58 Types of Requirements

Table 4.3(a) Hardware/Software Requirements View Examples

Hardware Requirements

Performance The SATURN system shall complete all retrievals and display
the requested information, within one minute of the user
entering the query.

Up to 20 concurrent users may use the SATURN system without
any degradation of response time.

Interface requirement The SATURN system shall operate through a commercially
available browser such as Internet Explorer or Netscape.

Specialty engineering requirement The SATURN system shall run on commercial off-the-shelf
(COTS) hardware using the Microsoft Windows Operating
System.

Environmental requirement The SATURN system shall operate on single-phase
commercially available power with a line voltage in the range
of 110 volts, plus or minus 20 volts AC.

Software Requirements

Functional requirement The SATURN system shall retrieve basic identifying information
for all employees meeting the specified criteria.

Nonfunctional requirement The SATURN system will generate error messages when a query
fails to run to completion or a legacy system is not responding
within the allotted time.

Source: Terry Bartholomew. Used with permission.

Table 4.3(b) More Detailed Context Requirement Examples

Production process requirement The SATURN system shall be available for use by all HR
representatives at each company facility.

Product requirement The SATURN system shall retrieve basic identifying information
for all employees who meet the predetermined skills and
training criteria.

Test process requirement Test HR records for verifying the SATURN system will consist of
a special set of personnel records at each company location
specifically created with artificial data.

Operational process requirement The SATURN system will have the same look and feel at each
company location that users of the system at that location are
familiar with and, therefore, shall require no training.

Source: Terry Bartholomew. Used with permission.

Table 4.3(c) Total Taxonomy View Requirement Examples

Process functional requirement The SATURN system shall be developed to provide
companywide access to employee skills and training
information to all HR representatives.

Process interface requirement Skills and training information from all company locations will
be available to all other company locations.

Process specialty requirement To ensure complete skills and training information are captured
among the legacy systems, a data model shall be created.

Process environmental
requirement

SATURN shall be developed using joint application
development (JAD) teams composed of users (HR
representatives), developers, and system testers.

Process performance requirement The SATURN system shall be ready for system acceptance
testing within 180 days of project inception.

Case Study 59

Table 4.3(c) Total Taxonomy View Requirement Examples (continued)

Product functional requirement The HR user shall be able to retrieve employee skills and
training data by predefined categories.

Product interface requirement The SATURN system’s look and feel shall be identical to each
local legacy system.

Product specialty requirement The SATURN system shall use relational database technology.

Product environmental
requirement

The SATURN system shall not require that additional heat,
ventilation, and air conditioning (HVAC) capacity be installed
at any location.

Product performance requirement The SATURN system shall operate with 97% reliability, 24
hours a day, 7 days a week.

Source: Terry Bartholomew. Used with permission.

Table 4.3(d) RA View Requirement Examples

Customer Needs and Expectations Examples

(Requirements Analysis Input)

Business requirements Managers need access to timely and accurate data on personnel
in order to meet operational needs.

User requirements The user needs the capability to search on personnel across the
entire company by predefined skill sets.

Product requirements Data formats shall be translated across legacy system boundaries
into the format supported by the local user’s system.

Environmental requirements There shall be no operational impact on any user other than the
impact on information retrieval caused by having a larger
population of employees from which to select.

System Requirements Specifications (Requirements Analysis Output)

High-level (or system-level)
requirements

The SATURN system shall maintain cross-references for
information types contained in the legacy systems. For example
the field called “education_level” in one system is the same as
“education” in another.

The SATURN system shall convert data from each legacy system
to the data expected by the local user. For example a masters
degree in one system might be reflected in another system as
“grade 17.”

Functional requirements The local user shall be able to search all legacy systems in a
predefined local, regional, or national geographical area for
personnel meeting a specified skill set.

Nonfunctional requirements The SATURN system shall make use of the public switched
network (PSN) and not require dedicated lines of
communication.

Derived (or design) requirements
and design constraints

The SATURN system shall use public key infrastructure (PKI)
communications security.

Performance requirements The SATURN system shall support up to 20 simultaneous users
without any noticeable degradation of service.

The SATURN system shall return all available skill sets to the
user within 1 minute of initiating a search.

Interface requirements The SATURN system shall present a look and feel consistent
with each local office’s legacy system.

Source: Terry Bartholomew. Used with permission.

simultaneous users. Our test machine was much smaller than our produc-
tion machine was going to be, and in fact, one of our requirements was to
determine the size and configuration of machine(s) we needed to meet the
performance requirement. It turned out that there was no reasonable way
to extrapolate measured performance on our test box to the expected per-
formance on a variety of possible production boxes. Moreover, we could not
even begin to execute the test scripts on our test box until we had essentially
completed development of all of the functionality. Neither of these facts was
known when we committed to a delivery date. In effect, we had a derived
requirement that we did not realize: in this scenario, we needed several
months of stability after development of version 1 and prior to release of
version 1 in which we could test, measure, procure a new box, and tune it.
Lesson learned: schedule commitments shouldn’t be made until the require-
ments are understood.

References

[1] Engineering Process Improvement Collaboration (EPIC), A Systems Engineering
Capability Maturity Model, Version 1.1. Pittsburgh, PA, Software Engineering
Institute, Carnegie-Mellon University, 1995, at www.sei.cmu.edu/pub/
documents/95.reports/pdf/mm003.95.pdf.

[2] EIA Standard 632, “Processes for Engineering a System,” Arlington, VA, 1998.

[3] IEEE Standard 12207, “Software Life Cycle Processes,” New York: IEEE, 1998.

[4] Zachman Framework Web sites (e.g., see www.zifa.com).

[5] Inmon, W. H., J. A. Zachman, and J. C. Geiger, Data Stores, Data Warehousing, and
the Zachman Framework: Managing Enterprise Knowledge, New York: McGraw Hill,
1997.

[6] Hay, J., Requirements Analysis—From Business Views to Architecture, Englewood
Cliffs, NJ: Prentice Hall, 2002.

[7] CMMI Web site, at www.sei.cmu.edu/cmmi.

[8] Grady, J. O., Systems Requirements Analysis, New York: McGraw-Hill, 1993.

[9] Grady, J. O., System Validation and Verification, Boca Raton, FL: CRC Press, 1997.

[10] Davis, A. M., Software Requirements: Objects, Functions, & States, Upper Saddle River,
NJ: Prentice Hall, 1993.

[11] Whitten, N., “Meet Minimum Requirements: Anything More Is Too Much,” PM
Network (September 1998), p. 19.

[12] The Standish Group International, Inc., CHAOS Chronicles 2003 Report,
West Yarmouth, MA: The Standish Group International, Inc., 2002, at
www.standishgroup.com.

[13] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[14] Buede, D. M., The Engineering Design of Systems: Models and Methods, New York:
John Wiley & Sons, 2000.

[15] Alexander, I. F., and R. Stevens, Writing Better Requirements, London, UK:
Addison-Wesley, 2002.

60 Types of Requirements

Gathering Requirements

The need to gather requirements is initiated by a request from
an internal or external customer. Requests can come in many
forms, including a request for proposals (RFP) [1], an SOW, or
an informal or formal inquiry describing a capability that is
needed. The request initiates a set of requirements gathering
activities. It’s vital for the RA to have a thorough understand-
ing of these activities and to gain experience in performing
related tasks.

My experience has taught me the following:

◗ A lot of time and effort is wasted in the project startup phase
and in performing requirements gathering activities. There
are a number of reasons for this:

1. The project is just getting organized and things are confused.

2. There is no road map or checklist of startup activities.

3. Not all staff are present; some are still being recruited.

4. There isn’t much pressure to meet the schedule yet.

5. The customer and users are also trying to get organized and
get started.

6. The staff who will be working on end-product development
may not fully understand the customer’s objectives and,
consequently, may not be able to appreciate the customer’s
expectations.

7. An effective proven procedure for the requirements gather-
ing steps is not available or used.

◗ If the requirements gathering effort is not effective, the stage
is set for much additional time and effort to be wasted when
technical work is initiated and performed as a result of poor
requirements. For example, at one large telecommunications
company, 100% of planned development costs was budgeted

61

5
Contents

Plan the Approach

Summary

Case Study

References

C H A P T E R

for rework of developed software based on previous experience that
the stated requirements would not be what was actually needed.

Thus, the RA can play a vital role by ensuring that the requirements
gathering activities are planned and performed well (effectively). He or she
can do a lot to ensure that the train (the project) stays on the tracks by sug-
gesting and recommending effective practices, methods, techniques, and
tools and by assisting the PM, customers, users, and members of the project
team. His or her role is not limited strictly to requirements-related activities;
rather the RA is a valuable advisor to the PM and all others on the project
team. Take a few moments to review the nine roles of an RA (described in
Chapter 2):

1. Work collaboratively with customers, users, and system architects
and designers to identify the real requirements for a planned system
or software development effort to define the problem that needs to
be solved;

2. Work effectively with customers and users to manage new and
changed requirements so that the project stays under control; to
install a mechanism to control changes;

3. Be alert to new technologies that may help;

4. Facilitate the project in reusing artifacts and achieving repeatability;

5. Assist the project and its customers in envisioning a growth path
from the first release or version of a product through a set of staged
releases to the ultimate system or product;

6. Advise the project (and customer) of methods, techniques, and auto-
mated tools that are available to best support requirements-related
project work and activities;

7. Use metrics to measure, track, and control requirements-related
project work activities and results;

8. Facilitate discussions and to mediate conflicts;

9. Study the domain of the area in which the system or software is be-
ing used.

These roles provide the context for this chapter. The first step is to plan
the approach.

Plan the Approach
I’ve suggested previously the tremendous value of spending some time (in
any endeavor) to plan the approach. Write (document) the planned
approach to address the requirements-related work in a project require-
ments plan. As is the case with other plans, the requirements plan can be
(and should be) revisited and updated frequently during the project. Some

62 Gathering Requirements

of the critical aspects of this plan are summarized in the checklist provided
in Table 5.1 and discussed below. Note that all aspects are not necessarily
always perfomed sequentially; some may be performed concurrently. Note
that some aspects are iterative (done repeatedly based on the availability of
new or different information). Retain flexibility in your approach (always)
to allow new information to shape refinements in the approach.

Plan the Approach 63

Table 5.1 Checklist for Project Requirements Gathering Activities

Done? Step Action or Activity

1 Review related historical information

2 Review related organizational policies

3 Identify the stakeholders of the project

4 Develop a strategy to involve customers and users throughout the development
effort

5 Write (and iterate) a project vision and scope document

6 Develop a requirements plan

7 Provide for peer reviews and inspections of all requirements-related work products

8 Initiate a project glossary and a project acronyms list

9 Decide on the life-cycle approach to be used on the project

10 Begin tailoring of the corporate (or other) requirements process

11 Establish a mechanism to evolve the real requirements from the stated requirements

12 Provide requirements-related training for project participants, including customers
and users, and for RAs

13 Rewrite the high-level system or software requirements as you proceed through the
initial steps

14 Initiate development of the real requirements based on the stated requirements

15 Initiate documentation of the rationale for each requirement

16 Establish a mechanism to control changes to requirements and new requirements

17 Perform the verification approach and validation planning

18 Select the practices, methods, and techniques that will be used to gather the
requirements

19 Begin consideration and selection of an automated requirements tool, identification
of the attributes that will be needed for each requirement, and the composition of
the requirements repository

20 Select and acquire the automated requirements tool

21 Load the initial real requirements into the selected requirements tool, label each
requirement uniquely, and initiate assignment of appropriate attributes information
to each requirement

22 Perform requirements gathering

23 Involve system architects and designers in reviews of the requirements

24 Develop the traceability strategy to be used

25 Identify the requirements that will be met in the first release or initial products
(prioritize real requirements)

26 Establish an approach for a proof of concept, prototype, or other approximation of
the work product

27 Incorporate requirements best practices and garner management support for
effective requirements engineering (including an integrated quality approach)

28 Complete requirements gathering for the first release

Each of the steps of the requirements gathering approach is discussed
below, and several suggested references are provided to point you to addi-
tional information. Think of these steps as a procedure for implementing
two of the three subprocesses of the requirements process: Assess
New/Changed Requirements and Control Changes; and Understand Cus-
tomer Needs and Expectations, RE100 and RE200 in the terminology
of Effective Requirements Practices (see [2, pp. 114 and 115] for the actual
process flowcharts). As always, tailor (modify) the approach as needed to
your particular situation and your project and organizational environ-
ment—you may be able to eliminate some of the steps or you may want to
add steps.

It’s likely that you will benefit from having copies of the flowcharts
in front of you so that you can consider changes you would like to
make. You might want to visit my Web site (www.ralphyoung.net); go to
the “Reusable Artifacts” button, and look for “Sample Requirements Proc-
ess.” This will enable you to print four flowcharts, a macro- (high-level)
process and three micro- (lower-level) or subprocesses to the macro flow.
Note the link on that Web page for the “Process Descriptions” that explain
the four flowcharts (process purpose, standards and references, related
processes, customers of the process, customer requirements, entrance
criteria, inputs, outputs, exit criteria, responsibilities, tools, resources, and
suggested metrics). Digesting these artifacts will provide you with a lot of
ideas.

1. Review related historical information.

In any effort, there are materials available that need to be read, digested,
and analyzed. Examples of such information include descriptions of the leg-
acy system(s), statements concerning needs for new capabilities, white
papers, descriptions of related systems developed by other organizations,
research studies, people with whom you might meet to garner insight (such
as proponents or advocates of a needed capability or new system), and so
forth. Be open and thorough in looking for and reviewing materials. Organ-
ize the materials you find in a way that helps you gauge their relative
importance and value and also allows retrieval of information when it is
needed. Think about the materials in the context of the other steps in the
requirements gathering approach listed in Table 5.1.

2. Review related organizational policies.

In any organization, there should exist a set of organizational policies con-
cerning how systems and software development is to be done. Find these
policies; read and digest them. Ensure that you understand them and can
apply them in your work. Ask coworkers and your manager for clarifica-
tion, if needed. If policies exist and no one pays close attention to them, this
itself is a continuous improvement opportunity for the organization—
get QA and process engineering folks involved. Find out if a library
exists of related processes, sample plans such as project plans and others,

64 Gathering Requirements

metrics that should be used, methods, techniques, automated and manual
tools that are available, lessons learned (or at least observed) from other
(previous) projects, and so forth. Ensure that you have a comprehensive
knowledge of the resources available to you to do your work. Look for tem-
plates, checklists, presentations, and files of familiarization and training ses-
sions that may help. Before embarking on a task to create an artifact, check
to see if one already exists that you can reuse or at least use as a guide. Try
to avoid reinventing the wheel, that is, recreating an artifact when a tem-
plate or example already exists. If someone has already done what you are
about to do, chances are that you can save time and effort by knowing about
it.

3. Identify stakeholders of the project.

A stakeholder is anyone who has an interest in the project and anyone who
will be touched by the system. Think of customers (those who are paying for
the work), users (people who will actually use the system), advisors (such as
legal experts or regulators who have relevant information about the
requirements), project groups that are involved in developing the system
(such as systems engineering, software engineering, QA, CM, project con-
trol, documentation, training, testing, and so forth.). Just as in designing a
process, there are always more stakeholders than we think of initially. Ian
Alexander suggests using a “Stakeholder Analysis Template” [3] to identify
stakeholders. John Boardman Associates (JBA) developed the template
(e-mail: ian@jba.net). Figures 5.1 and 5.2 depict the roles of stakeholders
and the viewpoints of the roles.1

The systems engineering approach suggests developing a concept of
operations (CONOPS) that focuses on the goals, objectives, and general
desired capabilities of a new or improved system or product.2 Operational
scenarios (sequences of events expected during the operation of system
products) are developed (see the discussion of scenarios as a requirements
gathering technique later in this chapter). These include the environmental
conditions, usage rates, inputs to the system (sometimes referred to as
expected stimuli), and outputs (responses). Operational scenarios are the
ideal framework for mission/business/user requirements and are also help-
ful in identifying and clarifying system aspects.

Plan the Approach 65

1. See also Chapter 13 of Sommerville and Sawyer’s Requirements Engineering: A Good Practice Guide (New York:

John Wiley & Sons, 1997), which provides a systematic approach for collecting requirements from multiple

viewpoints, called PREview. A related Web site, www.info.comp.lancs. ac.uk/publications/index.phtml, is well

worth a visit.

2. EIA 632, “Processes for Engineering a System,” provides a comprehensive, structured, disciplined approach for

all life-cycle phases. The systems engineering process is applied iteratively throughout the system life cycle. The

operational concept facilitates separating mission requirements from other system requirements, identifying

scenarios that dictate the interaction between the system and other systems (including people), and focuses

heavily on the inputs and outputs of the system.

Helen Sharp [4] suggests using a recursive approach to identify stake-
holders—ask your initial point of contact for a list of stakeholders, then ask
each person on that list who else has a stake, and so forth, until you are not

66 Gathering Requirements

The wider environment

The containing system

The system
being developed

Our
customers Operators

The
equipment

What they want
the system
to do for them
(desired results)

Scenarios
(how to use
the equipment)

Neighboring
systems

Interfaces (how they
use the equipment)

Regulators

Constraints
and -ilities
(standards,
regulations)

Figure 5.1 Roles of stakeholders. (Source: John Boardman Associates (JBA). Used
with permission.)

Our
customers Operators

The
equipment

Neighboring
systems

Regulators

Operators of the equipment:
we make it work on behalf
of our customers

Direct beneficiaries
of the system:
it’s for them

Regulators care about safe
and effective running of
the system from outside, on
behalf of the public

Owners of neighboring
systems care about the
results they can get
through their interface
to our system

Figure 5.2 Viewpoints of roles. (Source: John Boardman Associates (JBA). Used
with permission.)

finding any more stakeholders (sometimes this approach is referred to as
“peeling the onion”). She suggests naming four groups of baselines stake-
holders—users, developers, legislators, and decision makers—and then
exploring the network of stakeholders around the baseline. Ellen Gottesdie-
ner [5] suggests including “indirect users” (or “secondary users”)—people
who will come in contact with the system’s outputs (such as files and
reports) or with system by-products (such as decisions).

Understanding the customer makeup and internal politics is important.
For example, if the proposed system will replace existing systems, each
owned by an established (read “entrenched”) group, and the change is
being forced from above, the strategy used to involve customers might be far
different from that used if the proposed system is to integrate with several
existing systems and leave them essentially intact. An ideal situation might
be to build a new system for a single customer, but frequently projects have
multiple customers. A challenging situation from one RA’s experience was a
system that had three separate agencies as customers: two strong willed
ones and a meek one. Trying to sort out the politics was far too complicated
for most reasonable people. A second contractor that had a significant nega-
tive impact on project efforts further complicated the situation. In the final
analysis, understanding the project from the perspective of various organi-
zations’ involvement may be as important as understanding stakeholders’
needs.

4. Develop a strategy to involve customers and users throughout the development
effort.

Experience shows us that projects that involve customers and users
throughout the development effort are more successful. The reason is that
there exists effective communication. Without effective communication, the
customer/user and the developer lose sight of each other and their perspec-
tives. While this task is not primarily the role of the RA, it is critical to the
successful performance of the RA’s tasks that this strategy be developed and
implemented. Advocate as part of the project team that the strategy be
pursued.

One strategy to involve customers and users is “partnering.” See
Insert 5.1 and Effective Requirements Practices [2, pp. 30–41], for a discussion
of this approach. This could well be the nugget that empowers your overall
strategy. I have used partnering, and I can tell you that it works very well.

Another strategy is to use requirements workshops and other require-
ments gathering techniques that involve customers and users interactively
in the decisions that are made. It’s best if the customer and users are inti-
mately involved throughout the entire life cycle. Another technique to help
with this is to include customers on a project change control board (CCB) to
facilitate their being actively involved throughout development activities.
Note that many commercial products are designed toward target audience
needs rather than those of a finite group of stakeholders. Focus groups and
other techniques are used to generate a model of customer behavior that

Plan the Approach 67

68 Gathering Requirements

Insert 5.1—Description of Partnering

Partnering is a structured process designed to create an atmosphere of
commitment, cooperation, and collegial problem solving among
organizations and individuals working together on a project. An envi-
ronment of mutual safety and trust is essential to effective partnering.
Partnering uses an outside, trained facilitator to develop vision state-
ments, common goals, guiding principles, issue-resolution procedures,
and evaluation methods to help ensure project success. The process is
normally initiated at a workshop at the beginning of the project. At the
workshop everyone is considered equal. No participant or organization
should be allowed to dominate the workshop process. All parties need
to recognize that partnering is the building of the team with the objec-
tive of achieving commitment to project success.

Partnering does not change the parties’ contract obligations. It does
facilitate the manner in which the contracting parties treat each other
during the course of contract performance. It creates a climate in
which the interests and expectations of the contracted parties are more
readily achievable. To this end, a written charter is created during the
workshop that states the parties’ common interests in reducing time-
consuming and costly disputes, as well as improving communications
to the benefit of all parties.

All contracting parties have an economic interest in the success of
the project. Just as customers are concerned with getting good value
for their money, suppliers are in business to make a fair profit for the
services they provide. When a supplier is squeezed for profit, the qual-
ity of the work and business relationships can suffer or be destroyed,
creating hostility and expensive protracted litigation of claims. Driving
good suppliers out of business is not in anyone’s best interest. The
long-term goal of every owner should be to keep good contractors in
business so that competitive bidding is as robust as possible in the
future.

Partnering should include the ultimate users of the system. Cus-
tomers need to be involved in the partnering process from start to fin-
ish. They provide valuable information about their project needs and
can participate in problem-solving sessions at the workshop and
follow-up meetings, and may gain a better understanding of where
their dollars are going when contract modifications are required. A
typical goal of the partnering team is to deliver a quality project to the
customer that meets the customer’s functional needs and financial
constraints. Customer satisfaction is an essential ingredient in virtually
all partnering efforts.

The costs for partnering generally include one to three days of the
participants’ time at the start of a project to conduct the workshop and
any follow-up sessions later. There are also the facilitator’s fees for
these meetings. These costs are small, however, when a project is
delivered within the customer’s budget, at a profit for the supplier, and

then serves as a placeholder. This model must be validated and verified just
as one would do with any other step of the requirements process, but fre-
quently it is very poorly crafted and only later are the actual market prefer-
ences discovered.

5. Write (and iterate) a project vision and scope document.

This document needs to be only a few pages long, but it is very important,
because it helps all stakeholders gain a better understanding of the planned
system or software. The document should present the following:

◗ The business requirements and related business objectives for the
system;

Plan the Approach 69

Insert 5.1—Description of Partnering (continued)

ahead of schedule. The time required is small in comparison to the
time saved over the course of the project. At the initial workshop,
many partnering teams will identify and resolve potential problems.
This can prevent weeks or months of delay later in the project. During
the project, the team uses partnering procedures to work together to
avoid other schedule delays and to achieve project goals.

Anyone who has a direct impact on the success of the project
should be a participant and attend the initial partnering workshop to
become a team member. Participation in the workshop assures an
understanding of the team’s common goals and mutual vision. When
an individual is not present at the workshop, partnering may have no
meaning to that person.

Follow-up sessions are sometimes delayed or canceled because of
the pressures of project performance and completion schedules. This
prevents the partnering process from working effectively when it is
most needed. It takes a strong commitment to partnering to ensure
that follow-up sessions take place when everyone is otherwise busy.
To avoid this problem, a schedule for the follow-up sessions should be
established during the initial workshop. Dates can be set to meet all
team members’ schedule requirements.

Subcontractors should participate to inform the other participants
of their interests and value to the project. Subcontractors will, in turn,
learn and appreciate what is important to the other project partici-
pants. Subcontractor participation in the workshop can help prevent
disputes during performance.

Two essential elements of a successful partnering relationship are
trust and communication. If any team member feels that other team
members are taking advantage, trust will be adversely affected. Team
members should be encouraged to communicate this feeling to the
others plainly and promptly when the issue arises.

Source: Chales Markert, partnering facilitator.

◗ The vision of the solution, consolidated from the various stakeholders,
and described in terms of what is needed to meet the business
objectives;

◗ The scope of the system that is envisioned in terms of what it should
and should not include.

Karl Wiegers provides an instructive and insightful discussion about
why this document is important and a detailed outline of what it should
include in Software Requirements [6, pp. 81–93]. I suggest that you iterate the
project vision and scope document because it will become more useful as
you and others gain a more comprehensive understanding of the planned
system. You’ll find that the vision may change a little and the scope a lot.
Beware of requirements growth (also known as requirements “creep,”
where requirements are added without having RM controls in place). Wein-
berg [7] utilizes the term requirements leakage to refer to unofficial require-
ments being added when they are not really needed—see the discussion of
this important issue in Effective Requirements Practices, [2, pp. 221–229].
Again, this demonstrates the value of planning and reinforces the value of
investing in early requirements activities, before the other technical work is
launched.

6. Develop a requirements plan.

I have stressed the importance of planning with regard to any activity, and
requirements activities are no exception. You are familiar with several types
of plans for a project, such as the project management plan (PMP), SEMP,
SDP, QA plan, CM plan, training plan, and others. Use the suggested table of
contents for a project requirements plan provided in Table 5.2 to help you to
document needed requirements-related activities and what will be done and
to discern holes and needs [8].

Ellen Gottesdiener’s experience [5] is that the experienced RA will
plan for three to four iterations through the requirements development
process. Both internal and external customers should follow each itera-
tion with a formal or informal review. This approach may seem excessive,
particularly if you are new to gathering requirements. Ellen Gottesdi-
ener’s experience lends credence to the value of investing in the require-
ments process to identify the real requirements prior to starting other
work. This can be a major factor in reducing rework (rework represents
40% to 50% of total costs of most projects). Make sure that all stakehold-
ers buy into the approach you have defined. While there are excellent rea-
sons to plan and conduct multiple iterations of the requirements, it is likely
that you will have to defend the time and resources needed to accomplish
this.

7. Provide for peer reviews and inspections of all requirements-related work
products.

70 Gathering Requirements

In the first place, ensure that there is an effective peer review process that is actually
used throughout your project. If one is not in place, work with your
manager and the PM to adopt and use this industry best practice. Provide
them the discussion in Effective Requirements Practices [2, pp. 248–250]. Work
hard to advocate use of peer reviews and inspections. They will save time, money, and
effort and also improve quality and customer satisfaction. Use Wiegers’s Peer
Reviews in Software: A Practical Guide [9] to implement a peer-review and
inspections approach that best fits your project. (Although the title of
Wiegers’s book says “software,” the information about peer reviews in the
book applies to any work product.) On request, Northrop Grumman IT
DES [10] can provide two 2-hour training courses and associated support to
launch your project’s or organization’s peer-review process:

1. “Peer Review Participant Training”;

2. “Peer Review Moderator Training.”

Contact peer review process owner Penny Waugh at PWaugh@ngc.com
for information.

Some projects receive the advice not to do peer reviews and inspections
of requirements-related documents on their projects. Not having peer
reviews is an inexcusable project risk in my opinion. Experience has shown
that no work product should be developed, no matter how simple it is, with-
out being reviewed by at least one peer who is knowledgeable about the
subject of the work product. The point is that (1) the words that I use may

Plan the Approach 71

Table 5.2 Sample Table of Contents for a Project
Requirements Plan

Purpose

Contract, Project, or Task Summary

Use of the System Engineering Process

Suggested Strategy for Addressing Industry Requirements Problems

The Project Requirements Process

Importance of the Requirements Process in Overcoming Requirements
Problems

Requirements Process, Mechanisms, Practices, Methods, Techniques,
and Tools to Be Used on the Project

Suggested Approach to Involve Customers and Users

Industry Requirements Best Practices

References Consulted

Appendixes

A Tailored Requirements Process (flowcharts and process
descriptions)

B Partnering Process Briefing

C Criteria of a Good Requirement

D Guidelines for System Development Based on Requirements
Considerations

or may not communicate my intent effectively; (2) others may have a
different perspective; (3) any work product will benefit from the ideas,
suggestions, and corrections provided by others; and (4) time and money
are saved when defects are identified earlier than they otherwise would
be. The challenge is to find people independent enough to provide a
fresh set of eyes, yet familiar enough with the general topic and process to
avoid excessive review overhead or making meaningless or misleading
comments.

8. Initiate a project glossary and a project acronyms list.

One of the issues in my own experience that has jeopardized team-
work, caused far too much discussion (read, confusion, frustration, and
delays), and even destroyed many good interpersonal relationships is that
we technical people tend to have very strong opinions about definitions
of particular words, and we tend to resist moving forward when we
don’t know or understand an acronym that is being used. I strongly rec-
ommend and advocate that each project develop a project glossary and
a project list of acronyms. These artifacts should be created as early as pos-
sible, for example, as part of the project vision documentation, and
expanded as the project matures. In addition to acronyms, the basic
nomenclature associated with an emerging system concept can have a
major impact on design freedom. (Functional versus physical language
choices in particular have great benefit early in the project life cycle.)
Include words and acronyms that are acceptable to and used by the cus-
tomers and users— for example, we refer to knowledge of the customer’s
area as domain knowledge or expertise; persons who are extremely
knowledgeable in a particular area are referred to as subject matter experts
(SMEs). In the interests of the project work being accomplished expedi-
tiously, let’s do the following:

◗ Agree on definitions of the words we use that we all can live with.
This doesn’t require that the consensus definition is each person’s
favorite definition of the word, only that all of us on our project
team can live with the wording of the definition. Suggestion: use
a thumbs-up(“I support it”), thumbs down (“I can’t live with it”),
or thumbs sideways (“I can live with it”) technique in project meet-
ings to gain consensus quickly. If people have issues (“thumbs
down”), ask, “What will it take to convince you to be able to live
with the approach or definition that most people find accept-
able?” If you have a TEAMWORKS environment, you should be
able to achieve consensus on most topics easily. (A TEAMWORKS
environment is a work setting where working together as an
effective team is valued and appreciated and where coworkers pro-
actively support one another. See Chapter 8 for further discussion
concerning teamwork.) If you can’t, perhaps you have a “spe-
cial cause of variation,” such as an obstreperous person or different

72 Gathering Requirements

perspectives.3 I have no golden cure for special causes of variation,
only that we should look constantly for root causes of issues and
problems, use our many venues to brainstorm countermeasures, pri-
oritize countermeasures according to their perceived effectiveness,
implement them, and then evaluate whether the countermeasures
have had the desire impact on the root causes. If they haven’t, it’s
time to identify and select other countermeasures.

◗ Develop a project acronyms list that includes all of the acronyms that
are encountered by all of those working on the project. This can be
accomplished by putting the list of acronyms on a shared server so
that everyone can have access to it and adding acronyms as they are
encountered. Also, anyone encountering an acronym can use this
resource to try to find out what the acronym stands for. It makes no
sense whatever for project meetings, training sessions, briefings, and
so forth, to become bogged down because someone doesn’t know an
acronym!

9. Decide on the life-cycle approach to be used on the project.4

This decision may seem to you to be outside your purview. However, in my
experience, most projects don’t give this decision enough consideration.
Most often, projects tend to hobble through the design and development
activities without making the life-cycle approach explicit. A specific life-cycle
approach should be selected by the project. This decision is important
because different life-cycle models have strengths and weaknesses, and some
are more appropriate for particular domains.5 A key question is, What frac-
tion of the final design would you say is known at this point? Projects with
only minor changes to existing designs are very different from those that
require fundamental work. Study Table 5.3 and Figures 5.3 to 5.6. Review
related information provided in the references by Reed Sorenson [11] and
Barry Boehm [12]. If you are considering the spiral model approach, read
Boehm and Hanse’s “The Spiral Model As a Tool for Evolutionary

Plan the Approach 73

3. Ian Alexander reports from his consulting experiences that coworkers often insist on using specific words in

ways that preclude common understanding and that delay and even prevent progress in reaching consensus.

He believes the root cause of this serious problem is not obstreperousness, but rather that people have different

perspectives about things. This emphasizes why it is so important to have a TEAMWORKS environment, as

well as to use mechanisms (such as thumbs up, down, or sideways and a project glossary) to reach consensus

and move on.

4. With thanks to Rich Raphael of Northrop Grumman IT DES for developing these materials and providing

analysis of life-cycle models and illustrations of them.

5. The U.S. undersecretary of defense for acquisition, technology, and logistics, E. C. Aldridge Jr., published a

memorandum dated April 12, 2002, expressing a preference for evolutionary acquisition strategies relying on a

spiral development process. A point of contact for further information is Skip Hawthorne (skip.hawthorne

@osd.mil). The memorandum acknowledges that there is “confusion about what these terms mean and how

spiral development impacts various processes such as contracting and requirements generation that interface

with an evolutionary acquisition strategy.”

74 Gathering Requirements

Table 5.3 Comparison of Life-Cycle Models

Waterfall Incremental Evolutionary Spiral

Description Emphasizes
completion of one
phase of
development before
proceeding to the
next phase; freeze
the products of one
phase before
proceeding to the
next phase. Must
use a formal change
mechanism to make
requirements
changes.

Performs the
waterfall in
overlapping
sections.

The development
stage is done as a
series of increments.
Each increment
builds a subset of
the full system. An
increment is a full
life cycle of analysis,
design, coding,
testing, and
integration. It may
be delivered to the
user, but not
necessarily. If it is
delivered, there may
be some finishing:
optimization,
packaging, and the
like, after the build.

Divides system
development into
four basic activities:
planning, risk
analysis,
engineering, and
evaluation.

Within each spiral
loop, risks are
identified and
attempts to mitigate
risk are made before
proceeding to the
engineering activity
of the spiral.

Strengths Patterned after
process models in
other disciplines,
making it easy for
managers to
understand and
accept.

In this model each
phase is defined by
a set of functions,
goals, milestones,
and deliverables,
making the process
highly visible and
the project easier to
track.

Since requirements
and specifications
are determined at
the outset, the PM
is better able to
determine his or her
resource needs and
establish schedules.

Requirements do
not have to be fully
specified/clarified at
onset. As each
increment is
completed,
requirements are
clarified.

Is focused on early
and continuous
delivery of
requirement-
defined stakeholder
value.

Allows detailed
requirements to
emerge gradually.

Avoids some of the
difficulties of
existing software
models by using a
risk-driven
approach.

Tries to eliminate
errors in early
phases.

Provides
mechanisms for QA.

Applicable to other
kinds of projects.

Works well for a
complex, dynamic,
innovative project.

Reevaluation after
each phase allows
changes in user
perspectives,
technology
advances, or
financial
perspectives.

Weaknesses Does not work very
well in situations
where the
requirements are
not well defined at
the beginning of the
process.

There is a tendency
to push difficult
problems to the
future in order to
demonstrate early
success to
management.

Requires cultural
mind-set change
from conventional
methods.

Lacks explicit
process guidance to
determine
objectives,
constraints, and
alternatives.

Acquisition” [13], which explains enhancements to the original spiral model
that now are considered essential to its use. Note that the win-win approach
is the subject of ongoing work by Boehm and others. Make information
available to other members of your project team (including the customer),
have discussions, and reach consensus on the life-cycle model that best
meets the needs of your project. Be aware that some requirements are
unknowable until customers and users start using the system. This concern is
best addressed by using an incremental development approach.

Some industry experts question whether the evolutionary and spiral
models are really different. Boehm himself discusses “evolution” in describ-
ing the spiral model. Some industry experts believe that the incremental
and evolutionary models are very different and incompatible—it’s very

Plan the Approach 75

Table 5.3 Comparison of Life Cycle Models (continued)

Waterfall Incremental Evolutionary Spiral

Weaknesses The model’s major
weakness is the
costliness of
changing
requirements. The
farther a project
proceeds, the more
costly a change in
requirements
becomes.

The customer does
not see a working
product until late in
the life cycle. By the
time the customer
gets a chance to
review the product,
any errors or
omissions are very
costly to correct.

Real projects seldom
flow sequentially.
Although reiterating
is possible,
reiteration tends to
cause confusion as
the project
advances.

Difficult to manage
and measure project
because one cannot
ascertain when all
requirements will be
complete.

Requires some
training and
experience to apply
the method
effectively.

Provides more
flexibility than
convenient for
many applications.

Risk assessment
expertise: The
assessment of
project risks and
their resolution is
not an easy task. A
lot of experience in
projects is necessary
to accomplish tasks
successfully.

Domain of
applications

Systems that have
well-defined
requirements at the
outset and systems
where the costs and
schedules need to
be determined up
front.

Well-suited for
systems where the
requirements
cannot be specified.

Well-suited for
systems where the
requirements
cannot be specified
prior to start of life-
cycle development
activities.

Complex, dynamic,
innovative,
ambitious projects
carried out in
internal teams (not
necessarily limited
to software).

Source: Richard Raphael. Used with permission.

76 Gathering Requirements

Requirements
Definition

Requirements
Analysis

Design

Design

Unit
Testing

Integration
& Test

Delivery and
Maintain
Software

Test

Test

System
requirements
definition

Software
requirements
analysis

Preliminary
design

Detailed
design

Code and
unit
testing

Component
integration
and test

Delivery and
maintainance
software

Integration
test

System
test

Figure 5.3 Illustration of the waterfall model.

Requirement

Design

Implementation

Requirement

Design

Implementation

Requirement

Design

Implementation

Figure 5.4 Illustration of the incremental development model.

Concurrent
activities

Specification

Development

Validation

Outline
description

Initial
version

Intermediate
versions

Final
version

Figure 5.5 Illustration of the evolutionary model.

tricky to allow evolution when attempting to maintain an unchanged archi-
tecture, while adding components to it incrementally. Another view is that
all of the models cited are applicable to some aspect of many projects—think
of them as alternate views of the same thing, and the more viewing angles
that are considered, the better the understanding! To an extent, it’s like
arguing over whether a top or side view is better.

10. Begin tailoring the corporate (or other) requirements process.

I’ve mentioned earlier the importance of using a documented requirements
process. The essential point is that you will be following a process in any
case, whether it is a documented process or not. Experience has shown us
that using documented processes is a vastly superior approach for the fol-
lowing reasons:

Plan the Approach 77

Determine
objectives,
alternatives
and constraints

Commitment
partition

Review

Plan next
phases

Cumulative
cost Progress

through
steps

Integration
and test plan

Development
plan

Requirements
plan

Implementation

Acceptance
test

Integration
and test

Design V&V
Unit
test

Code

Requirements
validation

Software
Reqts

Concept of
operation Software

product
design

Emulations Models

Detailed
design

Benchmarks

Operational
prototype

Prototype3

Prototype2

Prototype1

Risk analysis

Risk
analysis

Risk analysis

Risk analysis

Evaluate
alternatives
Identify and
resolve risks

Develop and verify
next level product

Life cycle
plan

Figure 5.6 Illustration of the spiral model. (Sources: [12, 13].)

◗ Lessons learned from industry and corporate experience, as well as
from previous projects in your organization, can be incorporated into
the process.

◗ There is less risk of having to perform rework (the industry average for
rework on systems and software development projects is 40% to 50%
of the total project’s effort and cost; proactively reducing rework is an
opportunity to save money, time, and effort and to increase customer
satisfaction and quality at same time). Requirements engineering con-
sultant and industry expert Karl Wiegers estimates that 80% of the
rework effort on a development project is traceable to requirements
defects [14]. This suggests strongly that investing in the requirements
process can finance substantial levels of process improvement activities.
For example, Wiegers recommends formal inspections of every
requirements-related document. See Wiegers’s two articles [15, 16]
concerning requirements inspections for advice about how to provide
requirements inspections.

◗ There is a higher probability that you will be able to improve the
process as you proceed through the project activities if the process
is documented. “Whoa!” you say, “I don’t even know where to go
to ‘get’ a requirements process!” Yes, you do! See my Web site
(www.ralphyoung.net).

Incidentally, tailoring is a critical skill that is being lost as the experience
base retires and is replaced by people who are self-taught or whose insight is
acquired only from software marketing brochures or industry standards.
Tailoring is the application of experienced-based insight to arrive at an intel-
ligent match of standard process elements and situational challenges. I
strongly suggest peer review of the tailoring approach wherever possible.

11. Establish a mechanism to evolve the real requirements from the stated
requirements.

As you begin the process of identifying more detailed requirements, you’ll
need to establish a mechanism to evolve the real requirements from the
stated requirements (see Chapter 4 for clarification of the differences). In
Effective Requirements Practices, I refer to this mechanism as the joint team (see
[2, pp. 46–53] for a discussion of the joint team). It doesn’t really matter
what you call this mechanism. What’s needed is one or a few representa-
tives of the customer who are empowered to make decisions concerning
requirements to meet with a similar number of empowered people from the
project to review all of the requirements to do the following:

◗ Ensure that each requirement reflects real customer and user needs.
You’ll find that many of the stated requirements are not real
requirements.

◗ Ensure that each requirement meets the criteria of a good require-
ment. You’ll find that this step will require a lot of work. Knowing that

78 Gathering Requirements

there are important reasons for each of the criteria, you’ll under-
stand that this work is highly leveraged and invaluable. If you
don’t understand the reasons for one or more of the criteria, take some
time to study the criteria and satisfy yourself that each criterion is
essential.

◗ Provide a rationale for each requirement (why it is needed). Industry
experience is that up to half of the stated requirements can be elimi-
nated by performing this one step. Stop to think for a minute about the
work that this one step potentially can save the project (“proactively
reduce rework”). Realize also that this effort could well make the differ-
ence between project success and failure. Discuss this with your man-
ager and the PM. Help the project benefit from a TEAMWORKS
approach by applying team approaches in your own work activities (see
Chapter 9 for a discussion of teamwork).

◗ While performing this work, focus on product benefits (necessary real require-
ments), not features of the work products. We can provide a ton of features,
all of which take time and money to develop and include in the system,
but we need to focus on minimum requirements (remember, “Any-
thing more is too much!” [Neal Whitten]).

◗ Make an intentional effort to discover real requirements that are
unstated. In working with your customer and users, work deliberately
to identify real requirements that they have not included. This will
require a thorough understanding of the customer needs, attention to
the system-level requirements, and thoughtful analysis. We never
promised that the work of the RA would be simple or easy. One way
to address this is evolution—seeing an early version or prototype or
demonstration is a powerful aid to discovering unstated real require-
ments. Models and mockups are inexpensive ways of eliciting
unstated requirements. D. Leffingwell and D. Widrig [17] and Ellen
Gottesdiener [5] offer other simple inexpensive techniques.

This is a good time to emphasize the importance of verification (does the
design solution meet the identified requirements?) and validation (are the
requirements implemented in the delivered system?) (V&V). See step 17
and Chapter 7 for further discussion and clarification.

Here are some other goals of good requirements practitioners as identi-
fied by Ivy Hooks in her requirements training:

◗ Identify incorrect assumptions;

◗ Ensure consistency;

◗ Increase compliance;

◗ Reduce misunderstandings between organizations and individuals;

◗ Improve the responsiveness of suppliers;

Plan the Approach 79

◗ Improve the satisfaction of all customers;

◗ Write good requirements.

It’s worth noting that many stakeholders will be able to communicate
requirements only in general terms. These will then need to be “translated”
into usable design requirements by the team. My suggestion is to be tolerant
early in the process in order to stimulate open communication and then to
tighten up expectations as time and developing process insight allow.

12. Provide requirements-related training sessions for project participants, including
customers and users, and for RAs.

Here is a challenge for you. Your peers on the project will in all probability
resist this training. They will assert that they don’t need it and that they are
very busy with their own work. In reality, neither of these claims is valid,
given overall project priorities and needs, because it is important that all
stakeholders understand the value of investment in the requirements
process and related information. An important lesson we have all experienced,
but unfortunately have not yet learned, is that technical work is initiated before the
real requirements are identified, which results in a large amount of rework with its
associated cost, schedule, quality, and customer satisfaction issues. All project stake-
holders need the benefit of understanding industry experience concerning
requirements. See Table 5.4 for suggested topics. Visit my Web site for a
sample “Early Project Requirements Briefing” [18].

80 Gathering Requirements

Table 5.4 Suggested Topics for Early Project
Requirements Briefing

Industry issues in requirements engineering;

The value of investing more in the requirements process;

The project and/or organization’s requirements process;

Overview of the mechanisms, methods, techniques, and tools
that will be used;

Types of requirements;

Gathering requirements;

Roles of the RA;

Criteria of a good requirement;

Types of requirements errors and how these can be reduced;

Why and how all members of the project team must recognize
new and changed requirements during development and
communicate this to the RA and PM;

Management support of effective requirements engineering;

Means for reducing rework on the project:

Identifying the real requirements;

Controlling changes to requirements and addition of new
requirements;

Using peer reviews;

Providing inspections of all requirements-related documents.

Another important aspect is that the RAs who are supporting the project
should be provided appropriate training. See Table 5.5 for a list of recom-
mended topics. For example, it’s important that all RAs be in agreement
about how to write good requirements. They should be familiar with the
types of requirements (see Chapter 4) and efforts to be made to reduce
requirements errors. Particularly important is the approach that will be used
to reduce rework on the project.

When training is vigorously resisted by the culture, it is often possible to
accomplish the same goal through working sessions that apply the methods
you want to communicate. An experienced RA shared his success in briefing
management on the training that would be given to employees—he
believed that it was the management team that most needed the insight!

13. Rewrite the high-level system or software requirements as you proceed through the
initial steps.

A statement of the high-level customer needs, expectations, and require-
ments may already exist, at least in a preliminary form, in the historical

Plan the Approach 81

Table 5.5 Suggested Topics for Training for RAs

The importance of requirements to project success, based on industry experience;

The value of good requirements;

Roles, skills, and characteristics of an effective RA;

Having and using a requirements process;

The value of investing more in the requirements process (8% to 14% of total project costs);

The project’s requirements process;

Overview of the mechanisms, methods, techniques, and tools that will be used:

Types of requirements;

The requirements repository (and its many components);

Gathering requirements—the techniques to be used;

Writing good requirements:

Ensuring that every requirement meets the criteria of a good requirement;

Documenting the rationale for each requirement;

Prioritizing requirements—all requirements are not equal;

Not inventing requirements independently;

Not making requirements decisions;

Not gold plating.

Types of requirements errors and how these can be reduced;

Using the project’s automated requirements tool;

Ensuring that the identified requirements are used and do not become “shelf ware”;

V&V on the project;

Management support of effective requirements engineering;

Reducing rework on the project:

Identifying the real requirements;

Controlling changes to requirements and the addition of new requirements;

Utilizing peer reviews.

information that you have already digested. By high-level, I mean the broad
statements that describe the needed capabilities that customers seek. (On
one project I supported, the customer provided an overly detailed require-
ments specification at the outset of our contract engagement—the customer
had invested several person-years of effort over a two-year period to
develop the specification. When we suggested revisiting the high-level
requirements, the customer directed that we not do this, but rather proceed
with the development effort using the detailed specification. One year later,
after an investment of 40 person-years of effort, the customer decided to
redo the high-level requirements.) Begin to rewrite the high-level require-
ments. This set should consist of 50 to 200 requirements, depending on the
scope of the system. Focusing on the high-level requirements has important
advantages:

◗ It will help you comprehend the scope of the system.

◗ It will keep you from being overwhelmed by the more detailed
requirements.

◗ It will help you gain insights into the real requirements.

Manage the cultural expectations to prevent your first draft from becom-
ing the “build-to” document.

T. Korson [19] emphasizes the importance of levels of abstraction
in requirements gathering and believes there are critical principles of
requirements gathering that must be observed. (He also believes that a use
case–driven requirements approach often results in failure to identify
the real requirements.) Table 5.6 shows how there are levels of abstraction
associated with both the types of requirements and the development
activities.

The following principles of requirements gathering expand on this:

◗ Start with high-level system requirements and work to more detailed
levels (note that this is different from functional decomposition,
which involves decomposing a particular function in the system).

◗ Keep business requirements separate from interface specifications.
Korson believes that this is the way that most OO teams get into

82 Gathering Requirements

Table 5.6 Using Levels of Abstraction Helps in
Managing the Requirements Process

Types of Requirements
(See Chapter 4) Development Activity

Business

Interfaces

Design

Detailed specifications

Domain analysis and modeling

Application analysis and modeling

Architecture development

Source code development

difficulty—high-level requirements are put into detailed specifications
that preclude clients from considering alternatives and that mislead
designers.

◗ Facilitate users’ gaining a deeper understanding of their real needs and
requirements.

◗ Do not derive the design from use cases. Korson believes that use
cases should stop at the system interface boundary. Others’ experi-
ence is that system boundaries are set based on viewpoint, and use
cases can often be excellent analytical aids at the subsystem level as
well. You’ll need to determine your own views based on your
experience.

14. Initiate development of the real requirements based on the stated requirements.

Evolve and prioritize [20] the real requirements. You’ll recall this sugges-
tion from Chapter 1. Don’t fail to do it. The “list of real requirements”
is a work product that will evolve over a period of several weeks or
months. Make sure that you use version control and change control on it, so
that you always know precisely what the current work product actually is
and exactly how it should read. If you aren’t familiar with these CM tech-
niques, look at the discussion of CM in Chapter 7. Also, find someone who
is experienced with CM and learn from him or her. No pressure, but keep in
mind that the whole project is totally dependent on a thorough, accurate,
current statement of the real requirements. Without it, the project is out of
control and in jeopardy. You may find yourself trying to catch up with
designers who moved far down the life-cycle path while the requirements
were being generated. This is a very common problem and an excellent
motivation for the RA to get guiding documents out to the community as
early as possible.

15. Initiate documenting the rationale for each requirement.

This is another requirements work product that will evolve over a period of
weeks or months. Make sure that you track the source of any rationale that
is accepted. This is an important component of the requirements repository,
discussed below. Well-conducted trade studies provide not only a solid
rationale for which path was chosen, but also contain the logic by which the
choice was made and the assumptions that were used. This makes it much
easier to defend the decision or to review it if assumptions change or are
proven false.

16. Establish a mechanism to control changes to requirements and new
requirements.

The second most important contribution you can make to the project (after
establishing the joint team or similar mechanism to evolve the real require-
ments) is to establish a mechanism to control changes to requirements and

Plan the Approach 83

new requirements. Industry experience verifies that without such a mecha-
nism, most projects will soon get out of control and risk a high probability of
failure. We refer to changes in requirements as “requirements volatility.”
Industry experience is that projects that exceed 2% requirements volatility
incur cost and schedule risk. A target of 0.5% requirements volatility per
month is recommended. “Whoa! You say, “That’s not much!” Precisely.
That is exactly why a mechanism is needed to control changes to require-
ments and the addition of new requirements.

An excellent mechanism you might consider for this is the joint team. It
has a few empowered members who can speak for the customer and the
project. Hopefully, the members have gotten to know one another during
the process of evolving the real requirements and are working together as a
high-performance team. If not, suggest a joint team workshop to consider
the characteristics of a high-performance team (discussed in the section
entitled “Teamwork” in Chapter 8). Select the characteristics that the mem-
bers of your joint team want to use. This should help to create a
TEAMWORKS environment.

Often we see projects with requirements volatility in excess of 24% per
year. This suggests that we should not expect success.

We should proactively identify ways to mitigate risks6 associated with
new and changed requirements; for example:

◗ Use an incremental development approach.

◗ Provide subsequent releases or versions of work products.

◗ Increase the budget and schedule, recognizing that there is a geomet-
ric relationship between changes and cost/schedule. Recognize also
that there are customer satisfaction and quality risks.

Capers Jones’ company, Software Productivity Research (SPR) (www.
spr.com), has documented that defect rates associated with new features
added during development are about 50% greater than those of the artifacts
associated with the original requirements [21]. Defect removal efficiency
levels are depressed as well, sometimes by more than 15%. This combina-
tion means that a very significant percentage of delivered defects can be

84 Gathering Requirements

6. RAs should get involved in project risk management activities. Visit the Web site for Software Quality

Management Magazine (www.sqmmagazine.com). Subscribe. Review articles of interest and become proficient

in risk identification, analysis, evaluation, planning, management, mitigation, and monitoring and control.

Become a member of your project’s risk management team. As noted by industry risk expert David C. Hall,

“Despite increasing consensus on the value of risk management, effective implementation of risk-management

processes in organizations and projects is far from common.” (See www.sqmmagazine.com/issues/2002-04/

maturity.html.) In my experience, even when a risk process exists on a project, and risk management is

performed, risk management activities usually are not thorough. Project activities related to risk management

are often an opportunity for continuous improvement, and these activities can have a potentially huge impact

on the success or failure of the project. Rich Raphael is the Northrop Grumman IT DES process owner for risk

and can provide expert counsel. Contact him at RRaphael@ngc.com.

traced back to creeping user requirements. In other words, by controlling
the changes to requirements, the quality of products is increased signifi-
cantly, and costs are reduced. To minimize harm from late requirements,
formal change management procedures and state-of-the-art configuration-
control tools are strongly recommended. Formal design and code inspec-
tions are also useful.7

Another valuable insight from Ivy Hooks’ experience at NASA is that a
one-third change in the requirements results in a doubling of the cost of the
developed system. This helps explain the ire our customers feel as the costs
of promised systems escalate. Customers and users need our help to under-
stand that the constant changes they request have a huge impact on costs
and the schedule. If we can help them understand this, and if we can gain
their support in controlling changes and new requirements, we will have
partnered for a more successful project outcome. An agreed-upon under-
standing of the system is critical to a successful project.

Requirements changes due to interpretation, scope creep, or other ran-
dom factors should be suppressed to the greatest extent practical. Require-
ments changes that result from emerging insight must be embraced and
managed. High levels of requirements volatility suggest that the underlying
problem being solved by the system or software is not yet fully understood.
In that case, moving further along the design cycle could well be the root
cause of the problem, not the instability of requirements themselves. One
experienced RA opined that many companies lie to themselves about design
maturity solely to achieve internal metrics!

17. Perform V&V planning.

One of the criteria of a good requirement is that it is verifiable, that
is, that the code that provides this capability can be tested to determine
that the requirement is in fact met in the delivered system. The approach
to be used to accomplish this should be provided early as an aspect of
the requirements development effort and should be identified as an attrib-
ute of each requirement in the automated requirements tool. See the
comments and references concerning V&V in Chapter 7 and Grady’s book
on this subject [22]. Hooks and Farry [23] encourage that V&V be addressed
during requirements development, because this approach improves require-
ments quality, ensures that requirements support verification, provides
a basis for estimating verification cost and schedule, and provides opportu-
nities to control cost and risk. They identify words that flag unverifi-
able requirements and suggest possible substitutes you may be able to

Plan the Approach 85

7. See the discussion of creeping user requirements and software quality in Jones’s Software Quality: Analysis and

Guidelines for Success [21, pp. 134–137]. Note that many lessons really have been learned, but they haven’t been

applied. Major problems are that (1) we practitioners don’t read enough, study lessons, take action to apply the

lessons to our processes and procedures, and implement improved practices; and (2) management is content to

allow us to muddle through and not continuously improve. In Watts Humphrey’s context, we “don’t practice

what we preach.” See www.sei.cmu.edu/publications/articles/practice-preach/practice-preach.html.

use. They provide examples of unverifiable and verifiable requirements
and provide a checklist that summarizes verification-related questions
that should be asked. Grady concurs: “Demanding that the same person
who writes a product requirement also write the corresponding verifica-
tion process requirement in approximately the same time frame reduces
program risk more than any other activity” (personal e-mail message,
April 2, 2000). This is a good time to reflect on the comments provided
in step 11 concerning evolving the real requirements. There is a lot of
confusion in our industry about the difference between validation and veri-
fication (see the clarification of these two terms provided in Chapter 7,
topic 13).

18. Select the practices, methods, and techniques that will be used to gather the
requirements.

There are a lot of practices, methods, and techniques available. Some are
more useful and effective than others. Your project will enjoy a high ROI
from taking some time to select those that are to be used. First, digest the
related discussions about them in Effective Requirements Practices [2]. You
will gain many insights from industry experience by doing this. Ensure
that members of your project team have had successful experiences with
all of the methods and techniques that are selected. A project—unless
it’s a research and development (R&D) project—is no time to try out
a new method or technique. Your project should select only methods
and techniques that are known, familiar to the developers, and proven. (An
exception is that you might want to pilot a new or promising practice
to determine its applicability to your project. By using an experienced
mentor, the pilot could become a proof-of-applicability demonstration.)
Extend your analysis to consideration of project best practices, based on
identified risks for that project. Keep your manager and the PM involved
and informed about these deliberations. Everyone involved in a particu-
lar project should use a common process, set of practices and mecha-
nisms, techniques and methods, and automated tools. Have project team
discussions, select and agree on a common set, and provide formal training
as needed to ensure that the people who are expected to use them are
empowered. It’s counterproductive for individuals to go running off on their
own, doing their own thing, not in coordination with the rest of the project
team.

You may find that your project requires methods that are not famil-
iar. This suggests that planning may be required for training or that the proj-
ect may need to engage a consultant who has been successful in using an
unfamiliar method, technique, or tool. Proceed cautiously and mitigate
risks.

19. Begin consideration and selection of an automated requirements tool, identifica-
tion of the attributes that will be needed for each requirement, and the
composition of the requirements repository.

86 Gathering Requirements

All three of these tasks are essential, and the RA will be expected to provide
leadership and to take responsibility for their successful performance.

There are fewer than a dozen industry-strength automated requirements
tools that provide the functionality needed by projects of various sizes (see
Table 5.7).

All who have worked with systems and software for any period of time
have had experiences with automated requirements tools (likely both good
and bad); all will have their own biases and opinions about specific tools.
Step back from all of this advice and feedback, assemble your analytical
skills, and ask yourself the following questions:

◗ What is it that we are trying to do?

◗ What level of sophistication is required?

◗ How much formal tool training is needed and what can we afford?

◗ What work products do we need from the tool?

◗ How will we input data (e.g., the real requirements) into the tool? Does
the tool provide an input approach that will support the project’s
needs?

◗ Who on the project has hands-on experience with which tools? Can
that person be made available to help with initial tool-related activities?

◗ Who will be the primary, secondary, and backup tool users? How many
licenses (“seats”) do we need?

Plan the Approach 87

Table 5.7 Commercial Requirements Tools, Vendors, and Web Sites

Tool Vendor Web Site

Star Team System
Requirements (formerly
Caliber RM)

Starbase, Inc., Santa Ana,
California

www.borland.com/caliber

C.A.R.E. 3.0 SOPHIST Group, Nuremberg,
Germany

www.sophist.de/sophist.nsf/zStartEng
l!OpenFrameSet

CORE 4.0 VITECH Corporation, Vienna,
Virginia

www.vtcorp.com

DOORS 6.0 Telelogic, Malmo, Sweden, and
Irvine, California

www.Telelogic.com/products

Rational Requisite Pro
(ReqPro)

IBM Corporation, White Plains,
New York

www.rational.com/products

RTM Requirements and
Traceability
Management

Integrated Chipware, Inc., Reston
Virginia

www.Chipware.com

SLATE Northrop Grumman Electronic
Systems, Baltimore, Maryland

http://slate.md.essd.northgrum.com

SynergyRM CMD Corporation, Addison, Texas www.cmdcorp.com

Vital Link Compliance Automation, Inc.,
Boerne, Texas

www.complianceautomation.com

Xtie-RT Requirements
Tracer

Teledyne Brown Engineering,
Los Angeles, California

www.tbe.com/products/xtie/xtie.asp

◗ How will customers and users communicate with the project team
concerning requirements-related information, including requests for
changes to the requirements, new requirements, and plans, ideas, and
suggestions concerning later versions and releases of work products?

Think about other questions that need to be asked, based on your envi-
ronment. The decision to select a particular automated requirements tool
should be based on a thorough, objective analysis. This decision is important
and should not be made quickly or based on biased or uninformed views. A
trade study should be written (in CMMI terminology, the trade study
process is referred to as decision analysis resolution [DAR], an updated
name from analyze candidate solutions [ACS] that was used in the
SE-CMM [24]). Review a sample automated requirements tools trade
study on my Web site [25], and reuse it as a template for your analysis. See
Insert 5.2 for important insights based on experience.8 See also Wiegers’s
article, “Automating Requirements Management” [26], which compares
four automated requirements tools: DOORS, RTM Workshop, Caliber RM
(now “Star Team System Requirements”), and Requisite Pro.

As emphasized above, the selection of the specific automated require-
ments tool to support your project is an important decision. Get your man-
ager and the PM involved early. I know of many projects that tried to work
without an automated requirements tool. This is a recipe for disaster for a
project of any size. Tiny projects (two to three people for three to six
months) might get away with using MS Word or Excel as the automated
requirements tool. A project of any larger size requires one of the tools listed
in Figure 5.3. I’m aware of many projects where the complexity of the tool
as compared with the needs for the tool became one of the reasons the proj-
ect lost control. Make sure as the RA that you fulfill your role appropriately
in this regard. Don’t allow biased views and uninformed opinions to drive
this decision.

Start identification of the attributes that will be needed for each require-
ment immediately upon assignment to the project as an (or the) RA. An
attribute is a characteristic of a requirement that is useful in sorting, classify-
ing, and managing requirements. This is one of those lists you should keep
handy and be working on constantly, because as you are working, you’ll
identify attributes that are needed. It’s likely that you’ll wind up with a list
of 20 to 40 attributes by the time you are ready to load your automated
requirements tool. Give this consideration.

Also, start thinking immediately upon your assignment to a project as an
RA about the composition of the project’s requirements repository. Many
people think of this as one automated database (in the requirements tool).
This is a much less than adequate approach, in my opinion. Think of the
requirements repository as some combination of the following:

88 Gathering Requirements

8. With thanks to process and quality engineer Earl Hoovler for sharing his experiences and expertise.

Plan the Approach 89

Insert 5.2—Lessons Learned in Performing Trade Studies

Following a defined process on a system or software development proj-
ect is usually a very good thing. However, one always needs to have an
open mind when following a process—be alert to changes in the “real”
process requirements. Be flexible and be ready to tailor the process as
you go along so that you can meet those requirements. This case study
of some lessons learned in performing evaluations of alternatives pro-
vides important insights.

While working on a proposal for a major COTS HR software imple-
mentation program, a senior analyst was responsible for reviewing auto-
mated CM tools and making a recommendation. Though he followed
the organization’s standard trade study process, after submitting his ini-
tial recommendation for a tool, he came upon information that the tool
would not work in the environment it would serve. He realized that he
needed to go back to the drawing board and revise his initial recommen-
dation to reflect real-world requirements. The following lessons-learned
from his experience may help you in performing evaluations of COTS
products, regardless of the type of automated tool needed.

1. Always keep in mind your customer’s preferences, but don’t make rec-
ommendations that merely cater to those preferences, when the trade
study analysis does not support it. Any customer deserves a bal-
anced review of the options based upon selected criteria. The
purpose of a trade study is to explore the facts and make recom-
mendations based on those facts. It is good to be aware of a
customer’s preferences, but it should not be the major or only
factor in your final recommendation, unless the facts support
the customer’s preference. This is very hard to accomplish, but
it is a worthwhile goal. In my trade study experience, the cus-
tomer had already invested in a tool suite and wanted a
recommendation that supported that purchase. We needed to
avoid the temptation to rubberstamp the customer’s choice and
tried to demonstrate exactly why their preferred tool would not
work in their development environment. We were able to
show that if we selected their preferred tool, the project would
experience more effort and cost and create the need for mostly
manual work-arounds (not an automated approach). Finally,
we were able to convince the customer that its preferred tool
was not acceptable because it could not accomplish needed
identification and control functions.

2. If you use previously defined selection criteria for your trade study, be
sure to tailor the criteria to include appropriate factors and circum-
stances. In our organization, our CM SMEs previously assembled
the functions and other criteria they like to see supported
through automated tools. Most teams will likely brainstorm

90 Gathering Requirements

Insert 5.2—Lessons Learned in Performing Trade Studies (continued)

and list their own criteria. If they are using a set of criteria that
they did not assemble themselves, the trade study team must
review the criteria and tailor them to delete functions that are
not needed, include additional requirements or functions, and
reflect the expected work environment of the team. More spe-
cific criteria will provide the basic search criteria for the tools
and save time in making initial selections for review.

3. Continually talk to the customers and engineering teams who will be
using the tool and involve them in the selection process. Keeping cus-
tomers and teams involved at all stages of the selection process
is a key to success. Make sure they are included in demos,
reviews of criteria, and peer reviews of draft trade study results.
In my example, I did not include application specialists in the
first iteration of the trade study and, thus, recommended a
more mainstream CM tool, not one that addresses the special-
ized needs of the development environment. I also was not
aware of the customer’s tool preferences. In my second effort, I
used the experience of development application engineers who
were familiar with the issues of this unique environment. We
worked together to come up with a solution that best served the
customer and developers.

4. Whenever possible, get a demonstration copy of the tools you are review-
ing and pilot them in your environment. Too often, vendors do not
have a good understanding of your criteria or your customer’s
requirements. They often bring in a canned demo of their tool
with limited capabilities that is not configured to work in your
environment. They also work to convince you that the capabili-
ties they demo will work in your environment, but they cannot
show you exactly how it will work. This might seem like the
best use of your time, and puts the burden on the vendor to
prove they can perform, but often it forces decisions based on a
feeling, rather than fact. The best remedy for this situation is to
request the vendor to provide you with a time-limited version
of their current tool, ask them for help configuring the tool, and
review the performance of the tool using your criteria. Of
course, you will need to include enough time in your trade
study plan to conduct these in-plant demos. This will provide
managers and customers with the facts they need to make their
decisions.

5. Be sure this is an iterative process. It is usually the case that
when you conduct a trade study, all of the information you
need to make decisions is not available. When additional facts
(e.g., requirements, tool capabilities) surface, you need to be

◗ The project vision and scope document;

◗ The project glossary and project list of acronyms;

◗ The list of system-level requirements;

◗ Source documents concerning requirements (where the requirements
came from);

◗ Notes of meetings with and interviews of customers and users;

◗ Requirements workshops notes and related documentation;

◗ Any documentation of the stated requirements;

◗ Minutes of meetings of the joint team;

◗ Lists of real requirements;

◗ The database in your automated requirements tool, including the RTM;

◗ Any requirements-related work products such as requirements
specifications;

◗ Descriptions of related legacy (historical) systems, augmented with
summaries of capabilities provided that are needed in the new capabil-
ity or system;

◗ Known limitations of the planned capability, including functionality
that can’t or won’t be provided;

◗ A description/vision of the growth path from initial release to the ulti-
mate system through a set of staged releases or versions;

◗ Definition of exceptions to the normal situation and appropriate error
conditions;

◗ Others.

20. Select and acquire the automated requirements tool.

Sounds easy, doesn’t it? Sometimes the RA can gain access to the
selected automated requirements tool from another project or a corporate

Plan the Approach 91

Insert 5.2—Lessons Learned in Performing Trade Studies (continued)

prepared to return to the drawing board, revise your criteria,
update your analysis, and possibly change your recommenda-
tion. Of course, time is a major factor in doing this, but you
should at least make mention of these changes to your cus-
tomer when you make your recommendation and let the
customer decide if these factors require another look.

Earl Hoovler
Process Engineer

engineering software environment (ESE).9 Most often, however, the project
will need to use the organization’s procurement process. Depending on the
situation, this might be quick and easy, but often this step turns out to be
very time-consuming and complex. Don’t allow your project to be jeopard-
ized because of late availability of the appropriate automated requirements
tool. Start early. Explain the importance to your procurement folks. Facili-
tate their becoming part of your requirements team. Follow up aggressively.
Involve your manager, the PM, and the organization’s senior management
to ensure that you get the support you need to make things happen within
reasonable time constraints.

21. Load the initial real requirements into the selected requirements tool, label each
requirement uniquely, and initiate assignment of appropriate attributes informa-
tion to each requirement.

We mentioned this task earlier in this chapter. You may find that this task
turns out to be a lot more work than you anticipate. Some of the reasons for
this are as follows:

◗ Documents providing source requirements do not always load auto-
matically, or if they do, not all of the information is captured correctly
or easily.

◗ There will be a learning curve associated with any automated tool.
You’ll find that it actually has capabilities that you don’t realize initially,
and you may need to do some rework.

◗ You’ll need to decide on the unique numbering system or approach to
be used.

◗ You’ll need to think about bidirectional traceability for each require-
ment and how this should be achieved.

◗ The source, history, priority, status, author, assignment, and traceabil-
ity of each requirement must be identified and included in the data-
base. Many other attributes of each requirement will need to be
tracked as well. For example, there are two kinds of attributes in
DOORS, user-defined attributes and system-defined attributes. User-
defined attributes may be built from specific attribute types such as
text, integer, date, and so forth and are instantiated by users for their
own needs. System-defined attributes, however, are predefined by
DOORS and automatically record essential and highly useful informa-
tion in the background. Attributes allow you to associate information
with individual or related groups of requirements and often facilitate

92 Gathering Requirements

9. Some organizations sponsor the availability of a set of automated tools that can be used by the organization’s

projects. In Northrop Grumman IT DES, we call this library of tools available for loan the engineering software

environment, or ESE.

analysis of requirements data via filtering and sorting based on attrib-
ute values. System-defined attributes may also be used for filtering
and sorting. Although they are, for the most part, read-only and are
not user modifiable, they perform essential and automatic informa-
tion gathering.

See Table 5.8 for examples of attributes you may want to include in an
attributes matrix.

Avoid the temptation to use more attributes than really are required for
the task at hand. A few well-chosen attributes that are actually entered and
managed are much more useful than dozens that are poorly executed or
easily confused.

Insert 5.3 provides some insights concerning the use of the system attrib-
utes based on information provided by Pete Carroll, formerly of Telelogic.

Plan the Approach 93

Table 5.8 Sample Requirements Attributes Matrix

Attribute Requirement A Requirement B, etc.

Unique ID NFAK028

Requirement
text

The time required for the equipment to
warm up prior to operation shall not
exceed one (1) minute from a cold start
at –20 degrees C.

Source System Requirements Specification

Owner Charles Smith

Rationale Verified

Priority Medium

Status Approved

Cost Low

Difficulty Medium

Stability Medium

Assigned to Bob Jones

Location NFA Annex K section C

Author Rick Chardon

Revision 1.7

Date 10 Jan 2003

Reason Marked trace to NFASSS289.

Traced-from NFARD125

Traced-to NFASSS289

Root Tag# 208

History Original Requirement

Verification In Design xyz

Validation Delivered System

Release 1.0

Module LDAP_Authenticate

Etc.

94 Gathering Requirements

Insert 5.3—Some Insights into Using System Attributes in DOORS

Attributes in DOORS allow users to associate data with objects, table
markers, table cells, modules, and projects. There are two kinds of
attributes, user-defined and system-defined attributes. User-defined
attributes may be built from specific attribute types such as text, inte-
ger, date, and the like, and instantiated by users for their own needs.
System-defined attributes, however, are predefined by DOORS and
automatically record a wealth of essential and highly useful informa-
tion in the background.

Have you ever wondered how to make use of these system-defined
attributes provided automatically by DOORS? Harnessing these “for
free—out of the box” attributes can make your work in DOORS easier
and more productive.

Attributes allow you to associate information with individual or
related groups of requirements and often facilitate analysis of require-
ment data via filtering and sorting based on attribute values. System-
defined attributes may also be used for filtering and sorting, and while
they are for the most part read-only and not user-modifiable, they per-
form essential and automatic information gathering for us. The read-
only system attributes, which exist automatically in all objects and
modules, include the following:

Name Name of formal, descriptive, or link module

Created By Name of user who created object

Created On Date object was created

Created Through The manner in which an object was created
(copying, manual input, extraction)

Last Modified By Name of user who last modified the object

Last Modified On Date object was last modified

Absolute Number Unique number assigned upon object creation

Link Mapping Rules for object linking (one-to-one, many-
to-one, etc.)

Some system-defined attributes are not read-only and allow for
some modification by the user. User modifiable object and module
level system-defined attributes include the following:

Object Heading The heading for the object

Object Text The actual text of the object

Object Short Text A short textual indication of the
object used for graphical display

Description Full descriptive name of the
module

Ian Alexander cautions that while 20 to 40 attributes may be needed,
often it’s possible to manage with fewer. He has seen overachieving techni-
cal managers identify 20 or more attributes, fail to verify a need for
them, and create a lot of unnecessary work. Just as we are responsible to
identify the real requirements, we must ensure that work activities we rec-
ommend and use are really needed. Good planning and careful analysis of
“why” work activities are “required” are important components of the RA’s
role.

Plan the Approach 95

Insert 5.3—Some Insights into Using System Attributes in DOORS
(continued)

Prefix Optional prefix for the absolute
number used to ensure unique
object identification

All of the above system-defined attributes, modifiable or not, auto-
matically record information and may be used just like user-defined
attributes to display data essential to management of your require-
ments. Use system-defined attributes whenever you need to display
information regarding who, what, where, and when, as well as crucial
information on modifications to requirements.

In any DOORS module, insert a column and select from the Dis-
play Attribute list the system-defined Created By attribute to show
who created a requirement. Insert a second column and use the
system-defined Last Modified By attribute to show who made the latest
change to a requirement. Insert a third column using the system-
defined Last Modified On attribute to show when the last change
was made. You now have a view that reflects the original creation
and essential change information on your requirements! Better yet,
select the Impact/Trace Wizard from the Tools-Impact/Trace menu,
and in the second prompt window select to display any number of
the available system-defined object and link attribute choices. This wiz-
ard, complete with system-defined attributes available for selection,
quickly and easily builds impact and trace analysis views complete with
essential information, such as object creation (Created By, Created On),
dates of changes (Last Modified On), and other useful information,
such as the link module name that links are recorded in (Link Module
Name).

In summary, system-defined attributes provide solutions to some
information tracking needs. Use system-defined attributes to your
advantage to simplify requirements and change management.

Pete Carroll, formerly of Telelogic.

22. Perform requirements gathering.

“Whoa!” You say, “we are already on step 22 in this chapter and we’re only
now going to talk about gathering the requirements?” Good point. Actually,
we have been talking about related steps throughout this chapter. Each of
the above steps is part of the requirements gathering process.

I suggest that you download the article “Recommended Requirements
Gathering Practices” [27], from CrossTalk’s Web site (click on the April 2002
issue concerning risky requirements). There, I provide detailed advice
and discussion related to this step, recommend specific techniques, and
suggest several appropriate references that will help you. (Don’t feel
that you have to read and digest every reference—just grab enough insights
to get yourself working effectively on your current task. You can always
go back and read more or again. In other words, try to use references to
inform, motivate, and inspire yourself, rather than allow them to create a
feeling of frustration about your lack of knowledge or be a barrier holding
you back.)

Among over 40 requirements elicitation techniques that are available,
the most effective techniques are the following:

◗ Interviews;

◗ Document analysis;

◗ Brainstorming;

◗ Requirements workshops (a modern day version of JAD);

◗ Prototyping;

◗ Use cases (when used correctly);

◗ Storyboards;

◗ Interfaces analysis;

◗ Modeling;

◗ Performance and capacity analysis;

◗ Scenarios.

Among the many books that include extensive treatments of require-
ments elicitation, be sure to have the following in your personal library:

◗ Alexander and Stevens, Writing Better Requirements

◗ Buede, The Engineering Design of Systems: Models and Methods

◗ Carr, et al., Partnering in Construction: A Practical Guide to Project Success

◗ Cockburn [pronounced co-burn], Writing Effective Use Cases

◗ Gottesdiener, Requirements by Collaboration: Workshops for Defining Needs

96 Gathering Requirements

◗ Grady, System Requirements Analysis

◗ Grady, System Validation and Verification

◗ Harmon, Watson, Understanding UML: The Developers Guide

◗ Hooks, Farry, Customer-Centered Products: Creating Successful Products
through Smart Requirements Management

◗ Humphrey, Introduction to the Personal Software Process

◗ Kotonya and Sommerville, Requirements Engineering: Processes and
Techniques

◗ Leffingwell, and Widrig, Managing Software Requirements

◗ McConnell, Software Project Survival Guide

◗ Sommerville, and Sawyer, Requirements Engineering: A Good Practice
Guide

◗ Wiegers, Peer Reviews in Software

◗ Wiegers, Software Requirements, 2nd ed.

◗ Wiley, Essential System Requirements: A Practical Guide to Event-Driven
Methods

◗ Wood and Silver, Joint Application Development

◗ Young, Effective Requirements Practices

I strongly recommend that you develop a working knowledge of all of
these books. It’s not sufficient to have a cursory knowledge of a few
requirements-related processes, practices, methods, techniques, and tools.
In order to be effective in his or her role, the RA must be able to recommend
a good, proven approach and to facilitate deploying, implementing, and
institutionalizing it.

See Vitech’s Web page (www.vtcorp.com) for information concerning
the CORE requirements tool and a version that can be downloaded for
evaluation. This tool provides behavioral modeling capabilities. Buede’s The
Engineering Design of Systems: Models and Methods [28] describes use of this tool
for modeling and provides example problems to help familiarize you with
using the tool. Rational Rose and BPwin are other tools that provide behav-
ior modeling. At times, diagrams are extremely helpful to convey the essen-
tial system requirements, to view how a system fits into larger systems in its
environment, and to understand how the components of a system fit
together.

One of the techniques noted above is a scenario. Operational scenarios
were mentioned early in this chapter as integral to the systems engineering
approach of developing operational concepts. A method called Scenario-
Based User Needs Analysis (SUNA) has been developed to facilitate clarify-
ing and refining user needs. Insert 5.4 provides a description of this method.

Plan the Approach 97

Finally, read “A Quick, Accurate Way to Determine Customer Needs” by
Cristina Afors and Marilyn Zuckerman [29]. The authors of this article
believe customers tend to say one thing during requirements elicitation and
then do something entirely differently. They recommend a technology
called imprint analysis that takes human emotions into account. They
believe imprint analysis can actually forecast human behavior.

23. Involve system architects and designers in reviews of the requirements.

One of the 10 effective requirements practices I recommend in my earlier
book is “Iterate the requirements and architecture repeatedly.” Industry
experience has proven this to be valuable advice. I have previously recom-
mended performing three or four iterations of requirements development
(reference Ellen Gottesdiener’s experience discussed in step 6). In a number
of situations in my career, I have had the opportunity to work with a system
architect or designer(s) to iterate the real requirements and the architecture
or design envisioned for the planned system or software. My experience is
that when we expended the time and effort to do this, we developed better
requirements and a more robust architecture. The reason is that the require-
ments and the architecture depend on each other. When we iterate one
with the other, both get better, stronger, more robust and flexible and are
better able to accommodate future changes and new technologies (because
we have a better understanding). Think about this. It makes sense and is a
proven industry best practice.

Invite system architects and designers involved on your project to review
the real requirements. Share the insight provided in Effective Requirements
Practices [2, pp. 134–135] with them. Consider them part of the project
requirements team and facilitate their gaining this same perspective.
Remember, two heads are better than one (always).

24. Develop the traceability strategy to be used.

We mentioned this step earlier in this chapter. It turns out that bidirec-
tional traceability (from customer and user real needs and require-
ments to products, and vice versa) of requirements is (1) critical to the
success of the project, and (2) a complex and difficult task that requires
considerable experience to perform well. Requirements traceability is
the ability (1) to map the customer need to the requirement; (2) to
trace (identify and track) the instantiation of each requirements to all
work products from requirements specification to design, to system compo-
nent development, through testing and system documentation; and (3) to
map a parent requirement to a child requirement, and vice versa. This capa-
bility is absolutely critical for all systems. A key guideline here is to be consis-
tent—use the same kind of traces for all of your source documents. An
automated RTM in the automated requirements tool is the mechanism that
should be utilized to provide this traceability. You should digest James D.
Palmer’s article “Traceability” [30] to strengthen your understanding and
knowledge concerning this important RA skill. See also the discussion

98 Gathering Requirements

Plan the Approach 99

Insert 5.4—Using Scenarios in Requirements Gathering

Well-known techniques such as document analysis, interviewing,
observations, and workshops are all good ways to gather requirements,
particularly where the job is to extend or evolve an existing system.
However, on certain types of projects, it can be valuable to take an
entirely different approach. When there is extensive human interac-
tion, a limited number of legacy constraints, the scope and/or business
requirements are not clear, or there is a mandate for innovation, col-
laborative scenario writing can be a useful tool. Used at the outset of
the requirements gathering phase, and in conjunction with other gath-
ering techniques, it can provide a good basis for a successful
development.

The term scenario is widely used, particularly in the world of sys-
tems design and development, where it can mean anything from a set
of storyboards to structured textual descriptions of user interactions
with a computer system. In this context, the scenarios we refer to are
stories—broad, descriptive, day-in-the-life-of narratives that are
intended to engage the reader in an understanding of how the new
development, product, or service will integrate with and affect the lives
of different stakeholders. Rich narrative is a powerful tool because the
act of creating it forces us to visualize situations and the logic of inter-
actions in minute detail. In the context of visualizing software systems,
it organizes our thoughts and enables human and business needs and
potential technical solutions to be considered simultaneously. In a
group setting, it helps people to think “outside the box” (i.e., beyond
any preconceived constraints) and to synthesize their inspiration,
knowledge, and experience into a logical whole. The resulting stories
convey the vision in a way that can be readily understood by all the
parties involved in the project.

Unbridled creative thinking, however, risks confusion, expanding
scope, and spiraling costs. So it’s important to ensure that the benefits
of the envisioning process can be harnessed to generate cost effective
innovative software solutions. The University of Essex in the United
Kingdom has continued to develop SUNA, a process originally con-
ceived by British Telecommunications (BT) in 1998 that provides a set
of logical steps for this purpose. It is a nonprescriptive guide that sup-
ports a combined team of clients, users, RAs, designers, and developers
through scenario generation to a process of distillation and, finally,
integration with industry standard requirements gathering and soft-
ware development methods. In relation to these methods, the purpose
of SUNA is to refine the shape of the proposed development generated
by the business requirements and to provide a starting point for the
more detailed activity of gathering real requirements. It therefore over-
laps with and feeds into the requirements capture activity or, alterna-
tively, feeds directly into an iterative development cycle.

100 Gathering Requirements

Insert 5.4—Using Scenarios in Requirements Gathering (continued)

A very brief outline of the process follows:

1. Set up a team of people who will represent the different aspects of
the project.

2. Gather, analyze, and disseminate to the team documentation that
relates to the scope and definition of the project and relevant
research (technical, social, and market). This provides the starting
point for the scenarios.

3. Call the team together for a workshop aiming to do the following:

◗ Identify all the stakeholders. Select three or four stakeholder
groups on which to base the scenarios.

◗ Write several scenarios from different stakeholder perspectives.
These are usually 1,000-word vignettes about how the pro-
posed development fits into the stakeholders’ and users’ lives and
the interactions that take place. Try to think beyond constraints.

◗ Analyze the scenarios and extract the common user needs (i.e.,
the requirements). Compile these into a uniquely numbered list
that will form the basis of a requirements specification.

4. After the workshop, organize the user needs into a hierarchy
using short summary descriptions (referred to as the needs hierar-
chy). This provides a first-cut logical structure for the proposed
development and creates a valuable decision-making tool by allow-
ing all the elements of the development to be viewed on a single
page (or at least a small number of pages).

5. Sanity-check the scenarios with people who have an appropriate
level of knowledge, but who are outside the project team.

6. Assess how highly the stakeholders value the different needs by
sending out a questionnaire to a select group. Collate the results and
reflect them on the needs hierarchy, for instance, by highlighting
the needs in different colors reflecting the categories of high,
medium, and low value.

7. Take all of this information into a second “scooping” workshop with
the following aims:

◗ Presenting the needs hierarchy and using it to facilitate deciding
on the scope of the development based on budgetary constraints,
technical feasibility, and value to stakeholders. Mark the decisions
on the hierarchy.

◗ Documenting the rationale for each requirement and indicating
which needs are in scope and which are out of scope against the
numbered user needs list.

in Effective Requirements Practices [2, pp. 208–210], including “Definitions and
Guidelines for Requirements Traceability.” Digest also Leffingwell and Wid-
rig, Managing Software Requirements [17, pp. 333–346 and Chapters 32 and 33
concerning V&V].

25. Identify the requirements that will be met in the first release or initial products
(prioritize real requirements).

Plan the Approach 101

Insert 5.4—Using Scenarios in Requirements Gathering (continued)

◗ Compiling the results and moving into the next stage of require-
ments gathering.

The key end products are (1) a number of scenarios that can be
used to illustrate the development vision, (2) a numbered and anno-
tated list of user needs and requirements, (3) a needs hierarchy show-
ing both the broad vision and the scope of the proposed development,
and (4) a document containing the details of the decision-making
rationale.

SUNA was first developed in 1998 by BT as a by-product of a pan-
European project that examined how we learn and whom we learn
from. The outcome of the project was an innovative Web-based service
prototype that influenced established learning product design. Positive
relationships, created at the time, spurred subsequent SUNA-based
collaborations.

SUNA has now been used extensively on small collaborative
research projects in primarily commercial and some academic environ-
ments. It has been applied in fields ranging from learning and educa-
tion to the technicalities of multiple device management, and overall
has been found to help promote clarity, innovation, and good relation-
ships. SUNA is not likely to be relevant to large complex systems
and the benefits of the approach may be restricted where there
is limited human interaction and numerous fixed constraints, but
if there’s flexibility and a desire for innovation, its worth con-
sideration. For more information, see www.essex.ac.uk/chimera/con-
sultancy.html.

Note: Scenario-based User Needs Analysis (SUNA) was first devel-
oped in 1998 by van Helvert and Fowler while they were working for
British Telecommunications as a by-product of a pan-European project
looking at how people learn. Used with permission.

Joy van Helvert and Chris Fowler (2003)
Chimera—Institute for Sociotechnical Innovation and Research

The University of Essex
Ipswich, Suffolk

Implicit in this statement is the concept of having more than one release,
recognizing that rarely, if ever, are we able to meet all real requirements in
one release! If you have worked well and collaboratively with your custom-
ers and users, they will have come to understand that the planned system
can’t be everything to every stakeholder, probably ever, but certainly not in
its initial delivery, installation, conversion of related and needed databases,
deployment, implementation, operation, documentation, and training
efforts (please understand from this list that system delivery or turnover is
a very complex set of activities—the project can easily get derailed because
there are so many risks, many of which are not under the control of
the project). Work hard with your customers and users to evolve and iden-
tify the real requirements that will be met in the first release or initial prod-
ucts. A requirements baseline is the set of requirements associated with a
particular release of a product or system. Involve your manager, the PM,
the customers, and the users in developing a requirements prioritization
approach that has a high probability of success. Look carefully to identify,
evaluate, and mitigate risks (hopefully, you are still a member of the pro-
ject’s risk management team, and the risk management process is well and
active).

An experienced RA noted that in addition to being the correct way to
approach the requirements and design process, prioritizing requirements
also has the huge advantage of allowing the RA to accept questionable
inputs from politically powerful individuals and defuse them by assigning
the requirement to a subsequent release. Very often, either the individual or
the questionable requirement go away before actual harm is done, and the
RA lives to fight another day.

26. Establish an approach for a proof of concept, prototype, or other approximation of
work product.

This step (and many others) falls into the common sense category. People
often find it impossible to tell you what they want until they see something
tangible they can react to. For minor design changes, the prior product ver-
sion can perform this function quite well. When the design is a fundamen-
tally new one, prototypes are essential to really understanding the
requirements. If prototyping is omitted from the design process, the first
release actually becomes the prototype, and all of its shortcomings are made
visible to the market. We all are aware that getting customers and users to
review prototypes and proofs of concept allows them to identify needs and
issues early, prior to developers having developed final work products. This
saves effort, time, and money in our goal of customer and user acceptance
of work products. Industry experience shows that prototypes are effective in
reducing requirements creep10 and can be combined with other effective

102 Gathering Requirements

10. The RA should have an in-depth understanding of requirements creep, requirements leakage, sources

of unofficial requirements, and ways to control these problems. Study Chapter 10 in Effective Requirements

Practices [2].

methods, such as requirements workshops and JAD [31]. Prototypes by
themselves can reduce requirements creep by between 10% to 25%
(read reduced cost and schedule). Prototyping should be considered both
an elicitation technique and a part of the life cycle; it is an especially
good way of approaching and validating the tacit needs and clarifying real
requirements.

27. Incorporate requirements best practices and garner management support for effec-
tive requirements engineering (including an integrated quality approach).

Now, there is a tall order! We discuss requirements best practices in the next
chapter. However, I believe that this topic is so important that I decided to
write a whole book about it (in fact, two books). Study Effective Requirements
Practices [2], giving thoughtful attention to Chapter 11. Discuss using those
best practices you deem appropriate for your situation in your environment
with your manager and the PM. Take action. Don’t hold back. You’ll find
that you have done your project a valuable service. Note that it is a lot easier
to initiate an action than it is to follow through and ensure that the best
practice in fact has been effectively deployed and implemented on a project and
institutionalized throughout an organization. Deployment, effective imple-
mentation, and institutionalization of any practice are challenging. One
needs to convince others that spending the time and effort to perform the
practices is worthwhile. Whenever possible, “manage by fact”; that is, col-
lect data so that you can determine whether things have improved and, if
so, by how much. Managing by fact (rather than by the seat of your pants or
by intuition) is a valuable and useful habit to develop.

Study Chapter 8 of this volume. A reviewer of the draft table of contents
for this book advised me that perhaps the topic of quality is outside the
scope of this book. I struggled with this feedback, and I finally concluded
that quality is inseparable from effective requirements work. Please read
Chapter 8, and I hope that you will agree.

28. Complete requirements gathering for the first release.

Before completing requirements for release 1, satisfy yourself that a valid
base or foundation exists to initiate the follow-on technical work, that is,
the programming, development, or coding. Be aware that industry experience is
that after requirements are complete, downstream activities such as design inspec-
tions, code inspections, and testing are not very effective in removing requirements
defects. Indeed, once major defects are embedded in requirements, they tend
to be immune to most standard forms of defect removal and are especially
resistant to detection via testing. These lessons argue strongly for a major
thesis of this book: more time and effort needs to be focused on the require-
ments process and on identifying the real requirements. I suggest that you
familiarize yourself with the materials written by Capers Jones to become
more aware of related issues [32–38].

Of course, the requirements gathering process continues after each
release. It’s valuable to incorporate the lessons we have learned to date in

Plan the Approach 103

our subsequent activities. Too often, we don’t spend the time and effort to
do this. This is another enactment of PDCA—take the time at various mile-
stones to assemble the team and assess what worked and what could have
been done better and how. A team, a project, and an organization can learn
an enormous amount of valuable information by simply asking its own
members such questions. The hard part is following through to take action
on the suggestions that result. You will need a mechanism to track this—an
action plan, an action item list that is statused regularly, a calendar that is
managed by responsible individuals—whatever works for you.

Summary
In this Chapter, I have suggested using a checklist of 28 steps that comprise a
procedure for gathering requirements. This may seem like a lot of steps, per-
haps suitable only for a large, mature project. Actually, projects of all sizes
and all levels of maturity will need to address these steps! All projects will
address these steps whether in an orderly or haphazard fashion. I have
emphasized that when the requirements gathering approach is not effective,
the stage is set for wasted technical effort during follow-on project activities
(read: the rest of the project), creating the need for rework and jeopardizing
the success of the project. I have another suggestion for you: read Wiegers’s
“Habits of Effective Analysts” [39]. In this article, another industry expert11

shares his views. I think that you’ll find a lot of correspondence between
this chapter and Wiegers’s advice. Visit his Web site and take advantage of
his many suggestions, writings, ideas, prescriptions, and “goodies.” Wiegers,
Ian Alexander, Ivy Hooks, Jeff Grady (and I) provide effective requirements
training and consulting.

Think broadly. Be flexible. Always foster teamwork and continuous
improvement in everything that you do. Review Chapter 3 periodically (say
over a weekend) and think about the things you should be doing or doing
differently. Be a positive influence on others and the project. Ask your man-
ager for feedback concerning how you are performing. Act on it. Have fun.

Case Study
Once the requirements were established and agreed upon, the project team
committed to a delivery schedule and a method for controlling require-
ments. If a new requirement suddenly emerged, for whatever reason, the
customer had to prioritize it. In order to do this, the customers demanded to
know the impact it would have (e.g., person-weeks of effort). To provide
this estimate, the key and most knowledgeable team leader had to spend

104 Gathering Requirements

11. Strengthen your habit of utilizing materials and ideas developed by others, including industry experts. For

example, Karl Wiegers, Ian Alexander, Ivy Hooks, Charles Markert, Tom Gilb, Jeff Grady, and others have helped

me grow and learn. They have become friends, and their teachings are now a part of how I do my daily work.

time with the customer delving into the details of that particular require-
ment, fleshing out a number of derived requirements. The rate at which
new requirements came in began to overwhelm the key people and a back-
log of requirements analysis was created and continued to increase. To
our customer, it looked like we could not evaluate a simple requirement; to
the key RAs, the pressure built up to the boiling point as the scheduled
delivery date loomed closer. Lesson-learned: we lost control of the project
because we failed to manage requests for new and changed requirements
effectively.

References

[1] Porter-Roth, B., Request for Proposal: A Guide to Effective RFP Development, Boston,
MA: Addison-Wesley, 2002.

[2] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[3] Alexander, I., and A. Farncombe, JBA, Stakeholder Analysis Template, Systems
Engineering Foundation Course, 2003.

[4] Sharp, H., et al., “Stakeholder Identification in the Requirements Engineering
Process,” IEEE (1999): 387–391.

[5] Gottesdiener, E., Requirements by Collaboration: Workshops for Defining Needs,
Boston, MA: Addison-Wesley, 2002.

[6] Wiegers, K. E., Software Requirements, 2nd ed., Redmond, WA: Microsoft Press,
2003.

[7] Weinberg, G. M., “Just Say No! Improving the Requirements Process,” American
Programmer (10) (1995): 19–23.

[8] Young, R. R., Requirements Plan Template and Sample Requirements Plan, at
www.ralphyoung.net.

[9] Wiegers, K. E., Peer Reviews in Software: A Practical Guide, Boston, MA: Addison-
Wesley, 2002.

[10] Waugh, P., “Peer Review Participant and Peer Review Moderator Training
Materials.” Northrop Grumman IT DES, 2003. Contact her at penny.waugh@
ngc.com.

[11] Sorensen, R., Comparison of Software Development Methodologies, Software
Technology Support Center, January 1995, at www.stsc.hill.af.mil/crosstalk.

[12] Boehm, B., “Spiral Model of Software Development and Enhancement,” IEEE
Computer (May 1988) (also published in Barry Boehm, Software Risk Management,
IEEE Computer Society Press, 1989, 26).

[13] Boehm, B., and W. J. Hanse, “The Spiral Model As a Tool for Evolutionary
Acquisition,” a joint effort of the University of Southern California Center for
Software Engineering and the SEI, CrossTalk (May 2001): 4–11.

[14] Wiegers, K. E., “10 Requirements Traps to Avoid,” Software Testing and Quality
Engineering Magazine (January/February 2000), at www.stqemagazine.com/
featured.asp?id=8.

[15] Wiegers, K. E., “Do Your Inspections Work?” StickyMinds.com (June 24, 2002), at
www.stickyminds.com.

Case Study 105

[16] Wiegers, K. E., “Inspecting Requirements,” StickyMinds.com (July 30, 2001), at
www.stickyminds.com.

[17] Leffingwell, D., and D. Widrig, Managing Software Requirements, Reading, MA:
Addison-Wesley, 2000.

[18] Young R. R., “Early Project Requirements Briefing,” at www.ralphyoung.net.

[19] Korson, T., “The Misuse of Use Cases: Managing Requirements,” at www.
korson-mcgregor.com/publications/korson/Korson9803om.htm.

[20] Wiegers, K. E., “First Things First: Prioritizing Requirements,” Software
Development Magazine 7(9) (September 1999): 24–30.

[21] Jones, C., Software Quality: Analysis and Guidelines for Success, London:
International Thomson Computer Press, 1997.

[22] Grady, J. O., System Validation and Verification, Boca Raton: CRC Press, 1997.

[23] Hooks, I. F., and K. A. Farry, Customer-Centered Products: Creating Successful
Products through Smart Requirements Management, New York: AMACOM,
2001.

[24] EPIC, A Systems Engineering Capability Maturity Model, Version 1.1, November
1995. SEI, Carnegie-Mellon University, Pittsburgh, PA, at www.sei.cmu.edu/
pub/documents/95.reports/pdf/mm003.95.pdf.

[25] Young, R. R., “Requirements Tools Trade Study,” at www.ralphyoung.net.

[26] Wiegers, K. E., “Automating Requirements Management,” Software Development
(July 1999). Available at www.processimpact.com.

[27] Young, R. R., “Recommended Requirements Gathering Practices,” CrossTalk
15(4) (April 2002): 9–12, at www.stsc.hill.af.mil/crosstalk/2002/index.html.

[28] Buede, D. M., The Engineering Design of Systems: Models and Methods, New York:
John Wiley & Sons, Inc., 2000.

[29] Afors, C., and M. Z. Michaels, “A Quick Accurate Way to Determine Customer
Needs,” American Society for Quality, Quality Progress (July 2001): 82–87.

[30] Palmer, J. D., “Traceability,” Software Requirements Engineering, R. H. Thayer and
M. Dorfman, eds., Los Alamitos, CA: IEEE Computer Society Press, 1997,
pp. 364–374.

[31] Wood, J., and D. Silver, Joint Application Development, New York: John Wiley &
Sons, 1995.

[32] Jones, C., Assessment and Control of Software Risks, Englewood Cliffs, NJ: Prentice
Hall, 1994.

[33] Jones, C., Estimating Software Costs, New York: McGraw Hill, 1998.

[34] Jones, C., “Positive and Negative Factors That Influence Software Productivity,”
Burlington: MA, Software Productivity Research, Inc., Version 2.0, October 15,
1998.

[35] Jones, C., Software Assessments, Benchmarks, and Best Practices, Reading, MA:
Addison-Wesley, 2000.

[36] Jones, C., “Software Quality in 2000: What Works and What Doesn’t,”
Burlington, MA: Software Productivity Research Inc., January 18, 2000.

[37] Jones, C., “Software Project Management in the 21st Century,” American
Programmer 11(2) (February 1998), at http://spr.com/news/articles.htm.

106 Gathering Requirements

[38] Jones C., “ What It Means To Be ‘Best in Class’ for Software,” Burlington, MA,
Software Productivity Research, Inc., Version 5, February 10, 1998.

[39] Wiegers, K. E., “Habits of Effective Analysts,” Software Development (October
2000), at www.processimpact.com.

Case Study 107

.

Best Practices for Requirements
Development and Management

In earlier chapters I have suggested that you do certain things
and not do other things. In this chapter, I share a set of best
practices for requirements development and management. The
phrase “Best practices” is used frequently in systems and soft-
ware engineering (among many other professions). We hear
and read a lot about best practices. Yet, we don’t actually spend
the time and effort to evaluate, analyze, pilot, deploy, imple-
ment, and institutionalize them. The reason for this is quite
simple: it’s a lot of work. It requires the following:

◗ Developing a thorough understanding of the practice;

◗ Communicating its value to coworkers and managers;

◗ Gaining commitment to trying the practice (piloting it);

◗ Providing some training about the practice so that others
understand it and what we are attempting to achieve through
its use;

◗ Deploying the new practice, changing from what we are doing
now to doing something different;

◗ Implementing the new practice, ensuring that the new way is
used;

◗ Sustaining the new practice, including gaining support for its
use;

◗ Evaluating its impact, perhaps even designing a way to meas-
ure the results of using it;

◗ Declaring victory, acknowledging that the new way is better
than the old way, perhaps even celebrating success;

◗ Institutionalizing use of the new practice throughout the
project or organization.

109

6
Contents

Summary

Case Study

References

C H A P T E R

Looked at from this perspective, it’s easier to understand why best prac-
tices aren’t implemented and institutionalized.

Table 6.1 provides a list of best practices for requirements development
and management.

Some of these best practices have been discussed at some length else-
where in this book, so I’ll limit my comments about them in this chapter.
My goal is to convince you that it’s worth the effort at least to pilot each of
these best practices on your project and make an earnest effort to evaluate
the results of using each best practice.

Table 6.1 has been crafted carefully, and I’d like to explain its structure.
First, requirements activities on a task or project are inextricably inter-
twined with project management activities as well as with other disciplines
such as CM, systems engineering, and QA. The requirements approach that
is used on a task or project is not developed and implemented in a vacuum
by the RA. It is evolved through a set of decisions that of necessity involve
other key people, including the customer, PM, system engineer, and others.
I recommend that you share Table 6.1 with the task or project leadership team
(including the customer) and jointly select the best practices that you as a team deter-
mine should be used on your task or project. This artifact is available for down-
loading at my Web site (www.ralphyoung.net).

Second, the best practices recommended in Table 6.1 are grouped into
three categories:

1. Requirements development;

2. Requirements management;

3. Project management.

Within each category, they are organized approximately sequen-
tially—one would do 1 first, then 2, and so forth. However, note that many
of the project management-related best practices are overarching! For
example, best practice 25 recommends that an agreed-upon goal, purpose,
or mission for the task or project be established. Lacking an agreed-upon
goal, purpose, or mission for the task or project will make it difficult to
accomplish anything of value. All of the other best practices in the project-
management category address areas that may be beyond the purview of the
RA. They are proven industry best practices that can have a significant posi-
tive impact on the requirements development and management efforts. You
will need the commitment of the task or project leadership team to imple-
ment these practices effectively. It’s not enough for the RA just to allow
practices to evolve willy-nilly. Your responsibility is to provide this list to your
task or project leadership team with the request that the practices to be used be selected
collaboratively by the team.

Third, the rightmost column in Table 6.1 provides a reference to the
chapter in this book where the best practice is discussed so that you can get
more information, guidance, and additional references about it. Each of the
recommended best practices will be discussed in the order they are listed in
Table 6.1.

110 Best Practices for Requirements Development and Management

111

Table 6.1 Best Practices for Requirements Development and Management

Number Best Practice
Requirements
Development RM

Project
Management

Chapter
Reference

1 Develop a requirements plan. X X X 1, 5

2 Write requirements that meet the criteria of
a good requirement.

X 1, 6

3 Identify and involve all of the stakeholders
in the task or project.

X 1, 5, 6

4 Ensure that the objectives of the task or
project have been identified, documented,
and agreed to by the stakeholders.

X 5

5 Use requirements workshops to achieve a
shared vision, facilitate commitment, and
gain the buy-in of all stakeholders.

X 5, 6

6 Provide requirements training for RAs, for
members of the project staff, and for
stakeholders.

X X X 5

7 Identify the real requirements. Collaborate
with customers and users concerning the
stated requirements to identify the real
requirements. Look at the requirements
from multiple viewpoints.

X 2, 5, 6

8 Document the rationale for each
requirement, that is, why it is needed).

X 6

9 Use effective requirements gathering
techniques.

X 5

10 Involve customers and users throughout the
development effort.

X X X 6

11 Do not make requirements decisions. X X X 6

12 Do not gold plate, that is, add features or
capabilities).

X X 6

13 Use a project glossary and a project
acronyms list.

X X X 5

14 Iterate the requirements and the
architecture repeatedly to evolve better
requirements and a more robust
architecture.

X 6

15 Utilize domain experts/SMEs who are
knowledgeable and experienced in the
functional areas being addressed by the
technical effort.

X 5, 6

16 Quantify the ROI to select the requirements
mechanisms, practices, methods,
techniques, and tools to be used.

X X 6

17 Identify the minimum requirements that
meet real needs.

X X 6

18 Prioritize requirements early and often. X X X 6

19 Provide inspections of all
requirements-related documents.

X X 5, 7

20 Limit changes to requirements and the
addition of new requirements consistently,
with additional budget and schedule made
available by the customer to complete the
task, project, or system.

X 5, 6

1. Develop a requirements plan.

The reasons for performing planning regarding requirements-related activi-
ties and the suggested contents of an requirements plan are discussed in
Chapters 1 and 5.

2. Write requirements that meet the criteria of a good requirement provided in
Table 1.1.

If you don’t do this step, stop here. Table 1.1 provides a list of suggested cri-
teria of a good requirement. There is a lot of information about this topic
available—several authors have provided various versions with very similar
criteria. Amazingly, the criteria are infrequently applied in practice. This is a

112 Best Practices for Requirements Development and Management

Table 6.1 Best Practices for Requirements Development and Management (continued)

Number Best Practice
Requirements
Development RM

Project
Management

Chapter
Reference

21 Use versions and releases of work products
to accommodate new requirements, changed
requirements, and lower-priority
requirements.

X X X 5

22 Use an industrial-strength automated
requirements tool. Provide and use
attributes of requirements.

X X X 5, 6

23 Develop or tailor and use organizational and
project requirements policies and a
requirements process that is continuously
improved on your task, project, or
organization. Invest 8% to 14% of total
project costs on the (system life cycle)
requirements process.

X X X 5, 6

24 Use proven and familiar requirements
mechanisms, approaches, practices,
methods, techniques, and tools.

X X X 5, 6

25 Establish an agreed-on goal, purpose, or
mission for the task or project. Write (and
iterate) a task or project vision and scope
document.

X 5

26 Develop, implement, and enforce meeting
rules that describe how project staff
members are to treat one another.

X 6

27 Develop and apply a set of guidelines for
effective meetings and guidelines for
effective e-mailing.

X 6

28 Perform a risk assessment of new and
changing requirements.

X X X 3, 7

29 Learn how to manage teams effectively. X X X 7, 9

30 Establish a quality improvement and process
improvement climate.

X X X 8

flagrant example of a situation where we know how to do better, but we
choose not to use our knowledge and experience. Here is an opportunity for
you to make a valuable contribution to the projects you support. Consider
including these criteria as a checklist in your automated requirements tool.
You will find that much time and money will be saved as a result of applying
the criteria.

3. Identify and involve all of the stakeholders of the task or project.

Ensure that all parties are identified and involved in the requirements
development process. Too frequently, we don’t identify all of the stakehold-
ers that we should. Omitting a stakeholder group can result in a flare-up
later in the development work. Stakeholders include the customer, users,
program management and control organizations, development and archi-
tecture teams, legal staff, testing groups, interface customers, and so forth.
Suggestions and approaches for how to accomplish this are provided in
Chapter 5.

4. Ensure that the objectives of the task or project have been identified, documented,
and agreed to by the stakeholders.

This should be done early and can be accomplished by writing a “vision and
scope document” [1]. The availability of defined, agreed-on project goals
helps the development team maintain focus and provides a common basis
for identifying the real requirements and evaluating their priorities. It helps
ensure that everyone is looking at the needed system or software capabili-
ties from the same perspective and also helps those who are providing the
funding understand what is to be done and how it supports the
organization.

5. Use requirements workshops to achieve a shared vision, facilitate commitment,
and gain buy-in of all stakeholders.

Of all of the requirements gathering methods and techniques, require-
ments workshops seem to be the most effective. Ellen Gottesdiener’s
definition of a requirements workshop provides insights into why it is so
effective [2, p. 9]:

A requirements workshop is a structured meeting in which a carefully

selected group of stakeholders and content experts works together to define,

create, refine, and reach closure on deliverables (such as models and docu-

ments) that represent user requirements. The benefit of the workshop

process is that it nurtures team communication, decision making, and

mutual understanding. Workshops are also an effective way to bring

together customers, users, and software suppliers to improve the quality of

products without sacrificing time to delivery. These sessions tend to commit

users to the requirements definition process and promote their sense of

ownership of the deliverables and, ultimately, of the system.

113

6. Provide requirements training for RAs, for members of the project staff, and for
stakeholders.

It should be apparent from the material presented so far that it is
advantageous to provide requirements training for three distinct groups:
RAs, members of the project staff, and stakeholders. The reason is that
industry experience has a lot to offer to each group to improve the
approach. The subject matter differs for each of the groups, as noted in
Chapter 5. Of particular benefit is the realization that communication
among all groups is improved when all share the same insights and
understanding.

7. Identify the real requirements. Collaborate with customers and users concerning
the stated requirements to identify the real requirements. Look at the require-
ments from multiple viewpoints [3].

I trust that by now you understand the difference between stated require-
ments and real requirements. Your foremost responsibility is to collaborate with
customers and users concerning the stated requirements to identify the real require-
ments. This is Role 1 in the context of the roles defined in Chapter 2—serving
as the requirements facilitator to work collaboratively with customers,
users, and system architects and designers to identify the real requirements.
Your first step will be to convince your PM, customer, and users that it is
essential and worthwhile to invest added time and effort in the require-
ments process, in this case, to review the stated requirements and evolve the real
requirements using a joint team concept or mechanism. Don’t skip this critical
step—it is the most important industry problem in requirements engineer-
ing and one that is almost always paid insufficient attention. Apply effective
requirements gathering techniques such as those described in Chapter 5.
Collaborating with your customer and users, tailor the checklist provided in
Table 5.1 to the needs of your project in your environment. Review the real
requirements from a variety of perspectives, namely those of all of the proj-
ect stakeholders.

8. Document the rationale for each requirement, that is, why it is needed.

Rationale is an attribute that you should include in your automated require-
ments tool. Industry experience shows that by taking the one step of docu-
menting the rationale for each requirement, up to half of the stated
requirements can be eliminated. The savings in terms of not having to do
follow-on technical work to meet the eliminated requirements are obvi-
ously huge. Moreover, this effort will clarify and tighten the requirements
you choose to keep. Ivy Hooks’s experience is that recording the rationale
for each requirement reduces the total number of requirements, exposes
bad assumptions, removes unintended implementation, improves commu-
nication between team members, shortens the review cycle, maintains cor-
porate knowledge, reduces risk in defining a derivative product, and
supports maintenance and operations costs [4].

114 Best Practices for Requirements Development and Management

9. Use effective requirements gathering techniques.

This was the subject of Chapter 5. Some requirements gathering techniques
are more effective than others. Ensure that someone on your task or project
has previously used the selected techniques successfully.

10. Involve customers and users throughout the development effort.

Recognize that industry experience shows that projects that involve custom-
ers and users throughout the development process are successful— design
and use mechanisms to keep the project’s customers and users involved,
such as the joint team, collaborative requirements gathering techniques, and
a joint configuration control board (CCB) to manage the project.

11. Do not make requirements decisions.

By requirements decisions, I mean decisions about what a requirement is or
should be, including how it is worded. One of the ways that we RAs create
problems for our projects is by making requirements decisions. Set a per-
sonal policy to not make requirements decisions. Requirements decisions
are the responsibility of the customer and user within the joint team mecha-
nism. While it may be quicker and easier just to decide something rather
than to get clarification, resist this temptation because it is dangerous.
Reflect on how difficult it is to communicate effectively and how differently
individuals interpret the things they hear, read, and see. You have a high
risk of making an incorrect decision. Moreover, your decision could have a
major negative impact on the project, however unintended.

The approach of not making requirements decisions needs to be commu-
nicated throughout the development team, to ensure that developers don’t
make requirements decisions either. This should be clarified in the require-
ments-related training provided to the project team.

12. Do not gold plate, that is, add features or capabilities.

Do not decide that you have an idea that you know the customer and users
will just love! They may indeed love it, and it may add to cost and schedule,
as well as to the technical work that has already been completed (read:
cause rework). Meet minimum real requirements. Do not gold plate.

13. Use a project glossary and a project acronyms list.

I have previously made this suggestion and provided the rationale for doing
this. See Chapter 5, step 8.

14. Iterate the requirements and the architecture repeatedly to evolve better require-
ments and a more robust architecture.

The point here is that the requirements and the architecture impact
each other. As we modify the architecture to address meeting the real

115

requirements better, we learn more about the requirements and find
that the architecture changes cause us to want to change the require-
ments, and around we go. Iterating the requirements and the architec-
ture repeatedly results in better real requirements and a more robust
architecture. This work can be accomplished in connection with the three
or four iterations of the requirements development process previously
recommended.

15. Utilize domain experts/SMEs who are knowledgeable and experienced in the
functional areas being addressed by the technical effort.

I mentioned earlier some advantages brought to a project by a newly
assigned RA, such as having a new perspective, unfettered by the con-
straints and history of the legacy system and procedures. The other side of
this is the value of involving people who have extensive experience and
knowledge in the functional areas being addressed by the system. They have
a deep understanding of why things are done in certain ways and look at the
customer needs with a seasoned perspective that may include aspects uni-
maginable by those less knowledgeable or less experienced. Involve such
people in requirements gathering activities, for example, requirements
workshops, or use them as advisors.

16. Quantify the ROI to select requirements mechanisms, practices, methods, tech-
niques, and tools to be used.

I provide detailed information concerning this best practice in Effective
Requirements Practices [5, pp. 50–52]. Making decisions based on data rather
than by the seat of our pants or via intuition is a good practice—in our
company, we refer to this habit as “managing by fact.” Your PM should
expect data to be provided when decisions are requested. Providing data
concerning the ROI in improved requirements practices is one way you can
earn support for your suggestions and recommendations. It’s really not diffi-
cult to develop ROI information. Use the template provided in my earlier
book.

17. Identify the minimum requirements that meet real needs.

Some people have difficulty with the concept of identifying minimum
requirements. They interpret this as not doing everything possible to satisfy
customers. The point is that we need to be in partnership with our cus-
tomer, committed to project success, and the requirements development
process should result in a set of requirements that are the minimum required to
meet real needs. Any added requirements and features that go beyond real
needs complicate the development process, make it more expensive, take
additional time, jeopardize the quality of the work product, and potentially
jeopardize project success (defined as an effective system, completed on
time, within budget, using a win-win partnership relationship throughout
the system life cycle). The system and software development process is

116 Best Practices for Requirements Development and Management

complicated and difficult. Both partners should constantly strive to meet
minimum real requirements in the interest of project success. If you’re hav-
ing difficulty understanding or accepting this concept, read “Meet Minimum
Requirements: Anything More is Too Much,” by Neal Whitten [6]. Deter-
mining what are the appropriately prioritized minimum requirements
should involve members of the development team, user community, and
the project CCB—this triad should work in concert to recommend prioriti-
zation and funding of requirements.

18. Prioritize requirements early and often.

It is equally important to prioritize real requirements early and often. Real-
ize (and help your customer and users understand) that there is never
enough time and money to do everything and that all requirements are not
of equal priority. Use your joint team or a similar mechanism to agree
jointly on requirements priorities. There are articles and tools available to
help.1 Take the time to read them and use them. Don’t put off advocating
and applying mechanisms, practices, methods, techniques, and tools that
will improve the chances of your project being successful.

Once the real requirements are identified and prioritized, the develop-
ment team can estimate the effort required to provide additional features,
and the customer can evaluate the cost of providing them and decide if they
are worth the additional money and time. The key is to ensure that the
developed work products will be acceptable to the customer and users and
to get the agreement of all stakeholders up front.

19. Provide inspections of all requirements-related documents.

The rationale for providing inspections of all requirements-related docu-
ments is provided in Chapter 7, topic 11.

20. Limit changes to requirements and the addition of new requirements consistently
with additional budget and schedule made available by the customer to complete
the task, project, or system.

This is the second most important thing an RA can do to support a project (after estab-
lishing a joint collaborative mechanism and approach to identify the real require-
ments). Requirements changes and new requirements are the second
major reason that projects get out of control. Your responsibility in this area
is to familiarize your project team, your customer, and the users with indus-
try experience and to gain commitment to controlling changes and
new requirements. For example, consider the approach of having subse-
quent versions and releases of work products, rather than pretending
that the project can accommodate changes while it is in development.

117

1. See, for example, Karl E. Wiegers’ “First Things First: Prioritizing Requirements,” Software Development Magazine

7(9) (September 1999): 24–30. Wiegers provides an easy-to-use spreadsheet tool downloadable from his Web

site, at www.processimpact.com (see the “goodies” button). See also Wiegers’ Software Requirements, [1].

Of course, you’ll need to satisfy yourself that any request for a change
represents a real need and is therefore a real requirement. As before,
determine the rationale for the request—why is it needed? Careful analy-
sis will enable elimination of up to half of the requests. Most impor-
tantly, the development team needs to learn to say no. It’s in neither
the interest of the customer nor the developer to allow the project to get
out of control. Create and maintain a partnership with the main objec-
tive of successful completion of the project. Partnering is about commit-
ment to success and being flexible to achieve the desired outcome.
Set objectives for different situations, for example, 0.5% requirements
change per month for validated requirements, and seek verification of the
technical team that any proposed change will not jeopardize project suc-
cess. Requirements changes after the requirements baseline is set jeopardize
project results and success, unless they serve to clarify the intent of a
requirement instead of changing functionality. Some believe that a limit of
0.5% requirements volatility is too strict, unrealistic, and unachievable.
Nevertheless, it provides a good goal. An interesting guideline from industry
experience is that a one-third change in the requirements (33% per year or
2.75% per month) will result in a doubling of project costs. Track your
requirements volatility metric within the joint team mechanism. Ensure
that the customer is willing to provide additional schedule and budget in
proportion to the percentage of requirements volatility; otherwise, do not
accept changes to requirements or the addition of new requirements. Learn
to say no.

21. Use versions and releases of work products to accommodate new requirements,
changed requirements, and lower-priority requirements.

The importance of using versions and releases of work products is discussed
in Chapter 5.

22. Use an industrial-strength automated requirements tool. Provide and use attrib-
utes of requirements.

Select your industrial-strength automated requirements tool early and care-
fully. Ensure that the selected tool supports your process. Selecting the tool
without first having the requirements process in place can cause the project
to force-fit its process to the tool—a major risk. The wrong tool or a tool that
is overly complex for the work can retard project efforts. Ensure that you
use a proven automated requirements tool—you can’t afford to invest the
time and effort required to write software that performs functions such as
traceability. Given the commercial tools that are available, it’s not cost-
effective to develop your own automated requirements tool capabilities.
Provide formal training for those who will use the tool most fre-
quently—this is a valuable investment and should not be overlooked. Deter-
mine the requirements attributes that are needed—see the discussion of
attributes in Chapter 5. Too often, the choice of the automated require-
ments tool to be used on a project is dictated by factors beyond the control

118 Best Practices for Requirements Development and Management

of the project. For example, one RA’s experience concerning the selection of
the automated requirements tool to support five different projects he sup-
ported was as follows:

◗ On one project, we developed our own requirements database using
Informix because we already had Informix and plenty of expertise in
using it.

◗ On another, we proposed an OO approach using the Rational Unified
Process (RUP) and the Rational Tool Suite—RequisitePro was the
default tool simply because it was part of our overall toolset.

◗ On a third project, Rational was selected based on the fact that the tech-
nical director taught a class in use cases at a local university and was
already familiar with the Rational Suite.

◗ On still another project, the customer specified Rational RequisitePro in
the SOW.

◗ And on another, the project used DOORS because the customer used
DOORS.

So, of five projects, this RA’s experience was that the automated require-
ments tool was selected based on arbitrary criteria in all five situations—
because of budgetary constraints, because it was preordained, or because
someone had a personal preference. There was no instance in which an
automated requirements tool was selected because it was the best choice for
that specific project! The approach in selecting the project’s requirements
tool was in contrast with that applied for CM and testing tools, where more
logical thought processes and specific criteria were used. The RA should rec-
ommend that a requirements tools trade study [7] be written to ensure that
the criteria for selecting the automated requirements tool are consistent
with the needs of the project.

23. Develop or tailor and use organizational and project requirements policies and a
requirements process that is continuously improved on your task, project, or or-
ganization. Invest 8% to 14% of total project costs on the (system life cycle)
requirements process.

It’s helpful to have (and use) an organizational policy concerning require-
ments. We are all familiar with projects and organizations that have policies,
but don’t use them in practice. I’m talking about a different situation: I rec-
ommend that organizations and projects have policies and use them! Devel-
opment of the organizational policy should involve senior management
and include their direction that requirements will be used as the basis for
engineering and management activities. The organizational policies con-
cerning requirements can be as simple as those suggested by the two
requirements-related process areas of the CMMI [8], requirements devel-
opment and RM:

119

◗ Concerning requirements development: “In order to identify and satisfy
customer needs, projects will: (a) Collect stakeholder needs, (b) For-
mulate product and product component requirements, and (c) Ana-
lyze and validate these requirements.”

◗ Concerning RM: “In order to ensure that customer needs are satis-
fied, projects will: (a) Manage requirements and requirements
changes, and (b) Identify inconsistencies between project work and
requirements.”

Because requirements-related activities that are performed on projects
are critical to the success of projects, I advocate a more detailed project
requirements policy, such as that provided in Effective Requirements Practices
[5, pp. 119–122] and also available on my Web site (www.ralphyoung.net).
This artifact serves as a template that you should tailor (modify) to the needs
of your project in its environment. An alternative to having a project
requirements policy is to incorporate needed components into the project’s
requirements process.

Develop or tailor and use a documented requirements process. See
Chapter 8 of this book for guidance on how to design a process. It’s not diffi-
cult (or at least, it doesn’t have to be difficult) to design or tailor a process. If
you’re not familiar with designing and using processes, you may want to
engage the help of someone who is very familiar with doing this to serve as
a facilitator for your stakeholders. It’s important for the members of the
project team to have a good understanding of the processes the team is
using. Take time to brief everyone concerning the processes, and ensure
that there is consensus and that the process approach is accepted—members
of the team may be able to offer improvements, based on their experiences.

The data provided in Figure 4.1 of Effective Requirements Practices [5] pro-
vide a compelling case to invest 8% to 14% of project costs on the project’s
requirements process. It should be apparent from the discussion thus far
that providing improved requirements practices is a good investment that
yields leverage in controlling costs, for example, of rework (40% to 50% of
the total costs of the average project). Encouraging investment in the pro-
ject’s requirements process and using effective requirements practices pro-
vide opportunities for the RA to have a major positive impact on project
success.

24. Use proven and familiar requirements mechanisms, approaches, methods, tech-
niques, and tools.

Commit to using proven and familiar mechanisms, approaches, methods,
techniques, and tools. You should be familiar with examples of these from
earlier portions of the book, but I’ll mention a few examples in each cate-
gory to keep them foremost in your mind:

◗ Mechanisms: the joint team (or whatever you choose to call this collabo-
rative mechanism); a set of rules of conduct on your task, project, or

120 Best Practices for Requirements Development and Management

organization to describe how members will treat each other; PDCA
to determine how meetings went or how we are doing at a point in
time, for example, upon completion of a milestone; a Purpose, Agenda,
and Limit (PAL) provided in advance of meetings so that people can
prepare for the meeting and know how much time to plan for the
meeting;

◗ Approaches: partnering; use of peer reviews and defect prevention (DP)
techniques throughout the task or project; project planning and track-
ing; training; CM; QA; using techniques to facilitate project communi-
cation; measurement; and so forth;

◗ Methods: requirements gathering methods such as interviews, docu-
ment analysis, requirements workshops, prototyping, storyboards, sce-
narios, and modeling;

◗ Techniques: project risk management, peer reviews, DP, “brown bags”;

◗ Tools: ReqPro, DOORS, other automated requirements tools noted in
Table 5.7; automated risk management tools; brickcharts; a project
notebook.

You may find it worthwhile to learn about and use a new method or
technique; recognize, however, that time and effort will be required for peo-
ple to learn new methods and techniques to utilize them effectively and that
there is risk in using a method or technique that is not proven and familiar.
Make decisions concerning using new methods and techniques with your
eyes wide open.

25. Establish an agreed-on goal, purpose, or mission for the task or project. Write (and
iterate) a task or project vision and scope document.

As noted at the beginning of this chapter, lacking an agreed-on goal,
purpose, or mission for a task or project makes it difficult to accom-
plish anything of value. One needs to be able to articulate the goal and
to garner support from stakeholders to achieve it. Writing and iterating a
task or project vision and scope document provides a common basis for
identifying and prioritizing more specific objectives and identifying the real
requirements.

26. Develop, implement, and enforce meeting rules that describe how project staff
members are to treat one another.

This entails two key elements: establishing and following an agenda (PAL)
and following rules of conduct. Each of these elements is a key component
of meetings designed to elicit and adopt new requirements or changes to
existing requirements. The person requesting a meeting provides a PAL in
advance of the meeting so that everyone knows what is to be discussed,
each person can prepare appropriately, and all know when the meeting will
end.

121

It’s been my experience that I enjoy work and feel most effective when
my coworkers appreciate and support my contribution to the overall effort. I
have found that having a set of rules of conduct for the work efforts that I’m
involved in has been an effective way to facilitate an attitude of supporting
each other in our work environment. Examples of rules of conduct that I
value include the following:

◗ Respect each person;

◗ Share responsibility;

◗ Criticize ideas, not people;

◗ Keep an open mind;

◗ Question and participate;

◗ Arrive on time;

◗ Keep interruptions to a minimum;

◗ Manage by fact.

These rules are posted in conference rooms at our company. People are
called to task when they violate one of these rules. I feel empowered to con-
tribute my best efforts. I know that my coworkers will respect me, even
when my ideas seem unusual. We try to support each other in every way
possible. Everyone shows up for meetings on time, and we start on time.
Side-talk is not permitted. Focus is expected. We save incredible amounts of
time. But more importantly, we respect each other and we are there for
each other.

27. Develop and apply a set of guidelines for effective meetings and guidelines for effec-
tive e-mailing.

We spend a lot of time in meetings and reading and writing e-mail. It’s
logical that a set of guidelines for these time-eaters will save time and
effort. I have previously recommended a set of guidelines for each: see Effec-
tive Requirements Practices [5, pp. 165–167 and pp. 167–172, respectively].
The specific guidelines are less important than (1) being committed to
using guidelines for these purposes, and (2) people on projects and in
organizations taking the time to develop guidelines that they will honor and
use.

28. Perform a risk assessment of new and changing requirements.

Guidance for how to perform requirements-related risk assessments is pro-
vided in Chapter 7, topic 18.

29. Learn how to manage teams effectively.

We have seen throughout the book how important it is to work collabora-
tively, to gain consensus, to get buy-in of stakeholders, and to achieve

122 Best Practices for Requirements Development and Management

results working in teams. The RA should develop the skill of managing
teams effectively. There are training sessions and workshops one can attend
to learn and practice the needed skills and techniques. One of the better
books concerning managing teams is Scholtes et al.’s The Team Handbook [9].

30. Establish a quality improvement and process improvement climate.

Guidance for how to accomplish this is provided in Chapter 8.

Summary
This chapter presents 30 best practices for requirements development and
management for your consideration. One can’t do everything, at least not at
one time. Dust off your requirements plan. Develop a reasonable approach
to deploy, implement, and institutionalize those best practices that you
deem appropriate for your project in its environment over a reasonable
period of time. Collaborate with the task or project team to prioritize the
value of the best practices that you decide to implement. Write an action
plan that will enable the project to implement them. For each best practice,
define the actions and schedule required to implement it. Do this in collabo-
ration with your project team and your customer. Gain their buy-in and
support for the selected best practices. Communicate what you are doing by
means of project staff meetings or brown-bags. Involve your project team
and customer in the decision-making process to gain the buy-in and support
of others. The main thing is to ensure that the project team is moving
together in concert with your customer, not to have the largest number of
best practices. Remember, commitment is needed to achieve anything of
value.

Case Study
Several years ago, I was asked to assist attorneys working on a legal case
between a systems integration contractor and the U.S. government. The
government had terminated the contract for default and then reprocured
the system from another contractor. The system built by the new contractor
blew up when it was subjected to actual data volumes. The few hours of
consulting assistance originally requested grew into years of litigation sup-
port as the case unfolded, before it went to settlement five years later.

What caused this massive disconnect? The short answer is a lack of
understanding of roles and responsibilities for managing requirements.

The government recognized that it needed requirements and had con-
tracted years earlier for a feasibility study that included data requirements
and functional requirements. Then, when it was clear that it needed to
move forward quickly and no longer had time to complete the contract to
build the system, it tasked the development contractor through a series of
task orders. The first two tasks were to (1) “Evaluate the hardware and

Summary 123

software specifications and perform a requirements analysis for the Head-
quarters Local Area Network (LAN),” and (2) “Review and validate the
(prior) study, versus current requirements.”

The first task, “evaluate the hardware and software specifications and
perform a requirements analysis for the Headquarters LAN,” was taken as a
low-risk task to recommend office automation personal computers (PC)
hardware and software for workstations and servers. It was undertaken
quickly, using end-of-year funding, and was intended to deliver equipment
to users in the field. The contractor considered this task “achievable.”

The second task, “review and validate the prior work,” resulted in a
document that described areas where current functional requirements had
changed and identified areas where additional requirements work was nec-
essary. The contractor was more concerned about being able to accomplish
this work effectively, because of the requirements-related issues.

A third task was issued by the government to design an electronic trans-
mission capability for the system. The SOW for this task was extremely
detailed and called for the design of numerous interfaces. This suggested a
major change in the architecture. The original study had assumed that the
system would be a centralized mainframe-based system. Suddenly, it
became clear that the client had a different approach in mind—a client-
server architecture. By expressing how the requirements would be imple-
mented, the government was imposing detailed constraints on the solution.
The contractor began having anxiety because there were many unknowns,
such as the design of the rest of the system beyond its transmission capabil-
ity. Work continued without effective communication between the govern-
ment and the contractor. The open issues were not resolved.

At a major design review, the contractor and certain government per-
sonnel met for the first time, and the light began to dawn. The lead designer
of the electronic transmission capability declared, “Now I know what you
want!” Everyone declared the meeting a success. One action item was to
prepare a plan for when the transmission capability would be completed.

When the plan was delivered, it indicated that the projected system com-
pletion date would be a year beyond the desired date. This prompted the
government to terminate the contract. The government waited until the
other design deliverables were complete, turned them over to a new con-
tractor, and got work underway to quickly build the system.

At system acceptance testing, the system blew up with massive data cor-
ruption, and it was clear that it just would not work. What was the
problem?

Some of the requirements-related issues were as follows:

1. The hardware and software specifications evaluated under task 1
were not properly done because the selected components could not
accommodate the data volume. Were those specifications simply
system requirements for purchasing commodity PCs, or were those
PCs purchased with the intent that they would be part of the solution
for the overall system? This nuance would later prove significant,

124 Best Practices for Requirements Development and Management

because the government claimed that the evaluation of the PCs was
for their suitability to support the agencywide system. The perform-
ance requirements for such a system had not been defined, because
nobody on the contractor’s side realized that the architecture was no
longer centralized.

2. No overall, unified requirements document or repository was devel-
oped. Requirements were to be found in numerous sources of
varying age and validity (for instance, handwritten notes by govern-
ment personnel on deliverables they reviewed). In some cases,
requirements were contradictory or lacking. Areas identified in
the review and validation of prior requirements documents as need-
ing further requirements definition were left that way because no
tasking was received to explore them. There was no CM of the
requirements.

3. The specification of detailed requirements by the government for the
transmissions capability, while not communicating the overall archi-
tecture for the system or allowing the contractor to design the
architecture, was an overspecification of design requirements and a
constraint on the system—one that (as it turned out) would not work.

4. Data volumes identified in the data requirements done by the prior
contractor grew in a few key places without any reassessment of
the overall impact on the architecture—until the delivered system
would not work.

5. The design of the system by the contractor was considered by the
government to be so poor that the contract was terminated, yet the
fact that the government directed the follow-on contractor to use
those same design deliverables to build the system implies accep-
tance of that design. They were, in fact, a set of system requirements
for the new contractor.

The major lesson to be learned from this case study concerns the roles
and leadership of the requirements tasks. Because the government defined
through its tasking which portions of the requirements it would require the
contractor to take responsibility for and which portions the government
would specify in detail, there was no overall RM strategy or process. Some
of the end results of this scenario were (1) the user requirements were not
met as intended by both the government and the contractors, (2) the origi-
nal contract was terminated, (3) the system developed by the second con-
tractor did not work, (4) a lot of money and time were wasted, (5) some
people lost their jobs because of issues that developed, (6) some families
were impacted negatively because of various interpersonal issues that devel-
oped, (7) years were spent in expensive litigation, (8) significant negative
information concerning systems and software engineering and the problems
of both parties was put forward in various communications, including the
newspapers, and (9) a lot of finger pointing occurred. In my experience, this

Case Study 125

scenario is not unique—related scenarios have been repeated in various
ways over the past two dozen years, and they continue even today.

Name withheld by request, requirements-engineering consultant

References

[1] Wiegers, K. E., Software Requirements, 2nd ed., Redmond, WA: Microsoft Press,
2003, 77–93.

[2] Gottesdiener, E., Requirements by Collaboration: Workshops for Defining Needs.
Boston, MA: Addison-Wesley, 2002.

[3] Sommerville, I., P. Sawyer, and S. Viller, “Viewpoints for Requirements
Elicitation: A Practical Approach.” Proceedings of the 1998 International Conference
on Requirements Engineering (ICRE’98), April 6–10, 1998, Colorado Springs, CO,
New York: IEEE Computer Society, 1998, 74–81. See http://computer.org/
proceedings/icre/8356/8356toc.htm. See also Chapter 13 of I. Sommerville and
P. Sawyer’s Requirements Engineering: A Good Practice Guide, New York: John Wiley
& Sons, 1997, and G. Kotonya and I. Sommerville’s Requirements Engineering:
Processes and Techniques, Chichester, UK: John Wiley & Sons, 1998.

[4] Hooks, I. F., and K. A. Farry, Customer-Centered Products: Creating Successful Products
through Smart Requirements Management, New York: AMACOM, 2001, 120–133.

[5] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[6] Whitten, N., “Meet Minimum Requirements: Anything More Is Too Much,” PM
Network, September 1998, p. 19.

[7] Young, R. R., “Requirements Tools Trade Study,” at www.ralphyoung.net/
publications/Requirements_Tools_Trade_Study1.doc.

[8] CMMI Web site, at www.sei.cmu.edu/cmmi.

[9] Scholtes, P. R., et al., The Team Handbook, 2nd ed., Madison, WI: Oriel, Inc., 2001.

126 Best Practices for Requirements Development and Management

The RA’s Specialty Skills

The topics in this chapter cover a set of specialty skills
that will help you perform your responsibilities. Some skills
recommended in Table 3.1, RA’s Skills Matrix, have been men-
tioned, but not yet discussed in detail. Also, there are areas
concerning the work of the RA that deserve further elabora-
tion. Table 7.1 provides a list of these topics. You may find
that you don’t need all of these at a particular point in
your career or on a specific project. However, it’s likely that
you will need to know about most of these topics at some
point in your work. Use this book as a desk guide when the
need arises. I will also suggest other useful references that pro-
vide more information to help answer the questions listed in
Table 7.1.

Each of these topics will be discussed in turn.

1. Why are requirements errors so devastating and how can RAs help
address the problem?

Industry experience is that errors associated with requirements
are not only the most common type of error in developing sys-
tems and software, but also the most expensive to find and fix.
Industry experts continue to express concern that both the
number of requirements errors and the cost to fix them
increase geometrically the further into the life cycle the error is
discovered. Table 7.2 provides some data points that illustrate
why requirements errors are so devastating.

What do we mean by a requirements error? Table 7.3 pro-
vides information concerning the types of requirements errors
and their relative frequency, provided by industry expert and
author Ivy Hooks in Customer-Centered Products: Creating Success-
ful Products through Smart Requirements Management [1].

It’s not surprising that the two largest categories are incor-
rect facts and omission of requirements. By following the

127

7
Contents

Summary

Case Study

References

C H A P T E R

recommended approach to work collaboratively with your customer
and users to identify the real requirements, using the requirements gather-
ing checklist provided in Table 5.1, you will have reduced the risk of these
types of errors. What else can RAs do to reduce requirements errors?

128 The RA’s Specialty Skills

Table 7.1 RA Specialty Skills Topics

Topic Question Page Number

1 Why are requirements errors so devastating and how can RAs help address
the problem?

127

2 What does the RA need to know about CM? 129

3 What does the RA need to know about the Unified Modeling Language? 135

4 What if I’m supporting a small project? Does any of this stuff still apply? How
can I convince the PM and my coworkers to incorporate a degree of discipline
and process into our approach?

139

5 What is the difference between a requirements specification and specifying
the requirements?

141

6 I notice “impact estimation” on the requirements skills matrix—what is it,
and how can I learn more about it?

142

7 You seem to suggest that the RA should be a leader on the project. Why do I
need to be a leader? How can I be a leader? What should I lead?

143

8 You have stressed the role of the RA in facilitating discussions, presentations,
meetings, training sessions, and workshops. What can I do to become a better
facilitator?

144

9 You have emphasized that having a defect prevention (DP) process is
advisable for all projects, perhaps necessary. Can you provide a DP process
that I can implement easily?

145

10 You indicate that estimation is an important skill. What aspects of estimation
are critical for the RA?

149

11 You advise doing inspections for all requirements-related documents. Why
shouldn’t we be satisfied with doing peer reviews of them? How are
inspections different from peer reviews, and why go to the extra trouble?
What type of inspection is best?

150

12 You have placed a lot of emphasis on quality. How can the RA help apply
quality principles on systems and software development projects?

152

13 There seems to be a lot of confusion in our industry concerning the terms
verification and validation. Can you explain why this is so and also clarify
suggested uses of the two terms?

153

14 The “agilists” advocate that agile development methodologies promise higher
customer satisfaction, lower defect rates, faster development times, and a
solution to rapidly changing requirements. Should I recommend that we
consider agile development methods on my project?

154

15 What is the value of practical knowledge? 154

16 What if my PM, our organization’s management team, or our customer does
not support the concept of process improvement?

154

17 How should the work breakdown structure be applied? 156

18 What is a good approach for considering requirements risks? 159

Table 7.4 provides suggestions contributed by practitioners.1 Note that sev-
eral of these activities can mitigate the risk of errors in multiple categories.
Performing these types of activities has a high return on the time invested;
they are “highly leveraged” activities.

2. What does the RA need to know about CM?

CM is a key discipline on a project of any size. Lacking effective CM, the
project is not in control because the status of its work products is not in con-
trol. Configuration control is one of the critical functions on a task or project
that an RA must be knowledgeable about since it is vital to the overall integ-
rity of the evolving requirements and other engineering work products. RAs
must take an active role in managing the requirements baseline from its
inception and ensure that changes to the baseline are identified, docu-
mented, reviewed, approved, and tracked through implementation. These
requirements controls and processes are very similar to the CM processes

129

Table 7.2 Industry Experience Concerning Requirements Errors

Capers Jones:

“Errors that originate in requirements tend to be the most expensive and
troublesome to eliminate later. Prevention is more effective than defect removal.”

TRW Experience:

“Most errors were found after unit testing, and over 80% were requirements and
design errors.”

Tom DeMarco:

“More than half of all defects can be traced to requirements errors.”

U.S. Air Force:

“41% of all errors discovered were requirements errors.”

Table 7.3 Types of Requirements Errors
and Their Relative Frequencies

Requirements Error Relative Frequency (%)

Incorrect fact 49

Omission 31

Inconsistency 13

Ambiguity 5

Misplaced requirement 2

Total 100

From: Hooks and Farry [1].

1. With special thanks to RA Pat Little who contributed several of these ideas.

130 The RA’s Specialty Skills

Table 7.4 Suggested Actions to Reduce Requirements Errors

Assumptions:

Approximately 8% to 14% of total project costs will be invested in the requirements process.

Formal training will be provided to RAs to explain how to write good requirements and how to
address the various types of typical requirements errors.

The customer will be involved throughout the development process.

A project glossary will be established and used to ensure that the definitions are agreed upon and
that words are used consistently in all project activities.

Types of Requirements Errors and Suggestions for Addressing Them

Incorrect facts:

Provide an attribute in the requirements tool for verification of the factual basis for each
requirement, and perform research to validate facts. For example:

V = verified;

N = not yet researched;

Q = questionable.

Provide stakeholder reviews of requirements work products.

Require a link to an authoritative source (mission statement, policy document, formal guidance,
etc.). If no authoritative source can be found, write a detailed rationale for the requirement. The
reference to an authoritative source is similar to, but more formal than, the idea of requiring a
rationale for each requirement.

Provide a mechanism (such as a Web page or broadcast e-mail) or multiple mechanisms for wide
review of the requirements and feedback by users, customers, stakeholders, and so forth.

Build a logical data model (LDM) from an enterprise perspective.

Omission:

Solicit user needs from a variety of different viewpoints.

Perform requirements modeling.

Use a structured methodology such as use case modeling or a comparable technique.

Develop an OCD or CONOPS before drilling down into specific requirements statements.

If the business process that the system will support is documented, use the process documentation
to lead users through the requirements elicitation process. If the business process is not
documented, consider working with the user to create this documentation. It may exceed
traditional boundaries of requirements analysis, but in the end you will have a better
understanding of the requirements and the user may have mitigated one or more risks of system
failure (even if the system met all the documented requirements).

Inconsistency:

Conduct inspections of requirements-related work products by members of the project team.

Examine and analyze the RTM for consistency and proper placement of requirements.

Require a link to an authoritative source (mission statement, policy document, formal guidance,
etc.). If no authoritative source can be found, write a detailed rationale for the requirement.

Define all terms and ensure their use in requirements statements is consistent with the formally
recognized definition.

Build an LDM from an enterprise perspective.

Ambiguity:

Conduct inspections of requirements-related work products by members of the project team.

Require a link to an authoritative source (mission statement, policy document, formal guidance,
etc.). If no authoritative source can be found, write a detailed rationale for the requirement.

Define all terms, and ensure their use in requirements statements is consistent with the formally
recognized definition.

Misplaced requirement:

Examine and analyze the RTM for consistency and proper placement of requirements.

Source: Contributions from requirements analysts who participated in the author’s tutorials and workshops.

used by other project teams to control their evolving work products. At all
times, the RA will need to work with the current and correct versions under
CM control and be able to account for each change and version of that work
product. Thus, the RA needs to have knowledge of and experience with the
following CM practices.

CM Planning CM planning must include considerations regarding the
following: contract requirements, overall scope, customer CM, processes,
tools, and resources. From a requirements perspective, an RA would need to
work with CM planners to ensure that CM and RM processes are coordi-
nated and that configuration items include identified requirements, docu-
ments, and other items. Integration of CM policies, processes, procedures,
and practices with the requirements and other engineering policies,
processes, and methods will ensure a cohesive, team-centered approach.
Forming a close working relationship with all project groups and with the
customer fosters strong, mutually supportive working relationships. Com-
munications, process, and effective tools will help assure overall integrity of
delivered work products.

CM Tools The requirements team needs to ensure that the selected
requirements tool is not only adequate for control purposes, but that it is
also well integrated with CM tools. Some commercial CM tools have auto-
mated interfaces with requirements tools and other engineering tools. They
in turn must work in concert with and in support of the overall project
process, including requirements and CM. Figure 7.1 describes the relation-
ships between an RM tool and a CM tool on a sample project. Note the iden-
tification of several documents and activities in the requirements tool, that
data is submitted directly from the requirements tool to the CM tool, that
requirements are mapped to software packages, and how each of the tools
assists with critical project activities.

Engineering Baselines In engineering projects, CM works early in the proj-
ect life cycle with the other project groups to identify work products (identi-
fied as configuration items) and to incorporate them into controlled
baselines. Engineering teams (including the RAs) manage these baselines as
they move through an established engineering life cycle. These baselines
will likely have unique identifications (as do individual configuration items)
so that managers, customers, requirements, design, test engineers, QA,
and CM all have the same understanding with regard to baseline status and
content, configuration item status, versions, and the approved changes
incorporated.

Operations Baselines Operations and maintenance (O&M) projects find it
critical to maintain a steady state of an operational system or group of sys-
tems. Baselines are also important here as well, since they include con-
trolled hardware, software (developed and integrated COTS), and standard
operational procedures (SOPs).

131

Configuration Control Control provides a wide spectrum of activities and
methods that ensure that configurations are adequately managed and that
they have the highest integrity possible. These activities include tools and
repositories in which work is performed in a managed manner and manage-
ment of changes to those work products. In terms of the RA’s tasks, the use
of a requirements tool in the management and control of project require-
ments is most important. The RA must work with CM to ensure their
requirements and other work products (e.g., requirements documents) are
in a controlled environment (in a tool or other controlled space), that they
are available for work purposes, and are properly backed up or archived and
available for re-creation if needed. Within the tool or repository, the
requirements team needs to ensure that individual requirements are trace-
able (which is in itself a necessary CM need in order to show overall status
accounting). Requirements must have backward traceability to previous
versions of the same requirement, or be traceable back to their source. The
selected tool must also provide forward traceability to show allocations of
the requirements to program components (e.g., hardware, software) and
the tests to be performed, and it must be able to identify and recover previ-
ous versions of the requirements, based upon approved changes. The
requirements tool must also be able to show change indicators [e.g., change
requests (CRs) and engineering change proposals (ECPs)] that propose
changes to requirements. This is required later in the life cycle when CM
performs configuration audits to verify that requirements have been satis-
fied (tested) through the delivered work products. Figure 7.2 provides a

132 The RA’s Specialty Skills

DOORS RM system

Clear Case CM System• Capstone requirements document (CRD)
• Block 1 operational r

(ORD)
equirements

document
• System/subsystem specification (SSS)
• R traceability matrix (RTM)equirements
• System r allocations to
system components

equirements

• Interface specification (IRS)requirements
• Software specification (SRS)requirements
• SW allocations to SW
packages

requirements

• R attributesequirements
• R change requestsequirements
• Specification change notices (SCNs)

• Developed software packages
• Unit tests and test reports
• Software problem reports (SPRs)
• Cutover packages to CM
• Software builds
• Handover packages to integration
• Software baselines
• Software requirements
• Mapping of software r
to s

equirements
oftware packages

DOORS RM tool provides/assists with:
Requirements repository
Requirements hierarchy
Requirements categorization
Requirements traceability
Requirements baselines
Requirements change control
Requirements defect analysis
Requirements data and reports

Clear case CM tool provides/assists:
Configuration items repository
Configuration change control
Configuration status accounting
Configuration audits

SW
R
Data

equirements

SW
Requirements
Mapping to
SW Packages

Figure 7.1 Relationships between a project’s requirements tool and its CM tool.
(Source: Michael Davis. Used with permission.)

high-level view of some of the interrelationships between the CM and
requirements activities on a project, in this case concerning requirement
change proposals.2

Configuration Control Board (CCB) As noted in Figure 7.2, the RA often will
be called upon to participate in CCB meetings and provide not only status,
but also expert engineering advice and analysis of the impacts of requested
changes. The CCB evaluates whether the change is feasible to ensure that
requirements changes are either (1) disapproved, or (2) approved, coordi-
nated, and implemented in a coordinated manner. This ensures that all
interested parties understand the change and are able to perform the neces-
sary work, as well as the integrity of the evolving work products.
This approach of maintaining configuration control is essential to project
success.

133

Policy, design,
and functional

Operational use and
sustaining effort

Performance, test
and evaluation, etc.

Requirement
change proposal

CCB

Evaluation of change impact:
• Affects on performance,

effectiveness, life-cycle costs, etc.

•
requirements, etc.

Proposed incorporation date,
ensuing affected

• Resources required to implement
the change

• Cost of implementing the change

YesIs the
change
feasible?

Development
of a
implementation
plan

change

No

Negotiate the
requirement

Develop change
procedures

Update documentation
and database

Incorporate
approved
change

Dispose residue

Is change
adequate?

Yes

No

Redesign
required

Return to
continuing
operational
status

Requirement
change proposal

Requirement
change proposal

Figure 7.2 Requirement change control procedure. (Source: Michael Davis. Used with permission.)

2. With thanks to RA Michael Davis for lending his project experiences as documented in Figures 7.1 and 7.2.

Operational Change Management All of the items noted above concerning
the operational baselines undergo frequent change. These changes also
undergo a change process using a CCB to review and approve the change
and an implementation process that oversees the implementation of the
change. In regard to these changes and overall operational effectiveness, an
operations staff must also be aware of their requirements. These are no less
important than those found in the engineering environment. They must
maintain a level of support or service to the customer through documented
service-level agreements (SLAs). They must be implemented through the
operation of the deployed and fully implemented system and must be moni-
tored constantly. These SLAs are managed, much as requirements are in an
engineering project, through collection of operational data (metrics) that are
analyzed, tracked, and reported against. Changes to the SLAs are managed
through change requests and may involve engineering changes as user
needs change.

Configuration Status Accounting Those involved in managing requirements
and requirements work products must understand their responsibilities
with regard to recording status for their activities. For example, if changes to
requirements are proposed (following the change process), the RA must
document or record the change, record their impact analysis, and follow
through on the implementation of the change, recording the status of its
implementation when complete. For the RA, this would involve updates to
the requirements tool and affected requirements work products. If reports
are needed, CM and the RA need to coordinate the information needed and
how best to collect, format, and deliver the information.

Configuration Audits Because their work is integral to the delivery of work
products that meet stated customer requirements, the RAs must participate
in both informal and formal CM audits to help verify that the requirements
used are correct, current (reflecting all approved changes), and were made
available to the design, development, and test teams for their work.

CM Metrics Often the CM office may be given responsibility for managing
program metrics, or at least providing input to the project metrics program.
Some metrics may involve requirements directly (as in measuring require-
ments volatility or change), or they may have input into the metrics gath-
ered for overall changes.

The wise and proactive RA will form a strong and mutually suppor-
tive relationship with the CM team. I suggest that if you are not already
quite familiar with CM, find someone who is and ask for his or her sup-
port in familiarizing you with CM activities. In addition, study a good CM
book such as Frank B. Watts’s Engineering Documentation Control Handbook:
Configuration Management for Industry [2]. Watts focuses on a simplified, fast
CM system that exceeds U.S. Department of Defense (DoD) standards. Case
studies are provided. Also, a book that is considered a must-read by many
software CM practitioners is Alexis Leon’s A Guide to Software Configuration

134 The RA’s Specialty Skills

Management [3]. An example of a good CM plan is available at www.air-
time.co.uk/users/wysywig/cmp.htm. This link also provides another link to
a brief description of principles of change management. A more detailed dis-
cussion of technical management is available at sparc.airtime.co.uk/users/
wysywig/techman.htm.

See also EIA Standard 649, “National Consensus Standard for Configura-
tion Management” [4].

3. What does the RA need to know about the UML?

The short answer is either not very much or a whole lot, depending upon
whether your project is using an OO approach. The Unified Modeling Lan-
guage (UML) is a general-purpose notation developed in the 1990s that
describes the static and dynamic behavior of a system. It is a visual modeling
language and is not intended to be a visual programming language in the
sense of having all the necessary visual and semantic support to replace pro-
gramming languages. For example, complex branches and joins are best
expressed in a textual programming language. The UML provides a com-
plete, formal model to document a system. It’s a graphical language for visu-
alizing, specifying, constructing, and documenting the artifacts of a software
intensive system. Grady Booch, Ivar Jacobson, and Jim Rumbaugh of
Rational Corporation started the UML and were its original chief method-
ologists. See Fowler’s UML Distilled: Applying The Standard Object Modeling
Language [5] for a good reference. Later products were a team effort of many
partners under the sponsorship of the Object Management Group (OMG),
an international organization that includes information systems vendors,
software developers, and users. An “Introduction to OMG’s UML” can
be downloaded from the Web [6]. The current version of the UML is
also downloadable from the Web [7]. The UML has become a vendor-
independent standard for expressing the design of software systems. The
UML incorporates use cases as the standard means of capturing and repre-
senting requirements. Use cases are essentially functional and used exten-
sively by RAs for both OO and non-OO approaches. Some industry experts,
including Karl Wiegers, believe that use cases are among the most effective
techniques for capturing requirements; others feel that use cases alone don’t
provide adequate information for developers to know what to build. The
following are concerns in using use cases: (1) a lot of experience with them
is required to gain familiarity; (2) it’s difficult to know when you are fin-
ished expressing the requirements—one can continue to do a lot of analysis
without getting done; (3) information may be provided in the use cases at
the wrong level of abstraction; (4) use cases are typically too detailed and
almost always have to be redone; and (5) use cases are often full of errors.
See Gottesdiener [8] who believes she has encountered most every type of
error people can make in writing use cases. It is interesting to note that roles
in use cases fit well with the notion of viewpoints as a vehicle for require-
ments elicitation. If a requirements development group has had a lot of
experience using use cases, the team might want to consider using them to

135

help capture the requirements. If not, use a requirements-specification
approach to help represent the requirements. System engineers may want
to use IEEE Standard 1233, “IEEE Guide for Developing System Require-
ments Specifications” [9], while software engineers may prefer IEEE Stan-
dard 830, “IEEE Recommended Practice for Software Requirements
Specifications” [10]. Another detailed requirements specification template,
the Volere Requirements Specification Template [11], is available on-line at
www.atlsysguild.com/GuildSite/Robs/Template.html. Several examples of
requirements are provided.

Those choosing to use the UML will need to familiarize themselves with
the Object Management Architecture (OMA), which provides the concep-
tual infrastructure upon which all OMG specifications are based, with UML
Semantics, the UML Notation Guide, and UML Standard Profiles. It should
be apparent from this discussion that a lot of study and experience is needed
to utilize the UML effectively. On the other hand, it is essential to develop a
model for an industrial-strength software system. Good models are needed
to facilitate communication throughout the project team to ensure that the
system architecture is sound. The importance of using good modeling tech-
niques increases with system complexity. The creators of the UML believe
that prior to the UML, there was no clear leading modeling language. The
cost of using and supporting modeling languages with minor differences
motivated the efforts of representatives of more than two dozen companies
to partner to develop the UML. The UML is not a process. The experience of
the UML developers is that the UML must be applied in the context of a
process, but different organizations and problem domains require different
processes. The UML developers recognized the value of a use case-driven,
architecturecentric, iterative, and incremental process.

Kulak and Guiney explain the diagrams used in the UML in Use Cases:
Requirements in Context [12]. Be sure to digest their considered list of prob-
lems related to using use cases [12, pp. 154–165] before making a decision
to rely on use cases to represent your requirements. Other good references
are Cockburn’s (pronounced “co-burn”) Writing Effective Use Cases [13] and
Korson’s The Misuse of Use Cases [14]. I believe that Korson’s counsel is wise:
“before considering use cases, ensure that a well understood and managed
requirements process is in place and that you have high-quality require-
ments.”3 As suggested earlier in this book, investing in these areas first is a
prerequisite for a good requirements approach.

A colleague experienced in using OO technologies advocates using the
UML in requirements-related work. He provided an analysis, based on his
experience—see Insert 7.1.4 This vignette provides insights and suggestions.

136 The RA’s Specialty Skills

3. “The Misuse of Use Cases” and “Constructing Useful Use Cases” are available at www.korson-mcgregor.com.

Korson also provides a template that lists and describes a set of fields needed for a well-written use case. Korson

believes that the major problems in systems development are not technical but rather have to do with

requirements—“getting the right requirements and getting the requirements right.”

4. With thanks to Wayne O’Brien of Raytheon Corporation who graciously agreed to lend his experience.

I had the opportunity to hear Grady Booch (as noted above, one of the
three chief methodologists of the UML) speak at a session sponsored by
Rational Corporation in Northern Virginia on November 22, 2002. Among
the insights offered by Booch are the following:

◗ Customers don’t know what they want until it’s delivered. This argues
for an incremental approach, the value of iteration, and the approach
of showing work products and plans to users on an incremental basis.
An incremental approach allows us to make mid-course corrections.

◗ There is a big gap between where we are and where we need to be. A
good approach is to look at “where things hurt” and attack the points of
pain.

137

Insert 7.1—Experience in Using the UML and Use Cases

Use cases, with the automated tools available to support UML, provide
an active semantic link from the most detailed view of a system (e.g.,
software code or hardware logic, to the top-level requirements, which
are captured in the use cases). This active link means that there is
information for understanding the system that is current and accessible
at all times to all stakeholders.

User stakeholders include not just operators, but managers, inves-
tors, auditors, and others. Developer stakeholders include whatever
disciplines are required for the system under consideration, both tem-
porally and functionally. Temporally, the active semantic link supports
the developer disciplines for the full life cycle of a system, including
RAs, designers, and testers. The active link also supports functional
developer disciplines, including hardware, software, communications,
and human factors engineers.

This broad support for stakeholders that is provided by use cases
depends on the features of UML, as well as the tools that support UML.
Giving diverse stakeholders access to accurate information about the
system of interest to them takes advantage of the multiple view aspect
of UML (a best practice described by IEEE Standard 1471). The concept
of a use case within UML captures the semantics of a system in a way
that is readily communicated to people with a wide range of interests
and expertise, rather than just ability in a single field. It is precise
enough to be useful for building systems and yet readily understood by
people who don’t build systems for a living. This same communica-
tions characteristic of use cases underlies the temporal and functional
cross-discipline support for the developers, who do make their livings
building systems.

Wayne O’Brien
Raytheon Corporation

January 2003

◗ The primary barrier that we face today is the ability to develop software.

◗ Invest in the process of software development, because software is the
life-blood. Software development is still very labor-intensive, and this
won’t change. The best processes become invisible—it’s simply “the
way we do business.”

◗ Most companies are at CMM “level 1½.” The CMM is orthogonal to
project success. It is not sufficiently agile for economic success.

◗ There are common failure modes at opposite ends of the process spec-
trum: at the one end, we have overengineering and overdesigning of
systems; at the other end, we have agility. (Maintaining the magic of a
gifted group is difficult because developers do not want to maintain or
to build another release. Magic happens when there is synergy between
executives and developers.)

◗ Architecture is important and will become more important, for exam-
ple, portals that cross information silos and barriers. There is no perfect
design. “Perfect” is the enemy of “good enough.”

◗ The Universal Business Language (UBL) is coming; it enables another
level of abstraction.

◗ There are several global trends concerning the future of software:

1. Inceasing growth and complexity.

2. Rise of platforms. We need patterns. Read Design Patterns [15] to
familiarize yourself with the vocabulary. We can build systems rap-
idly by using patterns and frameworks—this is where companies get
their competitive advantage.

3. Growth of Web services.

4. Rise in open source software (Linux is not a good model for develop-
ing systems).

5. Growth of model-driven development (MDD). This will provide the
ability to debug at a higher level.

6. Aspect-oriented programming (looking at a system from one stake-
holder aspect). This is three to five years away. A tool (Aspect J) is
used to weave the aspects together.

7. Security. This is an increasing and emerging area and an overarching
issue. Processes and technologies are needed to help with security.

8. Collaborative development environments and use of the Web for
virtual project space (the embodiment of tribal memory).

9. Component-based development.5

138 The RA’s Specialty Skills

5. The requirements process for component-based development (based on development with reuse) is different

for systems developed from scratch.

Booch’s summary was a testimony to the magnitude of the man:

There are only fourteen million programmers in the world. Look at what we

have done! We have changed the world. What a privilege it is to be part of

the community that has made a big difference. What a responsibility this is

to do a better job all the time. You are the people who are doing the heavy

lifting.

UML is, to be sure, an excellent methodology by which to derive
requirements. However, at the time of this writing, it is a relative newcomer
to the field of requirements development. A methodology that has been
extant for over fifteen years is Integration Definition for Function Modeling
(IDEF). This started with the initial IDEF0 method and continues through
IDEF5. Insert 7.2 contains real-world experience comparing UML with
IDEF0. These experiences were provided by an RA with over twenty years
of experience in software development and requirements engineering. The
RA may want to familiarize him- or herself with IDEF0 as an alternative to
the UML. Excellent references concerning IDEF0 are FIPS PUB 183 [16], the
IEEE Standard for Functional Modeling Language [17], and Feldmann’s The
Practical Guide to Business Process Reengineering Using IDEF0 [18]. There are
also some IDEF workflow simulator tools that can be useful in deriving
requirements, for example Business Modeling Workbench.

4. What if I’m supporting a small project? Does any of this stuff still apply? How
can I convince the PM and my coworkers to incorporate a degree of discipline and
process into our approach?

Good questions! I’ve been challenged with these questions many times, and
there is information in the literature about them, too. First, let’s start with a
definition of a small project. Understanding there is no agreement on the
definition of a small project, my arbitrary definition is one to six profession-
als working on a single task for as long as three to six months.

Some analysts and engineers may feel that the CMM (and the more
recent CMMI) are applicable only for medium to huge projects. My experi-
ence suggests that the CMM and CMMI are scalable to a project of any
size—one needs to do project planning, project tracking, requirements
development and management, CM, QA, and other processes such as DP on
all projects!

My advice is to urge members of small projects to scale down the
approach and tailor it. Try not to allow such projects to use smallness as an
excuse for not using processes, mechanisms, methods, techniques, and tools
that will enable them to be successful. There are several good publications
that provide advice for how to implement processes on small projects. See
Paulk’s Using the Software CMM with Judgment: Small Projects & Small Organiza-
tions [19] for elaboration on this theme and Rita Hadden’s “How Scaleable Are
CMM Key Practices?” [20]. Hadden’s view based on observations and experi-
ence with more than 50 small projects is that professional judgment should

139

be used to scale down and apply key practices to support small projects.
Brodman and Johnson’s LOGOS Tailored CMM for Small Businesses, Small
Organizations, and Small Projects [21] may also be helpful.

140 The RA’s Specialty Skills

Insert 7.2—Some Experiences from the Real World Concerning the
IDEF

I think as far as requirements analysis is concerned, the customer’s
preference and level of sophistication should play a big part in selecting
which modeling methodology to use. The UML is just the currently
used favorite approach in the overall topic of modeling. An analyst
with the same level of understanding of IDEF0/IDEF1X as he or she
has of UML would be just about as effective with either. They both
provide insight into the problem space, help the analyst know what
questions to ask, and provide a picture of the functionality of the sys-
tem to support the requirements text. (I think function point analysis
(FPA) also gets you there by different and less graphical means.)

IDEF is easier to comprehend than UML. On two large projects that
I supported, we started out by creating requirements in UML. In both
cases someone got cold feet at the end and decided that some impor-
tant stakeholder group on the customer side would never understand
the UML presentation of the requirements, and we reverted to pre-
senting requirements as plain text. Ironically, in both cases the cus-
tomers were generally familiar with IDEF models already.

This was clearly our fault. If you are going to use modeling of any
kind, make sure customers have an adequate understanding of the
modeling approach. If they don’t, then it is your obligation to teach
them, and the earlier the better.

In the DoD world this problem has been mostly solved with IDEF,
assuming the approach outlined in Appendix C of FIPS 183 is followed.
The joint team consists of customers (who are generally IDEF readers)
and contractors (who are generally IDEF writers). The kits (IDEF
review packages) are reviewed early and often. By the time the model
nears completion, nobody is surprised by what it looks like or what it
describes.

As much as I like modeling as a tool, I can’t emphasize enough that
the modeling methodology has to be understood by everyone, not just
a few specialists, to be successful. I believe this is the root cause of all
failed modeling efforts, regardless of the methodology. After all, each
of us has spent years communicating through a common spoken lan-
guage—yet we still fail to understand each other much of the time.
Why do we expect someone who has little or no previous experience
communicating in models to understand them?

Terry L. Bartholomew
RA

So my answer is yes, this stuff does apply to small projects—tailor the
processes, mechanisms, methods, techniques, and tools as needed for the
small project in its environment. Convincing your PM and coworkers to
incorporate a degree of discipline and process may turn out to be a difficult
or impossible task if they are set in their opinions. My suggestion here is to
avoid arguments; rather, (1) address a “point of pain” on the project—an
area where the project is experiencing difficulty—and (2) use data to sup-
port your position. Starting small on a small task can have immediate bene-
fits to customers and serve as a way to convince management and staff of
the usefulness of a process-centered approach. This area might well be
requirements elicitation—the project may be experiencing some issues in
identifying real requirements. Customers and users may not differentiate
between stated requirements and real requirements. This is a great place to
start, because with some effort in understanding and analyzing the stated
requirements, you will very likely be able to identify ways to help—for
example, by applying the criteria of a good requirement to the stated
requirements; researching and identifying the rationale for each require-
ment; collaborating with the customer and users to prioritize the require-
ments in a requirements workshop environment, facilitated by an
experienced outsider; creating a joint team to discuss requirements and
make shared decisions about them; providing some requirements-related
training based on the topics suggested in Table 5.5; suggesting use of an
automated requirements tool such as Requisite Pro (ReqPro) to assign
attributes to each requirement (e.g., priority) and perform requirements
traceability to ensure that each requirement is addressed throughout the
system—the possibilities are endless because the opportunities for continu-
ous improvement abound! Try to position yourself as a trusted advisor. Use
data to prove your point, and identify other points of pain. Review the roles
of the RA discussed in Chapter 2. Consider which of those roles seem most
appropriate to you for the particular situation. Be a positive influence on the
project. Find ways to help, and contribute more than your share. You will
be successful and become a valued member of the team.

5. What is the difference between a requirements specification and specifying the
requirements?

Great question! This is a cause of a lot of confusion, and it’s important for
the RA to be able to clarify this and other areas—not with a know-it-all atti-
tude, but rather with humility and understanding that it’s human nature for
people to have different views and definitions of things and varying opin-
ions. I mentioned the requirements specification earlier in this chapter and
provided two good references concerning it. A requirements specification is
a document that contains requirements. You’ll recall from Chapter 5 that I
recommend that you view the requirements repository as consisting of sev-
eral items—the requirements specification (or specifications if you are
developing a large system) is one important item. Some people will use
the verbiage “specifying the system requirements” to mean something

141

else—namely, determining what the requirements of the system should be.
I encourage that the phrase “specifying the requirements” be avoided to
reduce confusion. A better description would be defining or documenting
the system requirements.

6. I notice “impact estimation” on the requirements skills matrix. What is it, and
how can I learn more about it?

Impact estimation (IE) is an analytical technique advocated by industry
expert and consultant Tom Gilb. Gilb devotes Chapter 11 to it in his book
Principles of Software Engineering Management [22]. Gilb believes that the IE
technique provides a better way to evaluate the design process than any
other technique. As shown in Figure 7.3, IE provides an analytical tool to
quantify requirements.

This enables RAs to evaluate requirements quantitatively rather than
only subjectively. The technique estimates the impact of selected strategies
on specified goals. IE tables enable analysis of technical or organizational
ideas in relation to requirements and costs. Gilb advises [23] that he has
used IE to do the following:

◗ Compare alternative design ideas;

◗ Estimate the state of the overall design architecture;

142 The RA’s Specialty Skills

Solutions

Requirements

Profitability 20% ROI 5 10 10 10 20 20 75 –25 Under design

Usability 30 min. 30 60 25 20 20 40 195 95 Over design

Connectivity 5 min. 10 40 0 40 40 40 170 70 Over design

Availability 99.98% 20 30 10 20 20 130 30 Over design

Integrity 99.99% 10 10 20 5 20 –10 55 –45 Under design

Performance >12 Tr/S 30 5 20 5 5 5 70 –30 Under design

Marketability 12 languages 40 40 40 20 30 40 210 110 Over design

Adaptability 10 yr. 30 30 10 10 30 30 140 40 Over design

Dev. resources $12 million 30 30 10 30 30 150 50 Over budget

Marketing costs $1 million/yr. 5 10 20 10 5 15 65 –35 Under budget

Value/cost ratio 1.85 1.34 0.78 1.5 1.32 1.03

Decision Best
solution

Not
best

Not
best

Not
best

Not
best

Not
best

30

20

P
la

n
n

e
d

le
ve

l

Ta
g

=
E

xp
e

r.
C

o
Se

lf
m

e
tr

ic

U
se

r
Si

m
p

li
ci

ty

R
o

b
us

tn
e

ss
St

ab
.,

Su
rv

.

O
p

e
n

-e
n

d
R

e
-e

va
l

Fi
le

d
e

sc
ri

p
ti

o
n

C
o

m
m

an
d

.I
n

te
rf

ac
e

an
d

m
an

ag
e

r
d

ia
le

ct

To
ta

l %

D
ev

ia
ti

o
n

Figure 7.3 An example of use of the IE technique to evaluate requirements. (Source: Tom Gilb.
Reprinted with permission.)

◗ Plan and control project delivery steps;

◗ Analyze risks.

Gilb acknowledges that IE is “filled with possibilities for errors” (because
the analyst provides the estimates based on a best-estimate approach).
He believes these errors are unavoidable, and that the IE technique
should be used to calculate the “approximately correct order of magni-
tude” [22, p. 184]. If you have a need to use this technique, I suggest that
you study Chapter 11 of Gilb’s book and read more about the technique at
Gilb’s Web site, www.gilb.com.

7. You seem to suggest that the RA should be a leader on the project. Why do I need to
be a leader? How can I be a leader? What should I lead?

Although the role of being a leader was not specifically identified in
Chapter 2, the tone of this book does suggest that the RA should take
the opportunity to provide leadership on the projects you support. Change
is endemic in today’s working environments, and leaders are needed to
help manage the changes and to facilitate adapting to them. You may
feel that demonstrating leader qualities is “above your pay grade”—the
purpose of this discussion is to convince you that the RA can and should
help lead the project. Table 7.5 suggests some of the ways that the RA
can help lead.

143

Table 7.5 Some of the Ways That RAs Can Help Lead

Urge identification of the real requirements;

Urge implementation of a mechanism to control changes to requirements and new
requirements;

Suggest use of a set of rules of conduct on your project;

Suggest development of a set of guidelines for effective meetings for use on your
project;

Recommend using peer reviews of all work products and inspections of
requirements-related work products;

Suggest implementing and using a DP process;

Provide requirements training for RAs, the project staff, and customers and users,
including explanations of the requirements-related industry problems and their
causes;

Urge proactive steps to improve project communication, such as regular brown-bag
presentations by each work group (for all others on the project) concerning
current work activities;

Urge tailoring of the requirements gathering approach for your project;

Recommend use of an industry-strength automated requirements tool on the
project and formal training for those who use the tool most frequently;

Evaluate your requirements against the criteria of a good requirement and the
rationale for each requirement; share the results of this exercise with your
customer/users.

These are just a few of the ways that an RA can help lead—the possibili-
ties are endless. Opportunities come up every day for each of us to lead. Set
the example and help nurture winning ways on your project.

Some people feel that not everyone is cut out to be a leader and that the
RA need not be a leader, but rather a good team player, willing to share his
knowledge and problem-solving skills.

8. You have stressed the role of the RA in facilitating discussions, presentations, meet-
ings, training sessions, and workshops. What can I do to become a better
facilitator?

My advice to you concerning this is “just do it.” I have found that the more
presentations I make during my career, the easier making them gets. I still
get nervous prior to a presentation, but that’s okay. I use that nervous
energy to prepare for the presentation and to be a bit animated during the
presentation. None of us is happiest during a dull presentation. Being
upbeat, enthusiastic, moving about the audience, inviting participation,
acknowledging good comments and contributions—these all have the effect
of involving participants and in my experience result in presentations that
are received well. When you really stop to think about making a presenta-
tion, what is there to be afraid of? What is the worst thing that can happen?
Some people in the audience may not think highly of your remarks, but this
is the case even when experienced speakers take the podium—not everyone
will relate to every speaker’s views and presentation. I have given hundreds
of presentations, and there has never been one where at least one person in
the audience did not come up afterward with some kind remarks and
expression of interest.

There are some steps you can take to help:

◗ Attend presentations by others and discern what you like (and don’t
like) about them.

◗ Team with someone you consider more proficient and experienced in
making presentations or facilitating workshops to get yourself in front
of an audience and improve your skills and confidence.

◗ Arrange to have yourself videotaped when you are making a presenta-
tion. View the tape. You may be surprised by what you see. My experi-
ence, having done this several times, is that I’m quite different than I
thought I would be.

◗ Seek opportunities to give talks. For example, local chapters of profes-
sional associations are always looking for speakers for luncheon meet-
ings, evening meetings, and Saturday tutorials. Also, consider making a
presentation at annual meetings and conferences. I think that you’ll
find that the more you make presentations, the easier it becomes to do
it. You could even organize brown-bag sessions at your office and give
some of the talks yourself.

144 The RA’s Specialty Skills

◗ Attend training sessions about giving presentations or join a group,
such as Toastmasters, that provides support, opportunities, and
encouragement. Don’t take the attitude, “I can’t do that!” As in other
areas of life, each of us can do much more than we think we can. We
are limited only by our own willingness to get out there and do
things. Go for it!

9. You have emphasized that having a DP process is advisable for all projects, per-
haps necessary. Can you provide a DP process that I can implement easily?

DP is concerned with learning from the defects found in work products and
implementing ways to improve processes to prevent defects from recurring.
It is a valuable process because it can reduce the number of errors that are
made early in the development process, thus saving rework (time and
money). Of course, DP can be used at any time in any project to improve the
results from our work activities. A DP process is easily tailored and docu-
mented, taught, learned, and applied. Unfortunately, most organizations
don’t make an effort to implement a DP process. I think one reason that DP
processes are not deployed and used more frequently is that people have so
many other things going on that they don’t want to take on yet another
process and activity. Another reason is that many people don’t appreciate
the power and value of DP activities.6 Keep in mind that the main thing is
for the project to be successful. Our criteria for success include, among oth-
ers, completing the project within budget and on time. DP can make a valu-
able contribution to achieving these goals.

A DP Process Figure 7.4 provides a straightforward DP process that you
can begin with and then add additional features to as you deem necessary,
for example, metrics to evaluate the effectiveness of the process, a DP plan,
a DP repository, and so fourth. [Note that DP has been given another name
in the CMMI: “Causal Analysis and Resolution” (CAR).]

The purpose of DP is to identify root causes of defects and other prob-
lems and take action to prevent them from occurring in the future.

The first step is to identify a work product or process that is creating
issues. Where is the project experiencing problems (“points of pain”)?
For example, you might decide that the project is experiencing some prob-
lems because of issues concerning the requirements. Therefore, perhaps
a good improvement activity might be to evaluate the project’s require-
ments process. If it’s documented, great, let the project’s documented

145

6. DP is a high maturity process in the CMM. This suggests to the casual observer that we shouldn’t worry about

it until we have already addressed all of the processes at Levels 1 to 4 of the CMM/CMMI models. My

experience is that DP should be used by most projects, no matter what the maturity level. The reason is the

same as for my earlier suggestion to use peer reviews on all projects: these activities identify problems and

defects earlier in the development process than would be the case if we didn’t use these techniques. As a result,

time and money are saved, and the quality of work products is better than it would have been if we didn’t use

them.

requirements process be the topic of a “DP workshop.” If the process is not
documented, gather a few interested and motivated stakeholders in a room
for an hour or two and document it using the procedure described in Chap-
ter 8 for design of a process. The documentation of the process does not
have to be “perfect” in order to allow DP analysis. Don’t get bogged down
making work products perfect. (Observing me manicure our yard one day,
our younger son remarked: “Dad, it will never be perfect.” He was right!)
Refer to Table 7.6 for ideas about possible improvements to the require-
ments process.

146 The RA’s Specialty Skills

Purpose: To systematically identify root causes of defects and to address them to prevent their
future occurrences

Department/person

St
e

p
/t

im
e

DP team
leader DP teamCustomer Artifacts

Process
improve-
ment plan

Risk
database

Training
needs
database

[DP]
kickoff
agenda
updated

Step 2

Step 5

Step 8

Step 3

Step 4

CR
system

Local
process
CRs

DP
repository

Step 1

Step 6

Step 7

Identify a point
of pain

Evaluate the effectiveness of the implemented countermeasures

Continue the improvement cycle until satisfied

Implement countermeasure recommendations

Legend

DP: Defect prevention
CR: Change request

Organize a workshop

Analyze defects
and determine categories

Perform root cause analysis

Identify countermeasures

Figure 7.4 DP process.

147

Table 7.6 Some Ideas Concerning Improving a Requirements Process

1. Evolve a project glossary (and possibly a project acronyms list).

2. Provide a mechanism to increase understanding and communication between developers and
users.

3. Define and document the requirements elicitation process.

4. Select a few metrics to track progress and provide regular visible reporting.

5. Develop an action plan (AP) for implementation of the requirements engineering process.

6. Improve reporting to management.

7. Take actions to have better meetings where we actually accomplish things and get things done.

8. Implement an action tracking system that is characterized by closure criteria for the action
items.

9. Take proactive steps to achieve better communication.

10. Ensure that decisions are disseminated.

11. Provide training concerning project processes.

12. Evolve strategies for increasing “buy-in” from stakeholders.

13. Provide and ensure customer involvement in the requirements process.

14. Figure out how to identify the “real” requirements.

15. Select a development method that is appropriate for the level of understanding of the customer’s
requirements.

16. Do prototyping.

17. Define a requirements process.

18. Take some steps to foster and nurture additional visible and vocal senior management support.
Couple this with a cost-reduction initiative.

19. Provide the appropriate level of detail concerning requirements for different stakeholder groups,
for example, a higher level of detail for customers that captures the essence of what they need,
and a much more defined and detailed level for developers who are charged with actually coding
the requirement.

20. Through discussions, evolve an agreed-on set of practices, approaches, methods, and tools that
will be used on the project.

21. Foster commitment to follow the set of practices, approaches, methods, and tools that have been
agreed on.

22. Provide traceability of requirements from the customer need to definition of the requirement
and to all steps in the development process (e.g., to the design, to the code, to the test case and
verification that the requirement has been met, to inclusion in user documentation).

23. Improve the training that is provided.

24. Record requirements so that there is a common understanding, and resolve discrepancies in the
understanding of each requirement.

25. Meet with users to achieve a common meaning of the user requirements.

26. Clarify interpretations of formal documents, such as laws and policies.

27. Solicit “buy-in” from management concerning process.

28. Gain consensus concerning the requirements development process among all stakeholders.

29. Involve all stakeholders throughout the system development life cycle.

30. Select, train, and implement a requirements tool early.

31. Acknowledge people for their contributions and efforts.

32. Celebrate progress.

33. Provide periodic reviews of the requirements.

34. Ensure greater awareness about the requirements within all project groups.

35. Provide feedback mechanisms.

36. Ensure flowdown.

Table 7.6 is intended to serve two purposes: first, to offer some ideas con-
cerning how your project might improve its requirements process, and sec-
ond, to provide topics that might be considered in your workshop—for
example, workshop participants could multivote to select from these ideas
some areas that might warrant countermeasures in your environment.

Step 2 is to organize a DP workshop. In a DP workshop, the objective
(Step 3) is to analyze defects or problems to identify the categories of prob-
lems or defects that exist. It’s best if you have some data and can divide up
the defects to determine distinct categories of problems. But even if you
don’t have data, people who are familiar with the process will be able to
identify what they believe the major causes of the problems are. Once we
have identified the categories of problems, we should arrange them in
descending order with the category that causes the most problems first, fol-
lowed by the category with the next largest number, and so forth. This is
called Pareto analysis, and it is a powerful quality improvement technique.
Figure 7.5 provides an example of a Pareto chart.

Step 4 is to perform root cause analysis to identify the root causes of the
categories of problems or defects. A root cause can be defined as the major
reason that results in a condition. We want to be careful to look deeper than
the symptoms of the problem or characteristics about it. The reason for this
is that when we find the root cause of a problem, then identify (Step 5) and

148 The RA’s Specialty Skills

Table 7.6 Some Ideas Concerning Improving an Requirements Process (continued)

37. Document the things that have been done on the project.

38. Ensure communication of understandings.

39. Document the rationale for each requirement (why is it needed?).

40. Capture the costs of requirements volatility for discussions with the customer.

Note: This list was developed based on a discussion of effective practices with inputs from 35 practitioners in a requirements
workshop. The list is not prioritized and not all items are directly related to requirements.

12

10

8

6

4

2

0

N
um

b
e

r
o

fd
e

fe
ct

s

Defect counts by category

100%

80%

60%

40%

20%

0%
Design Code Requirements Test Field

Figure 7.5 Example of a Pareto chart.

implement (Step 6) countermeasures (actions or steps that eliminate the root
causes of problems) that effectively resolve the root cause, we now have a
process that produces better results (the capability of the process has been
strengthened or improved).

Step 7 is to evaluate the effectiveness of the implemented countermea-
sures. After a reasonable period of time, gather the same group of stakehold-
ers that participated in Step 2, and discuss whether things have improved.
Again, having data is best—one of your countermeasures that you may
have identified in Step 5 could have been to collect data so that we can
improve our ability to manage by fact rather than by intuition. After complet-
ing all of the steps of the DP process, it’s likely that you will want to under-
take another “improvement cycle”—that is, to go through the entire DP
process again. This approach embodies the desired continuous improvement
ethic or value and provides an opportunity to further strengthen and
improve upon the point of pain.

Alternatively, the group may decide that it simply wants to keep the
defined countermeasures in place, perhaps making some minor adjustments
(“tweaks”) based on feedback and observation by stakeholders. It’s impor-
tant to continue emphasis on process improvement activities to ensure they
are not only deployed, but also effectively implemented and institutional-
ized. We want the improvements to become “the way we do business,”
rather than something that requires a special effort. My experience is that
process improvements must be nurtured and supported, or they go away.
In fact, process improvements go away much more quickly than they
come—my experience about this is that they go away ten times faster than
they come. It may not be quite that quickly, but it is fast! Make efforts to
reinforce improvements, such as developing and using checklists and proce-
dures, providing training, tracking results, and ensuring management spon-
sorship and support. (An important aspect of management sponsorship is
vocal expression that the process improvements are helping the organiza-
tion to achieve its business objectives. Lacking active executive sponsorship
and support, any process or quality improvement effort will wane and even-
tually die.)

10. You indicate that estimation is an important skill. What aspects of estimation are
critical for the RA?

Accurately planning and estimating software projects is an extremely diffi-
cult software management function. Few organizations have established
formal estimation processes, despite evidence that suggests organizations
without formal estimation are four times more likely to experience delayed
or canceled projects. One valuable resource, should you become involved
in your project’s efforts to improve estimation, is Software Productivity
Research (SPR), Inc. Digest the information at the SPR Web site [24], and do
extensive reading and research. There is a lot of information available. Per-
haps 20% of it is really helpful. Before making suggestions, ensure that you
have digested industry experience.

149

There are tools, methods, and techniques that can be applied to sup-
port the development of estimates, such as MS Project, estimation mod-
els such as Constructive Cost Model (COCOMO) and SLIM that use lines
of code, and Knowledge PLAN and COCOMO II that use function points
(FPs). A lot of effort can be expended on estimation. The point is that
the basis of the estimates (BOE) should be as valid as possible, or else all of
the work applied to the estimation process is wasted. Industry experience is
that higher-quality requirements at the start of a project contribute significantly to
estimation.

Capers Jones’s company, SPR, has been collecting data concerning soft-
ware development since 1984. Jones strongly recommends using FPs and
emphasizes the value of utilizing FPs in connection with requirements—see
Insert 7.3 for insights and sources of additional information.

As suggested at the beginning of this chapter, consider reading and
studying two books that provide insight into estimation: Introduction to the
Personal Software Process [28] and Introduction to the Team Software Process [29],
both by Watts Humphrey. He provides experience-based insights into esti-
mation and what makes teams work effectively. These books offer
approaches that any project and every PM should consider.

11. You advise doing “inspections” for all requirements-related documents. Why
shouldn’t we be satisfied with doing peer reviews of them? How are inspections
different from peer reviews, and why go to the extra trouble? What type of inspec-
tion is best?

First, some background concerning inspections: Inspections add the defect
detection process to the DP process discussed earlier in this chapter. The defect
detection process is concerned with document quality, particularly identify-
ing and measuring defects in documentation and using this information to
decide how best to proceed as a result. A major defect is one that will likely
have an order of magnitude or larger cost impact if it is not discovered at the
requirements or design stage of a development effort. According to Tom
Gilb’s data [30], on the average, the find-and-fix cost for major defects is
one work hour upstream, but nine hours downstream! These are powerful
data! They (and perhaps some further reading and study) should convince you to rec-
ommend use of inspections for all requirements-related documents on your project.
Gilb’s experience is that, given management support, an organization can
improve from 20 or more major defects per page to between zero and two
major defects per page within one year [30].7 He believes that the ROI from
incorporating the inspection process into a development effort is 10:1.
(These are more powerful data to help convince you to recommend that
inspections be used on your project!) Other benefits include reduced rework

150 The RA’s Specialty Skills

7. The book is really about inspections of any work product, not just software. The authors’ approach is very

rigorous and, therefore, requires more training and is more expensive to conduct than other types of

inspections. Gilb now advocates another form that he calls “extreme inspection.” See his Web site for more

information.

costs, improved predictability, increased productivity, and better document
quality.8 Industry experts have different views of how the inspection process
should be performed and the amount of training that is required to imple-
ment an effective inspections program. Rob Sabourin offers an economical

151

Insert 7.3—FPs and Requirements (With thanks to Capers Jones for
the data provided below)

An FP is a measure of the complexity of software development.
FP metrics have been used to study requirements sizes, costs,

defects, and rates of change. Capers Jones believes it is helpful for RAs
to understand results expressed in terms of FPs, but they don’t need to
know the actual details of counting. For example, requirements speci-
fications for many projects average around 0.5 pages per FP. Testing is
not efficient in finding requirements problems, but formal inspections
of requirements average about 65% success in finding them. By meas-
uring the FP totals after the requirements are first assembled, and then
again at the end of the project, industry experience shows that the
average rate at which new requirements surface during design and
coding phases is 2% per month. The maximum rate has topped at 5%
per month. With such information, it is possible to plan ahead for
effective change management approaches. Some of the methods that
have been found useful in deducing requirements changes are JAD
requirements gathering (requirements workshops), prototypes, and
requirements review boards.

Several outsource vendors are using FPs as the basis for contracts.
Some use a sliding scale, such as initial requirements cost $500 per FP;
changes during the first three months after the initial requirements are
completed cost $600 per FP; and later changes cost $1,000 per FP. This
sliding scale encourages early and complete requirements analysis and
solves some difficult areas in outsource contracts.

Sources for additional information:

◗ Garmus, David, and David Herron, Function Point Analysis: Meas-
urement Practices for Successful Software Projects [25].

◗ The International Function Point Users Group (IFPUG) Web site,
at www.ifpug.org [26].

◗ Jones, Capers, Software Assessments, Benchmarks, and Best Prac-

tices [27].

From: Capers Jones. Used with permission.

8. Gilb, Tom, “Planning to Get the Most Out of Inspection,” in Daughtrey’s Fundamental Concepts for the Software

Quality Engineer, [31, p. 178}.

inspections training and implementation approach. Contact him at rsa-
bourin@amibug.com [32].

12. You have placed a lot of emphasis on quality. How can the RA help apply quality
principles on systems and software development projects?

The astute RA will study quality principles and constantly strive to achieve
high quality. Taz Daughtrey provides a good summary of ways to do this in
Fundamental Concepts for the Software Quality Engineer [31], a collection of
works gathered from 32 authors with a wealth of experience in quality. The
works are experienced-based reports of practices that have proven effective
in a variety of industries, applications, and organizations. Study of these
articles will provide insights, professional growth, and improvement in your
skills. Several of them offer further insights concerning topics addressed in
this book:

◗ Risk management;

◗ Customer satisfaction;

◗ Use of an evolutionary approach;

◗ Defect reduction;

◗ Justifying process improvement to managers (see topic 16, below);

◗ Human elements in system development;

◗ Utilizing statistical process control (SPC) to measure process capability;

◗ Managing with metrics;

◗ Selecting tools;

◗ Evaluating software products;

◗ Applying quantitative methods.

Strive to ensure that you have proactive QA on your project. By proac-
tive QA, I mean quality assurance specialists that participate in develop-
ing and applying processes and defect prevention efforts that build quality
into the work products. Experience has shown us that it’s not possible
to remove poor quality from work products. For example, although test-
ing is important, industry experience shows that testing finds less than
50% of the defects in a software product.9 One must have quality soft-
ware going into the test process in order to have even better quality result

152 The RA’s Specialty Skills

9. Watts Humphrey, PSP tutorial at Northrop Grumman IT DES on February 20, 2003. Humphrey emphasized

that the current software development practice in use in industry today is preoccupied with removing defects.

His experience is that many organizations spend 40% of project effort and costs on testing, whereas more

process-mature organizations are able to reduce testing costs to 10%.

from the testing activities. QA specialists can and should have an enor-
mous positive impact on a system or software development project. They
(like the rest of us) must be empowered by management to make a valued
contribution [33].

I would like to discuss one additional method before leaving this topic:
Quality Function Deployment (QFD). QFD began in the mid 1960s in Japan
as a quality system focused on developing products and services that satisfy
customers. Jones provides a description of QFD and a status report on its use
in his book Software Quality: Analysis and Guidelines for Success [34]. He notes
that QFD is a structured group activity that involves clients and product
development personnel. QFD is sometimes called “the house of quality”
because one of the main kinds of planning matrixes resembles the peaked
roof of a house. In Developing Products in Half the Time, 2nd ed., Smith and
Reinertsen discuss “Blitz QFD” [35, pp. 102–103]. Bicknell and Bicknell’s
The Road Map to Repeatable Success: Using QFD to Implement Change [36] pro-
vides a comprehensive review of QFD and shows how it can be used at all
levels of an organization. Ramaswami of Global Technology Operations
in India has utilized QFD in several projects (see their Web site at
www.gemedicalsystems.com). Mark Paulk reports that nine organizations
in the SEI’s database of level 4 and 5 organizations use QFD, five in India
and four in the United States.

Zultner advises that the use of software QFD is growing. Zultner has
made presentations on software QFD at the QAI conference in Bangalore, at
the European Organization for Quality conference in Budapest, and at the
Second World Congress for Software Quality in Yokohama. He reports that
some U.S. companies (such as Andersen Consulting) have been using soft-
ware QFD on a global basis for years. He advises that the best way to start
with QFD for software is Blitz QFD. Zultner believes no other tool, tech-
nique, or method even comes close to QFD for dealing with the “fuzzy front
end of requirements definition.” Capers Jones’s experience is that QFD
works best in companies that have fairly sophisticated QA departments. In
summary, concerning QFD, from my perspective, the bottom line is that one
must first discover and evolve the real requirements in order for the method
to be effective.

13. There seems to be a lot of confusion in our industry concerning the terms verifica-
tion and validation. Can you explain why this is so and also clarify suggested uses
of the two terms?

Yes. As Jeff Grady points out in his training materials, books, and presenta-
tions, software people and systems engineering people tend to use the two
words inversely, and this causes tremendous confusion [37]. The most impor-
tant thing in this regard is to clarify how the two words will be used on your project.
Here are the definitions I suggest:

◗ Verification: a process for ensuring that the design solution satisfies the
requirements;

153

◗ Validation: a process for confirming that the real requirements are
implemented in the delivered system.

You should clarify these two words to help your project avoid endless
frustrating discussions of what these words “really mean” and who is “right.”

14. The “agilists” advocate that agile development methodologies promise higher cus-
tomer satisfaction, lower defect rates, faster development times, and a solution to
rapidly changing requirements. Should I recommend that we consider agile devel-
opment methods on my project?

I believe that there is something to be said for both disciplined and agile
approaches. I’m concerned when I read and hear views that come down
strongly on one side or the other, especially when one is critical of the other.
Both approaches have shortcomings that, if left alone, can lead to project
failure. Each approach has a “home ground” where it is preferable to the
other—see Table 7.7.

My suggestion here is that you read and digest “Observations on Balanc-
ing Discipline and Agility,” [38] by Barry Boehm and Richard Turner. They
believe that strategies are emerging for integrating the two approaches in a
way that will take advantage of their strengths and avoid their weaknesses.

15. What is the value of practical knowledge?

During the course of writing this book, industry requirements-engineering
expert and consultant Ian Alexander [39] was a valued advisor and, as a
result, has become a good friend. Ian shared an insight concerning practical
knowledge with me:10

The overemphasis on intellectual knowledge as compared to practical skill

goes right back to Aristotle: the creative “Fire” and communicative “Air”

were male elements, whereas heavy fertile “Earth” and emotional “Water”

were female. Practical earthiness was despised. But we might argue the

opposite today: practical skill that integrates emotional intelligence (cf.

Daniel Goleman) and appropriate amounts of creativity and intellect is what

makes projects work. (For instance: Do academics know better than the

people who actually do the work?)

16. What if my PM, and/or our organization’s management team, or our customer
does not support the concept of process improvement?

My experience in making improvement suggestions on projects and in
organizations for over 30 years is that perhaps one-third of all managers are
open to process improvement. The majority of managers in my experience
are not very supportive of process improvement, especially when it is

154 The RA’s Specialty Skills

10. Personal e-mail communication with the author, January 25, 2003.

presented to them using those words. The root causes of this behavior are a
mystery to me. One simple possible cause is that PMs are just too busy to
give improvement opportunities serious consideration. Another possibility
is that their beliefs are set against the idea. A third possible explanation is
that PMs may be reluctant to recommend initiatives unless they are sug-
gested, or at least supported, by the customer, and many customers are not
aware of the power and value of process improvement. Another possibility
is that the project’s organizational culture is not committed to continuous
improvement. Still another possible explanation is that managers have not
had a way to determine how much improvement is due to process versus
other factors. The bottom line from the RA’s perspective is that you proba-
bly can have far more impact by aligning yourself in an environment that
supports continuous process improvement. My belief is that you will also

155

Table 7.7 Home Grounds for the Agile and Disciplined Approaches

Characteristic Agile Disciplined

Application:

Primary goals Rapid value; responding to change Predictability, stability, high
assurance

Size Smaller teams and projects Larger teams and projects

Environment Turbulent; high change; project-
focused

Stable; low change;
project/organization focused

Management:

Customer relations Dedicated on-site customers; focused
on prioritized increments

As-needed customer interactions;
focused on contract provisions

Planning and control Internalized plans; qualitative control Documented plans, quantitative
control

Communications Tacit interpersonal knowledge Explicit documented knowledge

Technical:

Requirements Prioritized informal stories and test
cases; undergoing unforseeable
change

Formalized project, capability,
interface, quality, forseeable
evolution requirements

Development Simple design; short increment;
refactoring assumed inexpensive

Extensive design; longer increments;
refactoring assumed expensive

Test Executable test cases define
requirements, testing

Documented test plans and
procedures

Personnel:

Customers Dedicated, collocated CRACK*
performers

CRACK* performers, not always
collocated

Developers At least 30% full-time Cockburn level
2 and 3 experts; no Level 0 or –1
personnel

50% Cockburn Level 3s early; 10%
throughout; 30% Level 0s workable;
no Level –1s**

Culture: Comfort and empowerment via many
degrees of freedom

Comfort and empowerment via
framework of policies and procedures

* Collaborative, representative, authorized, committed, knowledgable.

** These numbers will particularly vary with the complexity of the application.

From: Barry Boehm. Reprinted with permission.

enjoy far more job satisfaction and have more fun at work by doing this. See
Bradford Clark’s “Effects of Process Maturity on Development Effort” [40]
for valuable insights. His study, using a 112-project sample, concluded that a
change in one level of process maturity using the CMM framework
resulted in a reduction of development effort of 10 to 32 percent. This is
phenomenal and deserves the attention of every project. See also (1)Brod-
man and Johnson’s study of ROI from SPI as measured by U.S. indus-
try [41]; (2) Butler’s “The Economic Benefits of SPI” [42]; (3) Dion, “Process
Improvement and the Corporate Balance Sheet” [43]; (4) Herbsleb et al.’s
“Benefits of CMM-Based SPI: Initial Results” [44]; (5) Humphrey et al.’s
“SPI at Hughes Aircraft [45]; (6) McGibbon’s “A Business Case for Software
Process Improvement Revised: Measuring Return on Investment from
Software Engineering and Management.” [46]; and (7) DACS Technical
Reports [47]. I do not agree with Grady Booch that “CMM is orthogonal to
project success and not sufficiently agile for economic success.” This is con-
trary to my personal experience. I asked Booch to explain his perspective on
this—he clarified that in his experience, some “process-mature” projects are
not successful because the project team is so engrossed in process that they
neglect the importance of being nimble in the marketplace.11 Booch was
clarifying that the CMM measures process maturity, whereas success in
business is measured by ROI.

So, in answer to the question, I advise that, first, you try to encourage
your manager, your project, and your organization to embrace process
improvement. If you find that you are running up against a brick wall (no
one will support process improvement initiatives), change your environ-
ment (move to a different project or organization that does support process
improvement). Life is too short, and we spend too much time at work to not
be fulfilled by what we do. Our attitude about our work impacts our families
and our lives. Take action if necessary. Our Lord provides.

17. How should the work breakdown structure be applied?

The work breakdown structure (WBS) is a planning tool that decomposes
the activities of a project into categories of work tasks from which costs and
effort can be allocated and tracked. The development of a WBS depends on
the organization’s culture, the project management style, customer prefer-
ence, and other project-specific factors. A typical approach is to decompose
the work into subsystems, components, functions, organizational units, and
life-cycle phases. My experience is that the structure of a project’s WBS is
often arbitrary, and the use of WBSs is flawed because they are prematurely
structured around the product design and are defined in either too much or
too little detail. An alternative approach is to organize the planning ele-
ments around the process framework. Insert 7.4 offers an approach that
relates the requirements to the work products.

156 The RA’s Specialty Skills

11. Personal e-mail communication with the author, March 12, 2003.

157

Insert 7.4—Product Breakdown Structure

Most guidance on project management suggests that planning a project
is a relatively straightforward sequence of events. First, you define the
requirements and then identify the final work products that will be
delivered to the customer. Next, you identify intermediate work prod-
ucts needed to develop the final work products and then develop a
WBS, which tells you what work has to be done. With the WBS, it
should be a straightforward process to estimate the effort needed to do
the work and assign the available resources to develop a schedule.
With a schedule in hand, all is well. Your project is planned, and suc-
cess is ensured. You can even use sophisticated and inexpensive
project-planning tools to print out very large and impressive looking
bar charts that detail down to the last day exactly when all the work
will be done.

Unfortunately, the real world of project management is sometimes
not that simple. One major difficulty can be the leap from require-
ments to the WBS through those stepping-stones called “work prod-
ucts.” Sure, the major work products you will deliver to the customer
at the end of the project should be relatively straightforward to deter-
mine. After all, that is what the requirements effort should be spelling
out in sufficient detail that you know what your customer wants. But
it’s those pesky intermediate work products and other potentially hid-
den deliverables that don’t make themselves obvious during the early
stages of project planning that can cause the path to be slippery, if not
downright dangerous. If the project involves any sort of innovation,
from something you or your team has never done before to something
no one else has ever done before, then these intermediate work prod-
ucts might not be at all obvious.

Then there’s the challenge of the WBS itself. The standard defined
in the Program Management Body of Knowledge is that a WBS is a
“family tree of activities that organizes, defines and graphically displays
the total work to be accomplished in order to achieve the final objec-
tives of a project.” [48] Standard guidance is that the WBS should be
product based, meaning that it’s hierarchy should be driven by the
major final work products. But almost anyone who has worked on an
IT project knows that many WBSs are organized by phase at the top
levels, with something akin to Define Requirements, Design, Build and
Unit Test, Integration Test, and Product Delivery representing the top
levels of the hierarchy. These are not product-related at all, but instead
represent a workflow that will hopefully result in the desired outcome.
Unfortunately, many PMs leap to this standard structure very early in
the project, without really knowing what subcomponents need to be
built or what intermediate steps need to be taken. It can provide the
false assurance that we know what we are doing, when in fact there
are still significant unknowns in what the final or intermediate work

158 The RA’s Specialty Skills

Insert 7.4—Product Breakdown Structure (continued)

products will be and what tasks will be required to build them. Then
there is the problem that once the WBS is organized, there is great
reluctance to change it. As Noel Harroff has pointed out, “once the
WBS is cast, it can be a “dog of a job to undo” [49].

Unfortunately, many projects fail because they are working to a
schedule, based on a WBS that does not provide a realistic roadmap to
accomplish the work. What looked good on paper is not at all doable in
the real world. Is there anything that can help?

The PRINCE2 project management methodology developed for the
British government offers some ideas that can help. Product-based
planning is a key feature of PRINCE2. It focuses on the products to be
delivered and their quality. A key step in project planning is the devel-
opment of a product breakdown structure (PBS). In the PRINCE2
method, planning is done in three steps: (1) develop a PBS, (2) docu-
ment product descriptions, and (3) produce a product flow diagram
that results in a work activity network. Max Wideman [50] provides
an excellent comparison of PRINCE2 and the PMBOK approaches to
project management. The PRINCE2 methodology also views planning
as a continuous activity that occurs throughout the life cycle of the
project. That way, as new information is gained about the require-
ments or the potential solution, the project has a process for reincorpo-
rating this information into the project plan.

It is not necessary to change over to the entire PRINCE2 methodol-
ogy to benefit from some of its concepts, especially the idea of a PBS. A
key advantage of developing a PBS is that it can focus attention on the
deliverables at the smallest practical level, on what is needed to define
the end products. This process will necessarily identify subcomponents
and intermediate components needed to produce the final product.
This focus on product rather than the work needed to produce the
product can help clear the path and identify areas that are poorly
understood and need clarification. This can result in recognition of
areas needing feasibility studies or further research.

At what point does the PBS stop and the work, identified in a work
activity network or a WBS, begin? For instance, a common approach
in IT projects is to develop a system as a series of builds. Using the PBS
approach, each build would be a deliverable to the customer, and the
resulting workflow would reflect this at the top level of the hierarchy.
However, at the beginning of project planning, the concept of separate
builds might not even be considered. The distinction between product
and work is not as critical as the recognition that planning is a creative
process of discovering the components, activities, and relationships
between them. What starts out as the initial PBS, which will necessar-
ily focus strictly on the immediate deliverables to the customer, will
evolve as planning identifies risk reduction activities, which might be

18. What is a good approach for considering requirements risks?

Some organizations use the SEI’s Taxonomy-Based Questionnaire (TBQ) as
a tool for risk identification. A number of the TBQ questions were designed
to elicit requirements-related risks—these are provided in Table 7.8. Those
described in Section A.1 relate to the quality of the requirements them-
selves. Those described in Section A.2 are requirements-related risks associ-
ated with the design, and those described in Section A.4 are associated with
integration and test. Those described in Section A.5 are risks associated with
the engineering specialties. Those described in Section B relate to the devel-
opment process. These questions provide a good basis for evaluating
requirements-related risks associated with your task or project.

Ian Sommerville provides a good overview of the risk management
process and risk sources, probabilities, and effects in Software Engineering, 6th
ed. [52, pp. 84–90]. Barry Boehm provides pioneering insights Software Engi-
neering Economics [53, pp. 279–288, 297–300, and 588–590].

Summary
This chapter provides a discussion of additional skills and information useful
to the RA. It’s likely that you won’t need the information concerning all of
these topics either immediately or at any one particular time. It’s also likely
that you will need to know about most of these areas at some point in your
work. You might consider trying out techniques such as DP and inspections
if (1) you haven’t used them, or (2) your project is not currently applying
them. The approaches and techniques discussed in many of these topics
should be used continuously on all projects, for example, reducing require-
ments errors, CM, understanding V&V, and inspections of requirements-
related work products. Others are more in the “nice to have but very impor-
tant” category, such as estimation, improving and refining your facilitation
skills, being a leader on your project, and pursuing continuous improve-
ment. Still others, such as IE and use of FPs are applicable to special situa-
tions. For example, consider using IE when there is a need to estimate
requirements quantitatively to make design decisions. FPs may help when
measuring FP totals at different points in the project will assist in planning

Summary 159

Insert 7.4—Product Breakdown Structure (continued)

manifested as separate builds, to ultimately deliver the product. The
key point is that a PBS can serve as another tool in project planning
that will minimize slipping up on those ill-defined work products or
intermediate work products that could cause delay or disaster.

John E. Moore
Project management engineer

160 The RA’s Specialty Skills

Table 7.8 Analysis of Requirements-Related Risks

A.1 Requirements: Are there risks that may arise from requirements being placed on the
product?

A.1.a Requirements—Stability

Are requirements changing even as the product is being produced?

[1] Are the requirements stable?

[1.a] If NO: What is the effect on the system?

Quality/Functionality/Schedule/Integration/Design Testing

[2] Are the external interfaces changing?

A.1.b Requirements—Completeness

Are requirements missing or incompletely specified?

[3] Are there any TBDs in the specifications?

[4] Are there requirements you know should be in the specification, but aren’t?

[4.a] If YES: Will you be able to get these requirements into the system?

[5] Does the customer have unwritten requirements or expectations?

[5.a] If YES: Is there a way to capture these requirements?

[6] Are the external interfaces completely defined?

A.1.c Requirements—Clarity

Are requirements unclear or in need of interpretation?

[7] Are you able to understand the requirements as written?

[7.a] If NO: Are the ambiguities being resolved satisfactorily?

[7.b] If YES: There are no ambiguities or problems of interpretation?

A.1.d Requirements—Validity

Will the requirements lead to the product the customer has in mind?

[8] Are there any requirements that may not specify what the customer really wants?

[8.a] If YES: How are you resolving this?

[9] Do you and the customer understand the same thing by the requirements?

[9.a] If YES: Is there a process by which to determine this?

[10] How do you validate the requirements?

Prototyping/Analysis/Simulations

A.1.e Requirements—Feasibility

Are requirements infeasible from an analytical point of view?

[11] Are there any requirements that are technically difficult to implement?

[11.a] If YES: What are they?

[11.b] If YES: Why are they difficult to implement?

[11.c] If NO: Were feasibility studies done for these requirements?

[11.c.1] If YES: How confident are you in the assumptions made in the studies?

A.1.f Requirements—Precedent

Do requirements specify something never done before or something that your company
has not done before?

[12] Are there any state-of-the-art requirements?

Technologies/Methods/Languages/Hardware

[12.a] If NO: Are any of these new to you?

[12.b] If YES: Does the program have sufficient knowledge in these areas?

[12.b.1] If NO: Is there a plan for acquiring knowledge in these areas?

Summary 161

Table 7.8 Analysis of Requirements-Related Risks (continued)

A.1.g Requirements—Scale

Do requirements specify a product larger, more complex, or requiring a larger
organization than in the experience of the company?

[13] Is the system size and complexity a concern?

[13.a] If NO: Have you done something of this size and complexity before?

[14] Does the size require a larger organization than is usual for your company?

A.2 Design: Are there risks that may arise from the design that the project has chosen to meet
its requirements?

A.2.a Design—Functionality

Are there any potential problems in meeting functionality requirements?

[15] Are there any specified algorithms, which may not satisfy the requirements?

[15.a] If NO: Are any of the algorithms or designs marginal with respect to meeting
requirements?

[16] How do you determine the feasibility of algorithms and designs?

Prototyping/Modeling/Analysis/Simulations

[18] Are there any requirements or functions that are difficult to design?

[18.a] If NO: Do you have solutions for all the requirements?

[18.b] If YES: What are the requirements? Why are they difficult?

A.2.d Design—Performance

Are there stringent response time or throughput requirements?

[22] Are there any problems with performance?

Throughput

Real-time response

Database response, contention, or access

Scheduling asynchronous
real-time events

Response time

Recovery timelines

[23] Has a performance analysis been done?

[23.a] If YES: What is your level of confidence in the performance analysis?

[23.b] If YES: Do you have a model to track performance through design and implementation?

A.2.e Design—Testability

Is the product difficult or impossible to test?

[26] Do the testers get involved in analyzing requirements?

A.2.f Design—Hardware constraints

Are there tight constraints on the target hardware?

[27] Does the hardware limit your ability to meet any requirements?

Architecture

Reliability

Functionality

Throughput

Memory capacity

Response time

Real-time response

Database performance

Recovery timelines

Availability

A.4 Integration and test: Are there risks that may arise from the way the project is choosing to
bring the pieces together and prove that they work as a whole?

A.4.a Integration and test—Environment

Is the integration and test environment adequate?

[48] Does hardware and software instrumentation facilitate testing?

[48.a] If YES: Is it sufficient for all testing?

A.4.b Integration and test—Product

Is the interface definition inadequate? Are facilities inadequate? Is time insufficient?

162 The RA’s Specialty Skills

Table 7.8 Analysis of Requirements-Related Risks (continued)

[50] Have acceptance criteria been agreed to for all requirements?

[50.a] If YES: Is there a formal agreement?

[55] COTS: Will vendor data be accepted in verification of requirements allocated to COTS
products?

[55.a] If YES: Is the contract clear on that?

A.5 Engineering specialties: Are there risks that may arise from special attributes of the
product?

A.5.b Engineering Specialties—Reliability

Are the reliability or availability requirements difficult to meet?

[64] Are reliability requirements allocated to the software?

[65] Are availability requirements allocated to the software?

[65.a] If YES: Are recovery timelines any problem?

A.5.c Engineering Specialties—Safety

Are the safety requirements infeasible and not demonstrable?

[66] Are safety requirements allocated to the software?

[66.a] If YES: Do you see any difficulty in meeting the safety requirements?

[67] Will it be difficult to verify satisfaction of safety requirements?

A.5.d Engineering Specialties—Security

Are the security requirements more stringent than the current state-of-the-practice or
program experience?

[68] Are there unprecedented or state-of-the art security requirements?

A.5.f Engineering Specialties—Specifications

Is the documentation adequate to design, implement, and test the system?

[72] Is the software requirements specification adequate to design the system?

[74] Are the external interface requirements well specified?

B.1 Development process: Are there risks that may arise from the process that the project has
chosen to develop the product?

B.1.a Development process—Formality

Will the implementation be difficult to understand or maintain?

[78] Are there formal, controlled plans for all development activities?

Requirements analysis

Design

Code

Integration and test

Installation

QA

CM

[78.a] If YES: Do the plans specify the process well?

[78.b] If YES: Are developers familiar with the plans?

B.1.e Development process—Product control

Are there mechanisms for controlling changes in the product?

[85] Is there a requirements traceability mechanism that tracks requirements from the
source specification through test cases?

[86] Is the traceability mechanism used in evaluating requirement change impact analysis?

[87] Is there a formal change control process?

[87.a] If YES: Does it cover all changes to baselined requirements, design, code, and
documentation?

[89] Is there adequate analysis when new requirements are added to the system?

ahead for effective change management approaches (to anticipate and con-
trol requirements changes) or when using FPs can facilitate costing work or
understanding and reducing the complexity of code. Some industry require-
ments engineering experts remain skeptical concerning the general applica-
bility of IE and FPs.

It’s worth reiterating that small projects should avoid using smallness as
an excuse for not using discipline and processes. Most of the things that
need to be done on medium and large projects also need to be done on small
projects—it’s a question of scale.

The most important thing is for you to be fulfilled in your work as an RA.
I trust that the discussion in this chapter will help you.

Case Study
An article in the Washington Post12 reported on a situation involving systems
developers and integrators. A federal board fired the contractor it hired in
1997 to create a new computer system to keep track of $100 billion in
retirement savings, citing repeated delays and software that contained many
defects. The board stated that the contractor was “incapable of fulfilling
commitments” and filed suit for $350 million in damages. The lawsuit
alleged that the system required 40 hours to post transactions, rather than
the requirement of 11 hours, and that it could not tell the difference
between a participant who lived in Delaware and one who lived in Ger-
many, which would require all correspondence to be addressed manually,
rather than by the computer.

The termination of the contract and the lawsuit “stunned contractor offi-
cials,” who explained that its customer repeatedly asked for design changes,
making timetables for delivery of the new system a moving target. “After
more than three years, the board still has not determined what its systems

Case Study 163

Table 7.8 Analysis of Requirements-Related Risks (continued)

B.2 Development system: Are there risks that may arise from the hardware and software tools
the project has chosen for controlling and facilitating its development process?

B.2.b Development system—Suitability

Does the development system support all phases, activities, and functions?

[94] Does the development system support all aspects of the program?

Requirements
analysis

Design

Test

Performance
analysis

Coding

Documentation

CM

Requirements
traceability

Management
tracking

Modeled on the SEI TBQ [51].

12. Washington Post, July 18, 2001, pp. B1 and B5.

needs are. We have developed more than 1.2 million lines of software
code—five times the original estimate—and more than 70 percent of the
software has been completed and fully tested.”

The new computer system was originally scheduled to be in operation by
May 2000. The delivery date was postponed several times.

Another contractor was hired to take over the project, but it was unclear
when the new system might go on-line.

This example of requirements gone wrong jeopardized the reputation of
the contractor company, wasted millions of dollars, adversely affected the
mission and operations of the customer, and negatively impacted the lives
of many people and families who were involved on both sides of the
contract.

What could have been done to avoid this disaster? Most fundamentally,
a partnership relationship needed to be created, developed, and maintained
that set project success as the objective. The customer and the development
contractor should have put in place at the beginning of the contract a set of
mechanisms to keep the train on the tracks rather than risk allowing things
to go wrong. Specifically, the following could be done to avoid a similar
disaster:

◗ Through the use of a partnering workshop facilitated by an outside
expert, a joint vision of project success should be defined, docu-
mented and signed. The document should include a set of mutually
agreed upon objectives that define the high-level requirements for the
contract. Most importantly, commitment of both parties to support
each other should be established at the outset.

◗ The commitment noted here should include a commitment to resolve
problems and issues as soon as they come up. An “issue resolution lad-
der” should be created in the initial partnering workshop and the com-
mitment of the individuals involved on both sides of the contract gained
to use this mechanism to keep the train on the tracks while work
proceeds.

◗ A set of guiding principles for how the parties will treat each other
during the contract should be collaboratively developed. Some exam-
ples of these guiding principles are honesty, open communication,
proactive leadership, prompt completion of assigned action items and
reviews of documents, mutual support of each other, and establishing
a set of “rules of conduct” for meetings, e-mail communications, and
how people are to treat each other.

References

[1] Hooks, I. F., and K. A. Farry, Customer-Centered Products: Creating Successful
Products through Smart Requirements Management, New York: AMACOM, 2001,
p. 6.

164 The RA’s Specialty Skills

[2] Watts, F. B., Engineering Document Control Handbook: Configuration Management in
Industry, 2nd ed., Park Ridge, NJ: Noyes Publications, 2000.

[3] Leon, A. A., Guide to Software Configuration Management, Norwood, MA: Artech
House, 2000.

[4] EIA Standard 649, “National Consensus Standard for Configuration
Management.”

[5] Fowler, M., UML Distilled: Applying The Standard Object Modeling Language.
Reading, MA: Addison-Wesley, 1997.

[6] Object Management Group (OMG), “Introduction to the UML,” at www.omg.
org/gettingstarted/what_is_uml.htm.

[7] OMG, “OMG Unified Modeling Language Specification,” Version 1.4,
September 2001, at www.omg.org/technology/documents/formal/mof.htm.

[8] Gottesdiener, E., “Top Ten Ways Project Teams Misuse Use Cases—And
How to Correct Them,” at www.therationaledge.com/content/jun_02/t_
misuseUseCases_eg.jsp.

[9] IEEE Software Engineering Standards Committee, IEEE Standard 1233a-1998,
“IEEE Guide for Developing System Requirements Specifications,” IEEE
Computer Society, December 8, 1998.

[10] IEEE Software Engineering Standards Committee, IEEE Standard 830, “IEEE
Recommended Practice for Software Requirements Specifications,” IEEE
Computer Society, December 2, 1993.

[11] Robertson, S., and J. Robertson, Mastering the Requirements Process, Harlow, UK:
Addison-Wesley, 1999.

[12] Kulak, D., and E. Guiney, Use Cases: Requirements in Context, New York: ACM
Press, 2000.

[13] Cockburn, A., Writing Effective Use Cases, Boston, MA: Addison-Wesley, 2001.

[14] Korson, T., “The Misuse of Use Cases: Managing Requirements,” white
paper, copyright Korson-McGregor, 2000, at www.korson-mcgregor.com/
publications/korson/Korson9803om.htm.

[15] Gamma, E., et al., Design Patterns, Reading, MA: Addison-Wesley, 1995.

[16] Federal Information Processing Standards Publications (FIPS PUBS) 183,
“Integration Definition for Function Modeling (IDEF0).” This standard
describes the IDEF0 modeling language (semantics and syntax) and associated
rules and techniques for developing structured graphical representations of
a system or enterprise. Use of this standard permits the construction of
models comprising system functions (activities, actions, processes, operations),
functional relationships, and data (information or objects) that support systems
integration. Available from www.itl.nist.gov/fipspubs/idef02.doc.

[17] IEEE, IEEE 1320.1. “IEEE Standard for Functional Modeling Language—Syntax
and Semantics for IDEF0.” IEEE Computer Society, 1998.

[18] Feldmann, C. G., The Practical Guide to Business Process Reengineering Using IDEF0,
New York: Dorset House, 1998.

[19] Paulk, M. C., “Using the Software CMM with Good Judgment,” Software
Quality Professional 1(3) (1999), at www.sei.cmu.edu/publications/articles/
paulk/judgment.html.

Case Study 165

[20] Hadden, R., “How Scalable Are CMM Key Practices?” CrossTalk (April 1998):
18–23. See also www.ppc.com.

[21] Brodman, J. G., and D. L. Johnson, The LOGOS Tailored CMM for Small Businesses,
Small Organizations, and Small Projects, LOGOS International, Inc., at www.tiac.
net/users/johnsond.

[22] Gilb, T., Principles of Software Engineering Management, Harlow, UK: Addison-
Wesley, 1988.

[23] Gilb, T., “Impact Estimation Tables: Understanding Complex Technology
Quantitatively,” white paper, November 1997, at www.gilb.com.

[24] SPR, Web site, at www.spr.com.

[25] Garmus, D., and D. Herron, Function Point Analysis: Measurement Practices for
Successful Software Projects. Boston, MA: Addison-Wesley, 2001.

[26] IFPUG, Web site, at www.ifpug.org.

[27] Jones, C., Software Assessments, Benchmarks, and Best Practices. Boston, MA:
Addison-Wesley, 2000.

[28] Humphrey, W. S., Introduction to the Personal Software Process, Reading, MA:
Addison-Wesley, 1997.

[29] Humphrey, W. S., Introduction to the Team Software Process, Reading, MA:
Addison-Wesley, 2000.

[30] Gilb, T., and D. Graham, Software Inspection, Boston, MA: Addison-Wesley, 1993.

[31] Daughtrey, T. (ed.), Fundamental Concepts for the Software Quality Engineer,
Milwaukee, WI: ASQ Quality Press, 2002.

[32] Sabourin, R., Web site, at www.amibug.com/index.shtm.

[33] Walton, M., The Deming Management Method, New York: The Putnam Publishing
Group, 1986.

[34] Jones, C., Software Quality: Analysis and Guidelines for Success, London:
International Thomson Computer Press, 1997.

[35] Smith, P. G., and D. G. Reinertsen, Developing Products in Half the Time, 2nd ed.,
New York: John Wiley & Sons, Inc., 1998.

[36] Bicknell, B. A., and K. D. Bicknell, The Road Map to Repeatable Success: Using QFD to
Implement Change, Boca Raton: CRC Press, 1995.

[37] Grady, J. O., System Validation and Verification, Boca Raton: CRC Press, 1997.

[38] Boehm, B., and R. Turner, “Observations on Balancing Discipline and Agility,” in
from Balancing Agility and Discipline: A Guide to the Perplexed, Boston, MA:
Addison-Wesley, 2003.

[39] Alexander, I., Web site, at easyweb.easynet.co.uk/~iany/index.htm.

[40] Clark, B. K., “Effects of Process Maturity on Development Effort,” at
www.ralphyoung.net/goodarticles.

[41] Brodman, J. G., and D. L. Johnson,. “Return on Investment (ROI) from Software
Process Improvement As Measured by U.S. Industry,” Software Process
Improvement and Practice. Sussex, UK: John Wiley & Sons Ltd., 1995, 35–47.

[42] Butler, K., “The Economic Benefits of Software Process Improvement,” CrossTalk
(1995): 28–35.

166 The RA’s Specialty Skills

[43] Dion, R., “Process Improvement and the Corporate Balance Sheet,” IEEE
Software (October 1993): 28–35.

[44] Herbsleb, J., et al., Benefits of CMM-Based Software Process Improvement: Initial
Results. Technical Report CMU/SEI-94-TR-013. Pittsburgh, PA: Software
Engineering Institute, August 1994.

[45] Humphrey, W. S., et al., “Software Process Improvement at Hughes Aircraft,”
IEEE Software (August 1991): 11–23.

[46] McGibbon, T., “A Business Case for Software Process Improvement Revised:
Measuring Return on Investment from Software Engineering and
Management,” Contract Number SP0700-98-4000, Data & Analysis Center for
Software (DACS), ITT Industries, Advanced Engineering and Sciences Division,
Rome, N.Y., September 30, 1999, at www.dacs.dtic.mil/techs/roispi2.

[47] DACS, DACS Technical Reports, at www.dacs.dtic.mil/techs/tr.shtml.

[48] Project Management Institute, A Guide to the Project Management Body of Knowledge
(PMBOK), 1996.

[49] Harroff, Noel, “Work Breakdown Structure (WBS),” at www.nnh.com/ev/
wbs2.html.

[50] Wideman, Max, “Comparing PRINCE with PMBOK,” AEW Services, Vancouver
BC, Canada, at www.pmforum.org/library/papers/Prince2vsGuide3.htm, 2002.

[51] SEI, “Taxonomy-Based Risk Identification,” Technical Report CMU/
SEI-93-TR-6. Pittsburgh, PA: SEI, June 1993, at www.sei.cmu.edu/pub/
documents/93.reports/pdf/tr06.93.pdf.

[52] Sommerville, I., Software Engineering, 6th ed., Reading, MA: Addison-Wesley,
2001.

[53] Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice
Hall, 1981.

Case Study 167

.

An Integrated Quality Approach

Many “quality approaches” have been put forward over the
years, such as Total Quality Management (TQM), the Malcolm
Baldrige Award Criteria, Six Sigma, Quality Is Free, Zero
Defects, the Balanced Scorecard, standards developed by the
International Standards Organization (ISO), and others. One of
the problems in deploying quality programs has been convinc-
ing management and the organization that they are worth-
while. Another problem is that, often, quality initiatives are
difficult to sustain.

From my experience, quality in an organization or on a
project is more a way of life than a separate program, and the
choice of the quality model to be used is less important than
focusing on meeting customers’ real needs. Quality is the way
we work, not a separate function. This chapter is important to
the RA because there is a direct connection between meeting
customers’ real requirements and a quality approach. There is a
set of business drivers (high-level customer needs and expecta-
tions) that are really high-level customer requirements, which
RAs must address. Management has a critical role relative to
quality. If management does not value quality, quality won’t
happen. There is a set of principles in any organization that
serves to provide guiding values for the work that is performed
in the organization. This requires a set of quality improvement
techniques (described below). Individuals are responsible for
the quality of their products and services. This chapter explains
an integrated quality approach that facilitates and supports the
work of the RA. It will show that an effective requirements
process is necessary in order to have an integrated quality
approach and that an integrated quality approach is required
for the process to work best. By an integrated quality approach,
I mean the use of quality improvement techniques that are
incorporated into the daily work performed on a project and in
an organization with the goal of achieving customer satisfac-
tion. This is easier when there is a supporting infrastructure

169

8
Contents

Business Drivers for Quality

Management’s Role

Guiding Principles

Priority Management

The Components of an
Integrated Quality Approach

Quality Improvement
Techniques

The PDCA Cycle

How to Design a Process

Teamwork

Summary

Case Study: An Example of
Quality Improvement
Sidetracked

References

C H A P T E R

and an expectation of management (through its stated values and princi-
ples) that supports the work of the analyst. A caution is that no matter how
committed people or teams are to quality and to the effective use of quality
improvement techniques, they may not be successful if other teams, mem-
bers of their own team, and management do not share that commitment.

Business Drivers for Quality
A set of drivers exists that may be considered high-level customer require-
ments, but that often are not expressed. These include the following:

◗ Continued business success;

◗ High-quality products or services;

◗ Meeting customer requirements;

◗ Cost reduction;

◗ Customer and employee loyalty;

◗ Improved performance;

◗ Defect removal;

◗ Efficiency;

◗ Reduced cycle time;

◗ Innovative solutions.

It’s important for projects and organizations to consider these customer
needs.

Management’s Role
In high-performing organizations, strategic goals and business drivers are
linked to process improvement goals and activities. Values and guiding prin-
ciples are documented and communicated, and senior management sets its
expectation that all levels of the organization will abide by these principles
in their daily work habits. Relative to quality and process improvement,
management’s role is to do the following:

◗ Define strategic goals, such as revenue, profit, customer satisfaction,
and employee retention;

◗ Enable process improvement (PI):

◗ Act as sponsor and advocate of PI;

◗ Verbalize the value and results of PI;

◗ Provide resources for PI;

170 An Integrated Quality Approach

◗ Establish an improvement cycle.

◗ Establish values, such as the following:

◗ Focus on fixing the process, not the people;

◗ Measure and periodically update the processes in use;

◗ Promote continuous improvement as essential to maintain and
grow the organization;

◗ Promote the view that the organization’s people are its most impor-
tant resource.

◗ Make timely decisions;

◗ Determine areas that (a) matter most to customers, and (b) need
improvement, such as the following:

◗ Providing competitive solutions;

◗ Taking ownership of projects;

◗ Being flexible concerning working arrangements;

◗ Responding well to changes;

◗ Being responsive;

◗ Employing high-quality people;

◗ Providing good value;

◗ Meeting commitments;

◗ Listening well and understand needs;

◗ Being competent.

Guiding Principles
In any organization, a set of guiding principles establishes values for how
things are to be done. These principles may or may not be articulated. In
some organizations, the guiding value is that just getting along is okay. In
others, there exists a set of values that serve to provide high and effective
standards for how things are to be done, for example:

◗ Customer satisfaction is imperative for our continued existence.

◗ We will manage by fact (using data) rather than by intuition or by the
seat of our pants.

◗ We have a set of rules of conduct used by the people in our organization
that reflect respect for people.

◗ Continuous improvement is essential for all of our processes.

In my experience, having a set of guiding principles that is both practiced
and valued by management and the people in the organization creates a
sense of purpose for employees and emphasizes that employees are key

Guiding Principles 171

stakeholders in the success of the enterprise. As a result, people feel valued
and are motivated to contribute their best efforts.

Priority Management
The process used by management to decide what it wants to achieve is
depicted in Figure 8.1. Note that the process utilizes QI teams to address pri-
ority activities or problems and develop plans and recommendations for
review and approval by responsible executives. This approach capitalizes on
the experience, expertise, and commitment of the employees.

The Components of an Integrated Quality Approach
The components of an integrated quality approach may be described as
management, customers, projects and tasks, QI teams, and QA. Figure 8.2
describes how these components work together. Note the following:

172 An Integrated Quality Approach

Create/revise
vision and
mission

Analyze goals
and objectives

Establish break-through objectives

Identify priority activities,
responsible executives, and
appoint QI teams

Consider, revise, and approve
recommendations

Sponsor, advocate, and
communicate objectives

Integrate with business plans

Approve and issue plans

Foster a continuous
improvement approach

Define the
activities
using
the QI story

Develop plans and
recommendations

Assess where we are and
what we need to do

Figure 8.1 Deciding what we want to achieve.

◗ A critical aspect is the use of the joint team to evolve the real require-
ments, as discussed in Chapter 1.

◗ Employee satisfaction data are another form of feedback provided to
management that helps guide the organization.

◗ Standards such as the CMM may be used to measure organizational
effectiveness.

Quality Improvement Techniques
Regardless of the size of their projects, good PMs can make improvements
on local projects under their own initiative using one or more of the quality

Quality Improvement Techniques 173

Management Customers Projects / tasks QI teams QA

Determines
vision,
mission, and
priority
activities

Provide
needs and
requirements

Perform
work

Evaluate
work results

Provide
customer
satisfaction
data

Evaluates
feedback and
initiates
continuous
improvement

Independently
evaluates
policies,
processes,
and work
results and
provides
feedback to
management

Jointly evolve
the real requirements

Define, document and improve
key processes

Figure 8.2 How the components of an integrated quality approach work together.

improvement techniques described below. But, if a business wants to
improve the quality of its products and services, the most effective approach
is do it from the top and implement these techniques across all projects. The
best way to manage quality improvement is to establish a quality manage-
ment board (QMB) as a management team that can implement these ideas
at the top and, thus, lead the company down the road to quality by exam-
ple. In the QMB, managers can determine appropriate organizational poli-
cies and quality and PI objectives. To accomplish their goals, they
implement plans for improvement and provide needed resources and skills.
They track the status of improvements, reward teams and individuals for
successes, and identify ways to transfer lessons learned and improvements
to other parts of the organization. Regardless of the size of the organization,
the QMB sets its agenda through easy-to-understand quality goals and pro-
vides direction regarding the implementation of the following quality
improvement techniques:

◗ Quality improvement and process improvement models: Consider adopting a
framework (such as the CMM or CMMI) as a standard for systems
or software engineering and conducting annual evaluations of the
current situation against the standard (see Figure 8.3). Experience has
shown that CMMs, in use since 1987, enable a systems or software
engineering project or organization to perceive how it stacks up

174 An Integrated Quality Approach

Management
commitment to an
approach

Selection of a
standard

Evaluation of the
current situation

Recommendations
and actions plans

Improvement
activities

Evaluation of results
and opportunities for
future improvements

Desire for
continuous
improvement

Recommended
annual cycle

Figure 8.3 The quality improvement cycle.

against what industry considers a best practice and whether or not
improvements it has implemented are having the desired effect. Use
the results to identify priority areas for improvement activities and
initiate continuous improvement initiatives, including QI teams
where appropriate. Though it can take some planning, resources, and
time to determine how the organization fits with the chosen process
model, this investment will provide valuable information that can
help steer improvements. It might be easier for larger organizations to
absorb the expense of evaluations and improvements, but smaller
organizations can look at their improvement program in strategic
terms and look for other ways to implement improvements. For
example, they may want to partner with other contractors or custom-
ers to accomplish their goals.

◗ Training: Regular and appropriate training is always a valuable invest-
ment for any size company. Customers demand that workers have the
latest technology skills, and employees want to improve their profes-
sional development and performance. If organizations expect to con-
tinue to meet their customers’ evolving needs and their employees’
desire for personal and career growth, then management must take
responsibility to ensure this happens. Smaller or medium-size organi-
zations might have difficulty (through lack of resources) establishing an
organizational training program. Partnering with local colleges or uni-
versities for lower rates may be an option they could explore.

◗ QI teams using the QI story: Though always conscious of the bottom
line, large companies have more leeway in terms of resources to
staff and fund QI teams. Because they have less staff and smaller budg-
ets, small and medium-size projects or companies need to be judicious
in the establishment of teams. At the same time, because they must
operate their businesses and respond to customer demands and deal
with chronic quality problems, they should establish QI teams to attack
only what senior managers feel are the most critical company prob-
lems. In other words, smaller organizations should establish teams to
deal with those problems that hamper their ability to do business or
meet customer demands. (See below for more information about the QI
story process that can be used by QI teams to foster continuous
improvement.)

◗ Customer satisfaction surveys (e.g., by phone): Consider providing a
mechanism to deal immediately with customer dissatisfaction, such as
“red alert procedures” to escalate concerns, deal with them, and pro-
vide feedback to the customer. Large projects or companies have estab-
lished mechanisms and tools to track and manage customer satisfaction
issues. Managers can take advantage of existing resources to collect and
analyze the information and use it to improve or to win new business.
Even though they may not have the advantage of a corporate approach

Quality Improvement Techniques 175

or infrastructure, smaller companies also have an advantage. Because
they may work with a smaller group of customers, it is easier to take the
personal approach and discuss issues one on one with customers and to
develop immediate corrective actions. Regardless of the size of organi-
zation, if managers do not follow up or track their customer satisfaction
issues, they will pay they price in reduced funding, canceled contracts,
or awards to competitors.

◗ Employee satisfaction surveys: Learning about employee concerns through
objective data and acting on the results builds employee loyalty and
improves retention. As with the customer satisfaction surveys, larger
companies use considerable resources to address employee issues and
to retain their workforce. They know that these resources have feet and
can leave at any time to find better a work environment or opportuni-
ties for advancement. This is true for smaller companies as well, but it
may be more critical to their business if a few skilled workers who are
the core of their expertise in any given area leave to join the competi-
tion. Small business managers would do well to develop a short,
20-question survey to find out what is on the minds of their staff, to
determine what works well in the company and what does not, and to
identify areas for improvement. Such a survey does not need to be sci-
entific, but to serve as a basis for management decisions.

◗ QA: In most large companies, having an independent objective view
concerning policy and process compliance and use in the organization
provides valuable feedback on quality improvement and process
improvement efforts or points to other problems that might not have
their immediate attention. This makes it possible to have a trained QA
staff available to support any size project or team as a matrixed func-
tion. Smaller organizations may not have the trained personnel or
budget to support a full-time QA staff or a matrixed organization from
which they can assign QA. In those cases, it is recommended that the
entire project team adopt a quality team strategy, where all the mem-
bers of the team are responsible for the quality of the work they perform
and the products and services they provide. In this environment, each
staff member must perform reviews or audits on another team mem-
ber’s work product or service and on the process used. This approach
requires that each team member be trained for his or her QA role and
that a corrective action system be in place that tracks the status of prob-
lems found in QA reviews and keeps management informed. Managers
must take special care to ensure that reviewers can prove their objectiv-
ity in their role as QA (a main requirement of the CMMI) and that they
are not directly involved in the process or product they are reviewing.

◗ Process design, management, and improvement: A process is a set of activi-
ties that results in the accomplishment of a task or the achievement of
an outcome. Any size organization should use process as one of the

176 An Integrated Quality Approach

fundamental building blocks in its work. Larger and more complex
projects require more detail in their documented processes and show
the roles and responsibilities of all groups who are involved in the
process. For obvious reasons, getting large groups of people to work
together to meet shared goals can be more of a challenge. On the other
hand, smaller project teams have an advantage since they may be able
to rely on less detail in their documented process. For example, they
can use checklists or simple process flowcharts. Having fewer people on
the project team makes it easier to determine what the desired outcome
of the process is, what inputs and outputs are required, and the specific
process steps that need to be followed. Having small teams also makes it
easier to train and to make desired changes.

If you can’t describe what you are doing as a process, you don’t know

what you’re doing.

—William Edwards Deming, management consultant, 1900–1993.

◗ Monitoring performance through metrics: Managers need to make decisions
based upon data. Sometimes this data can be qualitative or quantita-
tive. For any size organization to improve, it must have quantitative
data on which to base its improvements. It is an unwise manager who
decides to expend resources to implement a quality improvement
when he or she does not know if such an improvement is needed. For
quality improvements and process improvements, managers need to
set reasonable objectives (that they have a good shot at making) and
identify measures they can use to determine whether or not they have
met that goal. Examples of potentially useful metrics include business
win rates, customer satisfaction ratings, and a customer loyalty index.
The latter can be generated as simply as by asking three questions: (1)
How do you rate our quality? (2) What is the likelihood of your contin-
ued business? (3) What is the likelihood of your recommending us to a
new customer?

◗ QI techniques: QI techniques such as brainstorming, multivoting, Pareto
analysis, barriers and aids analysis, action plans, cause-and-effect
analysis, checklists, the QI story, and PDCA (discussed below) are easy
to learn and invaluable in a forward-looking organization.1 These tech-
niques can work well in any size project or organization, as long as the
group is trained to use the technique and the results of the exercise.

◗ QI story: The QI story, developed by Qualtec Quality Services (now
part of Six Sigma Qualtec), provides a structure for tackling priority
activities and problems. As mentioned above, because they have fewer

Quality Improvement Techniques 177

1. An excellent, inexpensive guide for using these techniques is Six Sigma Qualtec’s QI Story: Tools and Techniques,

A Guidebook to Problem Solving, [1]. Another resource for organizational improvement materials is GOAL/QPC,

available from goalqpc.com or by calling (800) 643-4316.

resources, smaller projects or companies should be judicious in the use
of the QI story to solve problems; they should identify problems that
will be the most cost-effective to solve. A modified set of steps is as
follows:

1. Identify the reason for improvement.

◗ Determine the nature of the problem.

◗ Collect data.

◗ Identify key processes.

◗ Develop a plan and schedule.

2. Analyze the current situation.

◗ Identify customers’ real requirements.

◗ Set a target for improvement.

3. Conduct analysis.

◗ Identify probable root causes of the problem.

◗ Select root causes that seem to have the most impact.

◗ Verify the selected root causes with data.

4. Select countermeasures that attack the verified root causes.

◗ Evaluate whether the countermeasures will do the following:

◗ Address the verified root causes;

◗ Impact the customers’ requirements;

◗ Prove to be cost beneficial.

5. Develop an action plan to implement the selected countermeasures.

◗ Obtain management approval.

◗ Coordinate with stakeholders to garner support and cooperation.

6. Implement the countermeasures.

7. Measure the results.

◗ Did the countermeasures work?

◗ Are things improving?

◗ Are root causes being impacted?

◗ Evaluate the results compared to the target for improvement.

◗ Implement additional countermeasures if needed.

8. Standardize an approach based on the results.

◗ What can be changed to ensure the problem does not recur (e.g., a
new or revised policy, procedure, work process, standard, training)?

9. Consider what lessons have been learned from performing the qual-
ity improvement effort.

178 An Integrated Quality Approach

◗ Should related problems be addressed?

◗ Should the approach for performing the QI story be revised?

The PDCA Cycle
A popular and useful paradigm utilized for quality improvement is the
PDCA cycle [2] mentioned in Chapter 3 in connection with assessing
the value and usefulness of meetings. The idea is to plan the approach,
implement (“do”) it, check on how things are working, act on the results
of that checking, and continue the cycle. The PDCA cycle is shown in
Figure 8.4.

The PDCA Cycle 179

Commit to an
integrated quality
approach and
process
improvement

Identify top
priority
processes

Document top
priority
processes

Initiate a
continuous
improvement
culture

Plan

Implement the
quality
management
system

Evaluate:
• Customer

feedback
• Employee

feedback
• Project results
• Business

objectives

Form QI teams
to address
priority activities
and/or problems

Engage and
motivate the
work force

Reevaluate
strategic goals
and business
objectives

Improve process
capability and
results

Do Check Act

Figure 8.4 The PDCA cycle.

How to Design a Process
A critical skill needed by the RA is the ability to design and to improve
processes—more specifically, to facilitate process design and improvement
sessions. Recall that we defined a process as a set of activities that results in
the accomplishment of a task or the achievement of an outcome. For exam-
ple, in this book we have referred to the requirements process, a full system
life-cycle set of activities that includes the following:

◗ Identifying requirements;

◗ Understanding customer needs and expectations;

◗ Clarifying and restating the requirements (evolving the real
requirements);

◗ Analyzing the requirements;

◗ Defining the requirements;

◗ Specifying the requirements;

◗ Prioritizing the requirements;

◗ Deriving requirements;

◗ Partitioning requirements;

◗ Allocating requirements;

◗ Tracking requirements;

◗ Managing requirements;

◗ Testing and verifying requirements;

◗ Validating requirements.

Process design and process improvement are activities that do the
following:

◗ They involve stakeholders (those who have an interest) in deciding
how things should be done, thus gaining their buy-in to the imple-
mentation, use, and continuous improvement of the process.

◗ They enable a project or organization to become increasingly profi-
cient. Once a process is documented, everyone can understand it, and
it can be done repeatedly in the same way with the same results. Also,
improvements can be suggested, discussed, and incorporated.

Designing a process is straightforward. Gather a few smart people in a
room who are familiar with the process to be documented. It’s best if all of
the stakeholder groups are represented. Using a whiteboard or large piece of
paper, create the template provided in Figure 8.5.

180 An Integrated Quality Approach

Across the top, list the departments, organizations, or individuals
involved in the process. Along the vertical axis, list the steps in the process
(number or describe each step). Using small sticky sheets, ask people to
describe what should be done to accomplish the tasks in the process on the
sticky sheets and place them in the appropriate places on the template. An
alternative approach is to document what is actually done in the current

How to Design a Process 181

Department or
individuals
involved:

Customers Joint team Project CCB Software
development

CM QA

Delivered
products

Identify
a need

Evolve the
real
requirements

Proceed?

Develop
products

Provide
indepen-
dent
reviews

Y

Maintain
baseline
control

Determine
the
resources
required

Steps in the
process

Evolve the
real
requirements

Determine
resources
required

Develop
products

Maintain
baseline
control

Provide
independent
reviews

Deliver
products

Proceed?
Y

Figure 8.5 Process design flowchart template with simplified product development process.

process as a starting point for improvement. Once most of the activities have
been identified, make a final check to ensure that they are assembled in the
order in which the activities should be performed and are assigned to the
organization or person that should do them. Later, use standard flowchart
symbols to connect them. I have provided a simplified product development
process in the template to help you grasp the concept. You’ll find that some
of the activities of the process will require more detailed definition—in this
case, consider designing subprocesses to capture and document more
detailed understandings of the “should be” approach.

As emphasized in Chapter 3, the RA should be proficient in designing
and developing a process. Take the opportunity now, while you are think-
ing about it, to design a process. Select an important activity related to your
current work responsibilities that is not yet documented. Invite three to six
coworkers who are very knowledgeable about the activity or who are stake-
holders to participate with you in a process design workshop. Transcribe the
template provided in Figure 8.5 (without the flowchart and its associated
steps) onto a whiteboard. On a large pad off to the side, agree on the name
of the process. Then, give some careful thought to the objectives of the
process—what is it that the process is supposed to accomplish? Envisioning
outputs from the process will help. Document (write down) the process
objectives. Then, list the stakeholders of the process (anyone who has an
interest in the process or responsibilities related to completing the process).
Using 3 × 5–inch Post-it® Notes, write down the names of the stakeholder
groups and project groups involved in the process to be documented (one
group per Post-it® Note) and place them across the top of the whiteboard.
Our habit is to place the customer of the process on the left-hand side (leave
space for a vertical column that will be either a set of the successive num-
bers of the steps of the process (starting with “1”) or names specifying these
steps. Typically, the names of the groups that are most involved in the
process are placed next after the customers’, and names of groups least
involved in the process toward or at the right-hand side. Then, invite the
participants in your process design workshop to suggest the tasks that need
to be accomplished to perform the process. Initially, simply list each task on
a separate Post-it® Note and place them on the whiteboard (anywhere). As
you proceed with the identification of tasks, begin to organize the steps
according to how the process should be done. [An alternative approach is to
develop the process flowchart based on the existing way that the process is
done (the “as-is process”).] Don’t concern yourselves yet with connecting
the steps of the process with lines or with determining decision points—
these refinements can be done off-line, after the workshop, by the person
who has the primary responsibility for that process (we refer to this person
as the process owner). Once you are satisfied that you have identified most
or all of the tasks that need to be done in the process, refine your organiza-
tion of the tasks into a logical flow (the process flowchart). You may find
that one or more tasks need to be defined in more detail—you may choose
to address this subprocess in a later workshop, or you may decide that it is so
important that it needs to be defined first, before you complete the process

182 An Integrated Quality Approach

flow that you started initially. Be very flexible. Have fun! Enjoy each other.
Learn from one another. Consider inviting other stakeholders to join your
group or create subgroups to define subprocesses (sometimes referred to as
microprocesses of the macroprocess). Another approach, if you or someone
else is very familiar with the process, is for that person to design a draft of
the process flow independently and bring that draft work product to the
process design workshop for refinement by the group in order to reach
consensus.

For an example of a completed requirements process flowchart, refer to
Effective Requirements Practices [3, pp. 110–124]. Write a narrative PD to
accompany each flowchart (macro and micro). See Table 8.1 for a PD tem-
plate. The PDs for the referenced flowcharts of the requirements process are
available on my Web site (www.ralphyoung.net). The process owner should
develop the PD off-line. I think of a defined process as including both the
process flowchart and the narrative PD, because the information provided
by both documents is required to understand the process.

Note that having a defined, documented process provides a basis for con-
tinuous improvement. As the process is being performed or “executed,” sug-
gestions for its improvement can be identified and provided to the process
owner. The process owner should gather these suggestions and periodically
invite stakeholders to participate in a process refinement workshop to con-
sider suggestions. If it is decided to change (”update”) the process flowchart
or PD, the process owner should document the changes and release a new
version of the process. A suggested naming convention is to use Version 1.1,
1.2, 1.3, and so forth, for minor updates and Version 2.0, 3.0, 4.0, and so
forth, for major updates. This is important so that all stakeholders can iden-
tify and use the current version. An e-mail should be sent following the
release of each new version so that all stakeholders are made aware of the
current release.

Having taken responsibility for facilitating a process design or develop-
ment workshop and creating a process flowchart and PD, you are a better-
qualified RA or engineer. (Sometimes this type of work and related activi-
ties are referred to as process engineering.) Furthermore, you will find
that teamwork is strengthened by these activities, because coworkers will
become increasingly aware that they are dependent on others for work
activities and for ideas and suggestions for improvement. Moreover, people
will learn a lot about how the work should be done.

The industry literature reports a 7:1 ROI from process engineering activi-
ties. See [4–8] for several excellent reports. See [1, 9] for materials to help
introduce and use QI techniques. I have experienced this return and other
benefits at the Northrop Grumman IT DES business unit, and this has
strengthened my commitment to process engineering and to achieving
process maturity over the past dozen years [10].

Having successfully facilitated the process design workshop, follow it
up with another venue: an informal brown-bag luncheon session where
you present information about several simple, but powerful, QI techniques
(these are described in [1]):

How to Design a Process 183

184 An Integrated Quality Approach

Table 8.1 Template for a PD

Name Name of the process or subprocess

General information

Process ID Unique process identifier

Goal Provide a brief description of the purpose and objective of the activity.

Standards Identify the applicable process and product standards, including
maturity-model references.

Related processes Identify processes that are related to this process, especially if this process
is part of a set that is normally viewed as a whole. List processes that
either produce inputs or consume outputs of this process.

Version number Include version history. For each version, include version number,
approval date, and a summary of changes. As an example, the versions for
this DID follow:

3.0 broadened SW-CMM to maturity models as a standard; added
guidance on usage; changed to a table format; added guidance on
indicators; changed footer to include version and date (10.14.02)

2.0 version on PAL labeled 2.0.

1.1 added reasons why organization or project goals and measurements
may change

1.0 updated process based on 7.1.99 peer review (7.12.99)

0.1 initial version (1995)

Customer description

Customer Identify the internal and external stakeholders who benefit directly
(receive products/services) from the results (outputs) of this process.

Requirements List each of the legitimate requirements that have been negotiated and
agreed to with the identified. These requirements should follow the
RUMBA criteria in that they should be reasonable, understandable,
measurable, believable, and achievable.

Interface description

Entrance criteria Identify the criteria that must be satisfied before the activity can be
initiated. The criteria might say how to tell when a process can be started,
for example at the conclusion of another activity or process.

Inputs Identify the work products that are used at any point in the process.

Outputs Identify the work products that are produced during the process.

Exit criteria Identify the criteria that must be satisfied before the activity can be
considered complete. Exit criteria summarize the salient measurable tasks
of the process.

What to do

Responsibilities Describe the groups that participate in the process.

Tasks Describe the tasks that must be accomplished within the process. For ease
of reference, the tasks should follow the quality in daily work (QIDW)
process diagram referenced as the main exhibit. If the process is
procedural, describe the tasks in the order that they must be
accomplished, numbering each task step. Parenthesize the responsible
group to the left of the task, as shown below:

(<Participating group>) <Task description>

Use action verbs to describe the tasks. Reference by process ID all tasks
that are further described elsewhere. Note any particular procedures,
practices, or methods that are employed in any step.

Tools Describe suggested or mandatory tools used during any step of the process.

Resources Describe resources necessary to enact the process.

◗ Brainstorming;

◗ Multivoting;

◗ Fishbone (Ishikawa) diagrams;

◗ Pareto charts;

◗ PDCA;

◗ Rules of conduct;

◗ Defect prevention;

◗ Peer reviews;

◗ Inspections

◗ Action plans.

Invite members of your project or organization to start using them or to
increase the frequency of use if these techniques are already known and
used.

Your preparation for and facilitation of these workshops is itself a profes-
sional growth and development experience. I have found that the more that
I present, the easier it is to do it.

Consider initiating an organizational requirements working group
(RWG). Invite those who perform requirements-related work in on any of
the organization’s projects to participate. The RWG provides a mechanism
(a way to get something done or to achieve a result) to coordinate require-
ments-related activities and for RAs to help each other. See Table 8.2 for a
list of the advantages of having an RWG, and see [8] for other information.

How to Design a Process 185

Table 8.1 Template for a PD (continued)

Name Name of the process or subprocess

Measurement description

Quality indicators List and briefly describe those measurements that will be used to track the
performance (or outcome) of this process in terms of the product or
service delivered to the internal or external customer. These indicators
should be linked closely to the valid customer requirements and should be
used to monitor performance of the entire process. These measures should
be measurable, verifiable, and cost effective.

Process indicators List and briefly describe those measurements that are to be taken at
critical points during the process and used to track and assess the
effectiveness of the process itself. These in-process measures should also
be measurable, verifiable, and cost effective.

Note: In organizational standard processes, quality and process indicators are suggested, but not mandatory.

Note: Projects determine process measurements during project planning and process improvement efforts. To reduce overhead,
a project can designate process indicators as optional, to be collected if problem diagnosis is required.

(Source: Craig Hollenbach, a member of several of the CMMI product development teams who contributed hugely to the
development of the CMMI products).

Northrop Grumman IT has utilized this mechanism for seven years, and it
has proven invaluable. Smaller companies may not have enough projects or
RAs to form an RWG. In either case, companies should consider working
with the SEI, local colleges or universities, or quality consortiums to share
best local requirements practices (e.g., tools, techniques, ideas) among
members and to serve as a networking forum.

Initially, a few active participants (approximately 6 to 8 of the 15 to 20
members of the RWG, depending on the particular meeting) designed an
updated requirements (RE) process over a period of approximately
four months. We used the abbreviation RE to distinguish the updated process
from the previous version, which was an RM process (we wanted the
updated process to address the full system life cycle, rather than only the soft-
ware portion). Later, the RWG hosted several vendors over a period of four
months, who provided demonstrations of the popular automated require-
ments tools, including DOORS (by Telelogic), RequisitePro (“ReqPro”) by
IBM (formerly Rational) Corporation, Caliber RM by Technology Builders
(TBI) [now Star Team System Requirements by Starbase], CORE (by VITECH
Corporation), RTM Workshop (by Integrated Chipware), and Vital Link (by
Compliance Automation). As emphasized earlier, the RA must become famil-
iar with and experienced in using an industry-strength automated require-
ments tool. (By industry-strength, I mean a requirements tool that provides
the capabilities required to develop systems and software.) Participating in
these demos provided the members of our RWG added insights into the use
and value of automated tool support for requirements-related activities. Note
that you can often download trial versions of many tools from the vendors’
Web sites. Be sure that you are willing to commit some time to experiment-
ing with the tool before you download it—the trial evaluation period passes
very quickly in my experience, given your other responsibilities.

Over time, our organizational RWG has evolved into primarily an e-mail
group that provides a mechanism to ask questions, get answers, share infor-
mation, seek assistance with problems, proposals, or projects, find RAs for

186 An Integrated Quality Approach

Table 8.2 Advantages to Having an Organizational RWG

Allows the organization to benefit from the experience of its projects and the
expertise of key staff members;

Seeds the organization with persons who share a common body of knowledge and
have come to consensus on key topics;

Provides through its members a resource for the rest of the organization;

Facilitates use of the developed knowledge and artifacts for use in winning new
business (proposals, lead marketing briefings, etc.);

Encourages a common way of doing things and supports repeatability and reuse;

Encourages and facilitates selection of appropriate methods and tools, as well as
their deployment and implementation;

Encourages measurement of the effectiveness of the process and the benefits of
institutionalization;

Allows participation in industry leading-edge efforts (transition packages).

new assignments, and so forth. The RWG mechanism continues to be
invaluable in many ways. A briefing that I presented at an industry confer-
ence concerning our RWG is available at my Web site [8].

Teamwork
I have been blessed to be a member of many empowered, high-performance
teams in different organizations. A high-performance team really is more
than the sum of its members. A high-performance team can accomplish
most anything it sets out to do.

Teamwork evolves (or doesn’t) based on a variety of factors. Here are
some of the most important factors, from my experience:

1. A feeling of trust exists. I know that my manager believes that my
intentions are good, even when I make mistakes.

2. Coworkers support one another. They treat each other as customers.
A question from a coworker is not an interruption; rather, it’s one of
the reasons I’m there and an opportunity to help someone who is
very important to me.

3. Meaningful, realistic (achievable), important objectives are given to
the team. The objectives may be very ambitious, but they are achiev-
able. The objectives are important to the organization’s and project’s
business objectives.

4. Members of the team realize that each person has a unique role on
the team and has special abilities (think of them as gifts) that he or
she brings to the team effort.

5. Members of the team respect each other. They hold each other in
high regard. They speak highly about one another to others.

6. A kick-off meeting is held to provide an official start to the
team’s efforts and to help inform others that the team effort is
underway.

7. The team develops an action plan for its efforts, which defines spe-
cific tasks, planned completion dates, and who has the lead (the
responsibility) for each task.

8. The team tracks and reports progress as compared with the plan. It
considers itself a “mini project” responsible for using appropriate
project planning and tracking techniques.

9. Members of the team feel supported by the project and the organiza-
tion in carrying out their work. People know what the team is doing
and are prepared to lend support (“help pull on the oars”) when
asked by the team or a member of the team.

10. The team agrees on a set of rules of conduct concerning how they
will treat each other (see Effective Requirements Practices [3, p. 41] for a
sample set of rules of conduct).

Teamwork 187

11. Management is interested in the progress of the team. Management
provides time for periodic status reports from the team and wants to
know what it can do to support the activities and efforts of the team.
Management actively seeks opportunities to help the team and fol-
lows through on suggestions and commitments that it makes in
status and review meetings.

12. The team and its members develop “work-arounds” when road-
blocks and difficulties are encountered. They will not let barriers
deter them from achieving the set objectives (or at least a realizable
subset of the objectives).

13. The team and its members take time to celebrate progress and
achievements along the way.

14. The team utilizes paraphernalia to foster increased spirit, motivation,
and commitment, for example, coffee mugs or shirts with the team
logo. The team is proud to use these and provides them to people
outside the team who are helping.

15. The members of the team utilize proven QI techniques as the way
they do their work (see the discussion of QI techniques earlier in this
chapter).

16. Special celebrations take place when the team achieves a major mile-
stone, for example, an end-of-day reception, a luncheon or dinner,
recognition of the team at a senior management meeting, and letters
of appreciation or commendation from managers or senior managers.

I trust that you get a sense from this discussion that having effective
teamwork on a project and in an organization is powerful. It truly empow-
ers the team, the project, and the organization. A high-performance team
will (in my experience) accomplish seemingly impossible goals. Moreover, it
is a joy to be a member of a high-performance team because of the satisfac-
tion and fulfillment one derives.

Management can and must set the stage to allow its teams to be effec-
tive. Here are some of the ways management does this:

◗ Management communicates the business objectives of the organiza-
tion, clearly articulating that each member of the organization is
needed and depended upon to achieve these goals. Management con-
vincingly expresses that it truly needs the able support of every mem-
ber of the organization. Management requests the best efforts, ideas,
suggestions, and energy of every person.

◗ Senior management involves subordinate managers in the decision
process. The beliefs and concerns of managers are valued and utilized in
making decisions. Managers feel needed and valued.

◗ Management provides support in the form of sponsorship, resources, its
personal participation in kick-off and review meetings, time for status

188 An Integrated Quality Approach

reports, recognition of efforts and milestones, commitment to follow
through when requests are made, assistance in resolving issues and
conflicts, and using good listening skills.

◗ Management maintains its interest in assignments given to people and
teams and keeps people informed as priorities change, so that people
don’t feel they are doing unneeded or unimportant work.

◗ Management communicates in concert with representatives of other
areas, such as marketing or systems engineering, for instance, by
jointly sending an e-mail to the entire organization. This expresses a
focus that might more clearly explain or communicate a topic in a
way that overcomes the perceived agendas of individual departments.

When management chooses not to help in these and related ways, the
probability of the organization’s project teams being high-performance is
greatly reduced, as we all know from our own experiences. We think, If my
manager doesn’t care and acknowledge what I’m trying to do, why bother?

As an RA, you can work to foster effective teamwork in your many roles
described in Chapter 2. Teamwork is one of the ways that an integrated
quality approach is instantiated.

Summary
An effective requirements process is necessary to have an integrated quality
approach, and an integrated quality approach is required for the require-
ments (or any other) process to work best. Implementing an integrated
quality approach involves:

◗ Familiarizing everyone in the organization with management’s
concern for quality and the value and importance of quality improve-
ment to the organization’s reason for being;

◗ Training people to lead QI teams;

◗ Training people in how to design work processes;

◗ Managing using a quality improvement approach.

RAs are in a strategic position to help projects and organizations deploy
and use an integrated quality approach (review the roles of the RA sug-
gested in Chapter 2 in this context). By doing so, they are helping to ensure
an effective requirements process.

Case Study: An Example of Quality Improvement
Sidetracked

A process engineer was called upon to assist a Canadian division of a large
multinational company to leverage her extensive experience and expertise

Summary 189

in process engineering and project management. The multinational company
had recently made a commitment to use a process-engineering framework.
The process-engineering consultant participated in a briefing presented by a
vice president of the parent company to the division’s technical staff of
approximately 40 people. The briefing clearly communicated the critical
importance of process improvement, demonstrated senior management
sponsorship and commitment, and described the proven process improve-
ment framework that would be used. The audience was extremely receptive
and seemed to realize that something new and different was being offered to
help them become more productive and effective. The consultant noticed
looks of excitement on the faces of the technical staff. She was impressed by
the degree of attention given to the presenter and by the number and
thoughtfulness of follow-on questions and comments. The stage appeared to
be set for a productive and effective process improvement initiative.

However, no significant progress was made in process improvement over
the following three years. Why not? An analysis of this case study indicated
the following problems:

◗ Although senior management at the parent company was convinced
that process improvement would help the division achieve its busi-
ness objectives, division management wasn’t as convinced. There was
no division management participation in the parent company’s deci-
sion to initiate process improvement activities and no sponsorship or
commitment to implementation. The process improvement initiative
was, more or less, encouraged from the top down without sufficient
time or preparation for lower-level acceptance. There was a lack of
teamwork that prevented individuals at all levels of the organization
from focusing on the common goal.

◗ The division’s management used technicalities to delay process
improvement. For example, one excuse for delay was that “the parent
company’s process improvement plan had not been finalized.” In other
words, the spirit of process improvement, which could have gone
ahead in many ways with or without a final “approved” company-level
process improvement plan, was easily sidetracked by adherence to the
bureaucratic letter.

◗ A lot of money was spent by the parent company to develop a process
improvement plan (PIP) and to engage experienced consultants to
lend their experience and expertise. Training was provided to the
division to familiarize the employees with the plan and with process
improvement in general. However, these investments did not pay off.
No significant changes were made in the organization and no major
improvements in productivity or quality resulted.

Process improvement and quality improvement are as much cultural
change issues as they are technical or managerial change issues. A better

190 An Integrated Quality Approach

approach might have been for the parent company to issue a set of process
improvement plans and overarching principles in stages. Early releases
might have encouraged simple and effective process improvement activities,
with more detailed plans released later. The company could then have
monitored these early steps and encouraged the lower levels in the division
to adopt the solution as their idea, rather than something that was forced
down from above. The company could also have used feedback generated
by closely monitoring the results of these initial steps to guide further devel-
opment and identify specific technical or cultural barriers to be overcome
within the division.

Your process design and improvement approach will become more
detailed as your experience with it matures. That’s great! The important
thing is that the project or organization’s essential processes are designed,
documented, and continually improved by their stakeholders. By having an
organizational standard process for needed activities, such as requirements,
project planning, project tracking, peer reviews, CM, QA, DP, technology
change management, and other needed processes, projects can reuse and
tailor it as required. Having the processes (flowcharts, narrative PDs, and
related artifacts such as templates for plans) available in an automated elec-
tronic library facilitates achieving repeatability in an organization. Using
version control facilitates continuous improvement of the artifacts.

References

[1] Six Sigma Qualtec, QI Story: Tools and Techniques, A Guidebook to Problem Solving,
3d ed., 1999. Call (480) 586-2600 for information. See also www.ssqi.com/
homepage.asp.

[2] Walton, M., The Deming Management Method, New York: The Putnam Publishing
Group, 1986. The PDCA cycle is often attributed to Deming because he
introduced it in Japan. Walter A. Shewhart originally conceived it. See pp. 86–88.

[3] Young, R. R., Effective Requirements Practices, Boston, MA: Addison-Wesley, 2001.

[4] Clark, B. K., “Effects of Process Maturity on Development Effort,” Center for
Software Engineering, University of Southern California, 1999, at www.
ralphyoung.net.

[5] Northrop Grumman IT DES, “The Road to CMM(I) Level 3,” white paper,
available from ralph.young@ngc.com.

[6] Wiegers, K. E., Creating a Software Engineering Culture, New York: Dorset House
Publishing, 1996.

[7] Young, R. R., “The Importance and Value of Process Improvement,” at www.
ralphyoung.net.

[8] Young, R. R., “The Value of an Organizational Working Group,” at www.
ralphyoung.net.

[9] GOAL/QPC materials, at www.goalqpc.com.

[10] Northrop Grumman IT DES press release concerning CMMI Level 5, at
www.irconnect.com/noc/pages/news_releases.mhtml?d=35405.

Case Study: An Example of Quality Improvement Sidetracked 191

.

A Vision for Requirements
Engineering

A reasonable vision for requirements engineering is achieving
the following goals:

1. Customers acknowledge that the system meets their
expectations.

2. Systems and software engineers are fulfilled by their work.

3. Trained and experienced RAs are acknowledged to have
made a positive difference.

4. Task and project requirements are complete and controlled
to provide a stable basis for development.

5. Systems and software development projects incur less than
15% unplanned rework and less than 10% wasted
resources.

6. An informed marketplace is developed, where a potential
supplier’s ability to define, implement, and support require-
ments-based development is valued.

7. Those who are masters in requirements, systems engi-
neering, and project management tasks take personal re-
sponsibility for mentoring others.

These goals are achievable. Indeed, there are pockets of
excellence where tasks, projects, and even organizations are
already achieving these goals. There are organizations, projects,
and tasks that perform at high levels of process maturity, as
measured by industry standards such as the CMM [1], the
CMMITM [2], and Six Sigma [3]. The SEI provides a Web page
(www.sei.cmu.edu/sema) that reports on progress being
achieved by organizations that use the CMM and CMMI. The
industry average, however, is far lower than the high-maturity
organizations being tracked by the SEI, as reported by

193

9
Contents

How Should We Support PMs?

How Should We Support
Customers?

How Should We Support
Developers?

Summary

Case Study

References

C H A P T E R

organizations such as the Gartner Group and the Standish Group
International.

It is clear that organizations have the capability to perform at higher lev-
els of achievement, as measured by many of the goals provided above. Why
don’t they? Obviously, the answer to this question is complex. From Dr.
Deming’s perspective [4], it is a management issue: management often does
not empower its work force or enable good to excellent performance in its
organizations. Surely, management can be helped. Every person can make a
difference.

This book suggests that requirements engineers and analysts can help
a lot. Requirements are the basis for all of the work that is done in sys-
tems and software engineering. Industry results [5, 6] suggest that there is
a lot of room for improvement in the practice of requirements engineer-
ing. It is clear that there is sufficient information available to enable signifi-
cant improvement in achieving the goals I’ve enumerated. The obvious need
is for practitioners to use more effective requirements practices. This requires knowl-
edge and experience. I believe that you can further strengthen and improve
your skills and be even more effective in the roles that you provide.
As I indicated in Chapter 6, this requires a lot of hard work. As I communi-
cate in workshops and seminars [7], things will get better only if we practi-
tioners do some things differently. It’s not that we don’t know (or can’t
find out) what to do; it is that we do not persevere in doing things as well
as we can do them. In my seminars, I encourage participants to create
their own personal commitment list. I challenge them to listen closely and
identify at least three things that they are willing to commit to doing differ-
ently in their work situations. Obviously, the key word here is “commit.” I
challenge them to work with their peers and managers to change a few
things that will make a difference. If you have digested this book, I’m hope-
ful and confident that you have noted some things that you can do differ-
ently in your own work environment. Take the opportunity to follow
through—to do the hard work that will improve the results of your tasks,
project, and organization.

Table 9.1 provides some opportunities for RAs and engineers to improve
project success rates. Think of these as enablers for the excellence we seek.
More fundamentally, experience confirms that they are necessary condi-
tions to achieving excellence in requirements engineering.

Requirements engineering is difficult. It is not just a simple mat-
ter of writing down what the customer says he wants. Customers and
users have not thought through their real needs and aren’t able to articulate
them. Another fundamental problem in business is that requirements
are inherently dynamic; they will change over time as our understand-
ing of the problem we are trying to solve changes. The importance
of good requirements and the underlying dynamic nature of the process
mean that we must be as accurate as possible, and yet be flexible. Flexi-
ble does not mean “weak,” but rather that we have a process for accom-
modating changed requirements as we clarify the real requirements of
customers.

194 A Vision for Requirements Engineering

This is not a job for the most junior member of the team or the least tal-
ented member of the group. It requires merging of excellent technical skills
with domain knowledge, good people, and communications skills.

The following are some of the challenges we face in improving require-
ments engineering:

◗ PMs who are focused on daily activities and unable to address under-
lying human needs and long-term issues adequately. An industry
study by the Standish Group concluded that 15% of projects failed
outright in 2002, and another 51% were considered “challenged,”
that is, late, over budget, or completed with reduced functionality [5].
Only 54% of the originally defined features of a project are delivered,
and of those delivered, 45% are never used! The Standish Group
believes that the problem is rooted in poorly defined requirements.
Significant root causes of project failures are attributable to project
planning and tracking. Some PMs provide only lip service to quality,
teamwork, and continuous improvement and are unwilling to invest
in training and practice to create a “quality improvement culture.”1

195

Table 9.1 Some Opportunities for RAs and Engineers to Improve Project
Success Rates

Recognize that a productive work environment means supporting people, achieving
effective teamwork, and establishing a value of continuous improvement. Take
actions to create a more productive work environment so that requirements-related
work is effective.

(Development) projects must be managed (continuous oversight is needed to
ensure that the right things are being done properly and well). We must manage
projects better and, by doing so, reduce requirements-related defects.

Train and use specialists in requirements engineering.

Have and use a requirements process that addresses full life-cycle
requirements-related activities. Invest 8% to 14% of the total cost of the project
development effort in requirements-related activities throughout the project life
cycle.

Invest more time to identify the real requirements.

Use effective requirements practices.

Use an automated requirements tool to support the development effort.

Provide an effective process and mechanism to manage changes to requirements.

Take action when things aren’t working. We know when things aren’t working.
Ensure that requirements-related efforts are effective.

Provide role models that consistently demonstrate effective work habits and
disciplines, for example, creating and using a joint team to be responsible for the
requirements.

1. A good reference is Karl E. Wiegers, Creating a Software Engineering Culture (New York: Dorset House Publishing,

1996). See also, Rita Hadden, Leading Culture Change in Your Software Organization (Vienna, VA: Management

Concepts, 2003).

Other PMs don’t focus on satisfying the project requirements because
they are focusing on being responsive to their three bosses: their man-
agers (who do performance reviews and expect PMs to achieve reve-
nue and profit goals); their customers (who are concerned with the
expectations of users); and their project staffs (who are looking for
direction). The PM must balance all of these needs and ensure that all
parties are engaged in the project effort. Figure 9.1 provides some
insights into the complex role of the PM. The PM must maintain a
customer focus, be responsive to executive management, and provide
an effective environment for developers. A good PM may have to
depend upon a subordinate manager, such as the system engineer, to
be responsible for the requirements.

◗ Developers who refuse to use improved techniques, even when these
techniques have been demonstrated to yield better results; who have
not learned requirements engineering techniques; and who have not
been provided with expectations concerning how they are to work and
what they are to do in different situations.

◗ Customers who believe they understand their needs (but let their
egos force them to stake out an unmovable position), are impatient
for short-term results, require use of risky techniques, and have lim-
ited experience working in a partnering2 or team mode that requires
common commitment to project success.

196 A Vision for Requirements Engineering

Project
manager

Customer

Developers Executive
management

Authority;
effective work environment

Customer-
project-specific issues

focus

Revenue;
status

Resources

Customer
strategic plans
and issues

Real required
development

Figure 9.1 The challenges of the PM. (Source: Richard Raphael. Used with
permission.)

2. See Frank Carr et al., Partnering in Construction: A Practical Guide to Project Success (Chicago: American Bar

Association, 1999) for a thorough treatment of the partnering process. See www.facilitationcenter.com for a

reference to a practitioner who is experienced in implementing the partnering process effectively.

All of these challenges hinder excellence as the standard for daily living,
teamwork as the approach to excellence, and continuous improvement as
the habit.

We (everyone who is involved in performing requirements-related
activities on systems and software development projects) have a set of chal-
lenges we need to address. We must decide whether or not we are commit-
ted to improving performance and working toward higher achievement of
the stated goals. Here are some examples of things that we should do in our
daily work to live out our commitment.

How Should We Support PMs?
We should assist PMs in benefiting from the experiences of other projects.
For example, most PMs in my experience would benefit from paying more
attention to the human dimensions of projects. PMs could ask performers
how things are going and then reflect on and incorporate input whenever
possible. The point is that there is a wealth of information and advice avail-
able from the staff of any project that can further strengthen and improve
the practices being used on the project. People put forward their best efforts
when they are fulfilled and feel empowered3 in their work environment.
PMs need to find out what the team members want to do, encourage ideas
for improvement, and seek advice on how to make their work environment
more positive. They should create an atmosphere of trust and true interest
in the opinions of team members and not be defensive about negative or
unexpected feedback. Then, PMs should take actions to ensure the needed
work is getting done and that people leave work most days feeling that they
have accomplished things.

Another thing we should do for PMs is to provide resources about indus-
try experience concerning requirements engineering and make specific rec-
ommendations to them about approaches that they might consider for a
specific project. For example, recall the data from NASA noted in Chapter 1
that give a clear and powerful message: Projects that expended the industry
average of 2% to 3% of total project development cost or effort on the (full
life cycle) requirements process experienced an 80% to 200% cost overrun,
while projects that invested 8% to 14% of total project cost or effort in the
requirements process had a 0% to 60% overrun [8]. Further, we need to
clarify for PMs that a portion of the one-third of project costs that is wasted4

How Should We Support PMs? 197

3. By empowered, I mean that employees feel responsible not only for doing a good job, but also for making the

whole organization work better. Teams work together to improve their performance continually, achieving

higher levels of productivity. Organizations are structured in such a way that people feel that they are able to

achieve the results they want, that they can do what needs to be done, not just what is required of them. See

Cynthia Scott and Dennis Jaffe’s Empowerment: A Practical Guide for Success (Menlo Park, CA: Crisp Publications,

1991).

4. As documented in Effective Requirements Practices (p. 79), 80% of all product defects are inserted in the

requirements definition activities. Rework costs are estimated at 45% of total costs. By taking 80% of 45%, we

learn that 36% (more than one-third) of total project costs (based on industry data) can potentially be avoided

by driving requirements errors out of the work products.

can be redirected to pay for needed improvements in processes and prac-
tices. We need to show them how to track the ROI from specific improve-
ments, so that they have the data to make good decisions (”manage by
fact”).

Projects should prioritize requirements. As we have discussed, all
requirements are not equal—some are more important than others. Davis
provides three case studies and offers 14 recommendations in his article
“The Art of Requirements Triage” [9].

Projects need an effective process and mechanism to manage changes
in requirements. We know from experience that this is where we lose
control of many technical efforts. Let’s take action not to let this hap-
pen again. For example, utilizing a joint customer/supplier team to main-
tain responsibility for the requirements throughout the development
effort and having all change requests pass through a single channel will
help. Another mechanism is controlling the sources of unofficial require-
ments [10]. Documenting the rationale for each requirement will also
reduce the number of requirements (by as much as 50%, according to
industry expert Ivy Hooks) [8].

How Should We Support Customers?
We should familiarize customers (and PMs and the project team) with
industry experience that the initial set of written requirements is seldom
(perhaps never) the set of real requirements. As explained in Chapter 1,
customers need help from skilled RAs to identify the real requirements. The
investment made to discover and evolve the real requirements will be more
than repaid by avoiding downstream development work on an inadequate
set of requirements. Let’s not continue to relearn this lesson on every future
project!

Are we really harnessing the power of effective teamwork? We should
establish commitment to one another to allow any endeavor to be success-
ful. We should find creative ways to make teamwork happen, even in envi-
ronments that don’t support it. For example, an integrated product team
(IPT) approach [11] in which the customer is a member of the IPT facilitates
communication and team effort.5 We should advise customers, PMs, and
organizations of successful approaches that have achieved effective team-
work and nurture the commitment that is required for any project to be
successful [12].

How Should We Support Developers?
One way that we should assist developers is to listen to them and take action
on what they say, to let them know that we are there for them. By this I

198 A Vision for Requirements Engineering

5. The DoD has started using the term integrated team management in lieu of IPT because of concerns that IPTs are

not working as well as needed.

mean that it is management’s job to provide a work environment that maxi-
mizes effectiveness. The bottom line is that success depends on people. We
must provide an environment in which people can be effective and are ful-
filled, where they can grow, and where they are appreciated and valued.
Management must care deeply and show it.

Other ways in which we can assist developers are to put effective
processes and practices in place (and expect them to be applied—see the next
paragraph), to work at reducing rework, to create an environment of con-
tinuous improvement, and to work toward ever better quality in work prod-
ucts. If we don’t do this, we risk people becoming frustrated and leaving the
organization and projects.

Still another important thing we must do is make it clear to developers
that we expect them to use the improved and proven policies, processes,
mechanisms, methods, techniques, and tools that are the standards in the
organization and on the project. Watts Humphrey’s “Why Don’t They Practice
What We Preach”6 details some reasons developers do not use improved tech-
niques, even when they are provided with evidence that they achieve better
results. We must make it clear that it’s not acceptable for people to fall back
on their old ways of doing things. We should provide role models that con-
sistently demonstrate effective work habits and disciplines.7 Einstein com-
mented that the only rational way of educating is by example.

Whoever on the project is addressing requirements issues needs support.
In addition to an effective automated requirements tool, requirements engi-
neers need training in requirements engineering. What is a good require-
ment? Why must RAs not make requirements decisions? Why must I not
gold plate (add features and capabilities that are not required)? We should
create a set of expectations for the project staff concerning how they are to
work and what they are to do in different situations. This can best be accom-
plished by training that is tailored to a particular project’s environment and
needs and presented by people who can really help. The training and advice
to the staff must be presented in a way that respects people—we all have
egos, and if mine is hurt, it’s difficult for me to put forward my best efforts.

Summary
There are many things we can do to create a pathway to address require-
ments-related problems. I’m not pretending that this is easy or that it can be
accomplished quickly. Achieving the defined vision for requirements engi-
neering requires, however, that we do things differently. I hope that you
will commit yourself to making some changes that will help.

Summary 199

6. Available at www.sei.cmu.edu/publications/articles/practice-preach/practice-preach.html.

7. Steve McConnell’s After the Gold Rush: Creating a True Profession of Software Engineering (Redmond, WA: Microsoft

Press, 1999) is full of ideas and suggestions to help with this situation. McConnell notes in his epilogue that

common development problems won’t be avoided without our support.

Case Study

There is a common misperception that Web sites are simple, can be built
quickly, and don’t require the planning and RM that real systems or soft-
ware applications do. This is a trap for unsophisticated system owners and
developers, and there are still many of those out there.

A requirements engineering consultant was called in to investigate why
a Web site for a government agency was not being completed on schedule.
The work was being done through a General Services Administration (GSA)
schedule holder, but had been subcontracted to another company that had
marketed the business. The prime contractor had not closely reviewed the
proposal or the initial work, because it did not have in-house Web applica-
tion development expertise. The work was fixed price, relations with the
users were already strained, and the government had issued a “show cause”
and was threatening to freeze the contractor’s GSA schedule.

Reviewing the contractual materials, the consultant discovered that the
solution was simply to put an existing Microsoft Access database on the
Web, test it, and write a users guide and system documentation. There had
originally been a task to do a database analysis, but all parties had agreed to
a modification to reduce the cost of the project by removing this task. There
was no requirement to develop a requirements document. Perhaps the
agency users thought that would have been an unnecessary cost and delay.
After all, they had a working system that represented their requirements. Or
did they?

When the consultant reviewed the application (for this was an applica-
tion, not just a static Web site), he discovered that the database had indeed
been put on the Web. A front end had been written to accept selection crite-
ria and produce on-line reports of the data. If the selections retrieved large
amounts of data, after a wait, a large table would be generated on the screen
that would force the user to scroll to the right as well as down to see all of it,
despite the use of a small font. If the selections were too large, the retrieval
would time out.

A different menu selection asked for a password and then provided a
long series of data entry forms to allow the user to enter or update the data.

The developers considered the project essentially to be done, with the
only work remaining being to (1) create a way to print the reports, and (2)
fix the time outs and other errors that the user pointed out during testing.
The existing database was on the Web, and it provided both a way to enter
data and a flexible report generation capability that could generate any
report the user would want.

Unfortunately, what the user wanted was a way to automate the previ-
ously manual process of collecting data from its offices in the field. The cur-
rent process was for the offices to fill out forms or send in spreadsheets to
headquarters, and another contractor would get the data into the Access
database. The developers of the new system had not realized that the system
owner had assumed that putting the database on the Web would provide
them with the ability to have the field offices directly enter the data via the

200 A Vision for Requirements Engineering

Web. This would require a more sophisticated system than a single user
password and set of data entry screens. In fact, the existing process turned
out to incorporate workflow and approval before the data appeared at head-
quarters, and headquarters could have questions or even return it for
rework before it would become part of the “official” database available to
the public.

To make matters worse, many of the “errors” that the users complained
about were related to data problems. The decade of existing data was
fraught with inconsistent, missing, and erroneous data. The user would run
reports on the existing system to compare with the Web-based system, but
any minor change in query could yield different results. It turned out that
the Access database had been used as it existed, without change, and that
someone without a database background had developed it. No real database
design had been performed. Numerous tables of similar data existed. Data
elements had similar names. Text fields with inconsistent spellings were
used for keys. The data was really a nightmare. However, reports generated
from it had been submitted to Congress each year, and users should be able
to duplicate them when they queried the Web site.

After a long process of meetings and negotiations with the government,
the prime contractor agreed to build the access control and workflow
aspects of the system and manage the quality control and testing, while the
developer continued to improve the data retrieval and data entry aspects of
the system. Additional programming resources were applied. Source code
control was implemented. The system was coded, tested, documented, and
ultimately accepted. The government appreciated the additional investment
and effort made by the prime contractor, who was not terminated. The GSA
schedule was restored.

The developer claimed that the data errors were not its contractual
responsibility, and the government reluctantly agreed, but the prime con-
tractor had to do a certain amount of data cleaning to get the system
accepted anyway. Data cleaning and database design was really called for,
but was not done because those funds had been removed from the contract.
Changes to the database at that late point would also have required coding
changes, and the prime contractor decided not to do that, although it would
have resulted in a much simpler and more maintainable system.

Early attention to requirements could have averted this disaster. The
divergence between what the government wanted (but never clearly articu-
lated) and what the contractor felt it was responsible for was so great that
the only way to recover was to rework the problem at almost a 100% over-
run in cost!

The following requirements-related errors were made by the prime con-
tractor, developer, and government client:

◗ Assuming that an existing system is a good representation of require-
ments for its replacement;

◗ Assuming that “put it on the Web” does not change “it” or require the
development of any new business process or requirements;

Case Study 201

◗ Agreeing to skip the data analysis, assuming that legacy data was clean
and well structured;

◗ Forgetting about security, performance, maintainability, and other
nonfunctional types of requirements.

The major lesson to be learned from this case is that system owners basi-
cally require that a system satisfy their envisioned business need, not that it
meet the letter of the contractual requirements. Designing for the Web is no
different. If the system does not meet the business need, it will be a failure.
If the developers do not fully comprehend the business need, they cannot
infer it from a legacy system, because the business processes that surround
the legacy system are not documented in the system. In this case, they
might have guessed that there was a requirement for workflow and multi-
level approval of submitted data, but they might not have guessed that there
was a requirement to replicate certain existing report outputs to avoid con-
tradicting prior Congressional submissions.

A secondary lesson is that you should always assume that legacy data is
“dirty” to at least some degree. It is extremely risky to assume that existing
databases can be reused without redesign. In this case, skipping the data
analysis was very costly to all parties and caused the eventual system failure.

Although some companies and government offices have been led to
believe that Web sites can be prototyped and built in “Internet time,” the
requirements still need to be thought through. Because this work was con-
tracted, and particularly because it was fixed price, the requirements should
have been worked out and more explicitly documented. One way to avoid
such surprises is to break the requirements and data analyses into a sepa-
rately priced task, with its deliverables forming the basis for subsequent
design and development.

Name withheld by request
Requirements-engineering consultant

References

[1] Paulk, M. C., et al., Capability Maturity Model for Software, Version 1.1, February,
1993. SEI, Carnegie-Mellon University, Pittsburgh, PA, 1993, at www.sei.cmu.
edu/publications/documents/93.reports/93.tr.024.html.

[2] CMMI Product Team, Capability Maturity Model Integration, Version 1.1, December
2001. SEI, Carnegie-Mellon University, Pittsburgh, PA, 1993, at www.sei.cum.
edu/cmmi.

[3] Eckes, G., Making Six Sigma Last: Managing the Balance between Cultural and
Technical Change, New York: John Wiley & Sons, Inc., 2001.

[4] Deming, W. E., Out of the Crisis, Boston: MIT Center for Advanced Engineering
Study, 1986.

[5] The Standish Group, CHAOS Chronicle 2003 Report, West Yarmouth, MA: The
Standish Group International, 2002, at www.standishgroup.com.

202 A Vision for Requirements Engineering

[6] McGibbon, T., “A Business Case for Software Process Improvement Revised,”
Rome, NY: Data & Analysis Center for Software, September 30, 1999, at
www.dacs.dtic.mil/techs/roispi2.

[7] See “Tutorials, Conferences, Presentations, Workshops, and Discussions” at
www.ralphyoung.net.

[8] Hooks, I. F., and K. A. Farry, Customer-Centered Products: Creating Successful
Products through Smart Requirements Management, New York: AMACOM, 2001.

[9] Davis, A. M., “The Art of Requirements Triage,” IEEE Computer (March 2003):
42–49.

[10] Weinberg, G. M., “Just Say No! Improving the Requirements Process,” American
Programmer 8(10) (October 1995): 19–23.

[11] U.S. Army Corps of Engineers Integrated Product Team, Web page, at
www.usace.army.mil/ci/lcmis/lcmipt.html.

[12] A good reference concerning teamwork is P. R. Scholtes et al.’s The Team
Handbook, 2nd ed. (Madison, WI: Oriel Inc., 2001). The authors’ thesis is that in
order to succeed in today’s environment, the knowledge, skills, experience, and
perspectives of a wide range of people must be brought together.

Case Study 203

.

Moving Forward: Knowable
Requirements, Manageable
Risk

We have addressed topics in this book that are of great signifi-
cance to the RA:

◗ Requirements are important, and leveraging requirements-
related activities on a project has great power and effect
(Chapter 1).

◗ Effective practices and documented, well understood
processes are needed on projects of all sizes, not just for large-
scale development (Chapter 1).

◗ Industry experience demonstrates the value of investing 8%
to 14% of total project costs in the system life-cycle require-
ments process; data confirms that this level of investment pro-
duces the best results (Chapter 1).

◗ Criteria should be developed for a good requirement and each
requirement should be evaluated against this list to clarify and
restate the requirement (Chapter 1).

◗ Documentation of the rationale for each requirement (why it
is needed) may eliminate up to half of the stated requirements
(and a lot of costs) (Chapter 1).

◗ Differentiate between stated requirements and real require-
ments, and work collaboratively with your customers and
users to identify the real requirements (Chapter 1).

◗ Planning the requirements effort and writing a requirements
plan will pay good dividends (Chapter 1). (Watts Humphrey’s
books, Introduction to the Personal Software Process [1] and

205

10
Contents

Where to Go from Here

Moving Forward

A Requirements Mandala

Summary

Case Study

References

C H A P T E R

Introduction to the Team Software Process [2] provide good insights into the
value of planning.1)

◗ All projects, with the possible exception of “tiny” projects, require an
industrial-strength automated requirements tool (Chapters 2 and 5).
Start the selection process for the tool of your choice early in the project
planning phase, guided by a trade study to ensure that the selected tool
supports your project’s process and your customer’s needs. Invest in
formal training for the people who will use the tool the most.

◗ The biggest problem in computing and systems and software engineer-
ing is the failure to identify the real requirements before initiating other
work, which results in costly rework (an average of 40% to 50% of total
project costs, but the amount can be much higher, shading right into
project cancellation), failure to meet budgets and schedules, poor qual-
ity of work products, customer dissatisfaction, and project failure
(Chapter 5). A joint team can help overcome this problem. The second
biggest problem in the systems and software development industry is
the failure to control new requirements and changes to requirements
(Chapter 5). Providing a formal mechanism can help overcome this
problem.

◗ Although some requirements are not “knowable” at the beginning of a
system or software development effort, an incremental development
life cycle can be employed to manage the situation (Chapter 5). Also,
using rapid application development and a spiral approach can help
identify real requirements.

◗ Nine roles of the RA were identified. Suggestions and insights concern-
ing how you can perform each role were provided (Chapter 2).

◗ Skills and characteristics needed by an effective RA were described
(Chapter 3). An “RA’s skills matrix” will help guide your professional
development. Continuing your education can help you acquire expert
knowledge of requirements engineering and use effective require-
ments practices.

◗ Several case studies were provided that help illustrate how require-
ments tasks can go wrong (all chapters). Requirements development
and management is difficult. Applying processes, methods, techniques,
and tools in the real world with diverse customers and users is particu-
larly challenging.

◗ Various types of requirements were identified (Chapter 4). Recom-
mended terminology to use and not to use was suggested, based on

206 Moving Forward: Knowable Requirements, Manageable Risk

1. One of the industry best practices that you might suggest to your organization is the Personal Software Process

(PSP) and Team Software Process (TSP). Watts Humphrey has shown that data and planning are very powerful

at the individual developer level and for teams of developers.

industry experience in using the various terms, to reduce confusion and
facilitate effective communication. Using a project glossary and a proj-
ect acronyms list will help.

◗ A requirements gathering checklist was provided that will help your
project perform the needed work efficiently and effectively (Chapter 5).
Having a documented procedure that you tailor to meet the needs of
your project will help. We suggested that the effort be planned and that
you take time out periodically to evaluate how you’re doing in com-
parison with the plan (PDCA).

◗ You may find that you need to replan. In any case, we want to establish
a value of continuous improvement and to capture the ideas and sug-
gestions of coworkers every step of the way, fostering teamwork
(Chapter 8).

◗ Your project should adopt a set of best practices for RAs (Chapter 6).
There is a lot of talk and writing about best practices, but not enough
actual implementation and institutionalization of their use. In fact, an
endemic problem in computing and systems and software engineering
is that we do not practice what we preach—we need to make concerted
efforts to actually use (not just acknowledge) good practices, processes,
mechanisms, methods, techniques, and tools at the individual, project,
and organizational levels. The reason we don’t do this is that it requires
a lot of work. The issue is that we should strive to make our work effi-
cient and effective, so that we can best support business and organiza-
tional objectives.

◗ Discussion of a set of RA’s specialty skills provides insights into areas
that may be critical at some point in your work (Chapter 7).

◗ An integrated quality approach is needed for processes (including the
requirements process) to work most effectively (Chapter 8). RAs are in
a strategic position to help projects and organizations.

◗ A vision for requirements engineering was provided that includes spe-
cific goals that are achievable (Chapter 9).

Where to Go from Here
We have covered a lot of ground in this book. Figure 10.1 shows the RA,
engineer, or manager considering some of the tools available to help.

Consider the following topics in terms of some next steps. These are
some courses of action that I hope you will consider:

1. Consider the roles that you provide in your current work assign-
ments in the context of Chapter 2. Is it possible that you could
expand on them, thus making a greater contribution, learning more,
and being more fulfilled in your work activities?

Where to Go from Here 207

2. Reflect on the skills you possess and the characteristics you exhibit in
the context of Chapter 3. Perhaps in collaboration with your man-
ager, develop a personal professional development plan that enables
you to acquire additional skills that you believe are desirable. Con-
sider taking steps to strengthen characteristics that will enable you to
be a better coworker in the eyes of your peers.

3. There is confusion on many projects concerning the types of require-
ments. If your project exhibits this confusion, what steps might you
suggest to clarify it?

4. Do you use a documented requirements process on your task or proj-
ect? Has your work group taken advantage of some time together to
consider possible improvements that can be made to the process?
Might this be an opportunity to initiate or reinforce a habit of con-
tinuous improvement?

5. Are the requirements gathering methods and techniques being used
effective? Could some improvements be made based on industry
experience with requirements gathering methods and techniques?

208 Moving Forward: Knowable Requirements, Manageable Risk

Partnering
process

Peer
reviews

Identify real
requirements

Requirements
change control

Prioritize
requirements

Formal
training

?

Document
rationale

Figure 10.1 There are good tools available to help. (Source: Richard Raphael.
Used with permission.)

Would additional training concerning one or more methods or tech-
niques help?

6. How many of the best practices for RAs described in Chapter 6 are in
use on your project and in your organization? Are there any addi-
tional practices that it would make sense to consider using?

7. Is it advisable to invest some effort to strengthen any of the RAs’ spe-
cialty skills described in Chapter 7?

8. Does an integrated quality approach exist on your task or project and
in your organization? What are some steps that you can take to fur-
ther strengthen and improve the approach? Might it be helpful to
provide a briefing to your management groups to request additional
support and sponsorship?

9. What is your vision for requirements engineering? How can you
work toward achieving it?

Moving Forward
You may find (as I have) that reading stimulates your thoughts about mov-
ing forward. Reading doesn’t necessarily require carefully digesting every
sentence. You can grasp the essence of a work (book, article, Web site, con-
ference presentation, etc.) through a cursory review, capturing some of the
main ideas and reflecting on them through the lens of your own experience
and beliefs.

I recommend not trying to change everything at once. Rather, select
three to six practices or areas for your own personal commitment list. These
are practices that you are willing to apply in your daily work habits in order
to change in a committed way how you do things in your project and organ-
izational environment. They may concern areas where your project or
organization is experiencing feedback from a customer concerning needs for
improvement, or areas where your project or organization is having some
problems (these are sometimes referred to as “points of pain”).

Here are some examples of candidate improvement areas that might
help you create your own commitment list:

1. Implement a mechanism to identify real requirements. Persevere in
making the mechanism successful and helpful.

2. Document the rationale for each requirement (why it is needed).

3. Prioritize the requirements for your project in collaboration with
your customer and users. Establish those that are must-have, high,
medium, and low priorities. Establish a product delivery strategy
that is based on the established priorities. Assess the risk of each
requirement, determining its magnitude.

4. Implement a mechanism to control changes to requirements and
new requirements.

Moving Forward 209

5. Provide formal requirements training for all persons involved in
requirements-related activities on your project. Provide a require-
ments briefing for the project team and for your customer and users.
A briefing is available on my Web site (www.ralphyoung.net) that
you might tailor for this purpose.

6. Initiate peer reviews utilizing trained peer-review participants and
peer-review moderators. Consider doing inspections of all require-
ments-related documents.

7. Initiate a partnering process in collaboration with your customer to
gain commitment to project success.

8. Design or improve a process that seems particularly crucial to your
work objectives and products in collaboration with the main stake-
holders. Peer review the draft documented process and incorporate
the peer review comments. Train the process, then deploy and
implement it. Collect data and information concerning the results.
After its been in use for three to six months, consider some improve-
ment ideas (PDCA).

9. Quantify the estimated cost of rework on your project and commit to
reducing rework by a reasonable percentage (say 20%) through
implementing a set of process improvements. Develop and track data
concerning the ROI of the process improvement initiative. Engage
your management in the initiative.

10. Define and document a requirements policy for your project or
organization. Peer review the draft documented policy and incorpo-
rate the peer review comments. Train the policy, then deploy and
implement it. Collect data and information concerning results. Per-
severe in continuing use of the policy.

11. Consider selecting, getting training on, implementing, and using an
automated requirements tool. Providing formal training concerning
new automated tools is a good investment. Additionally, consider
having the tool vendor provide a few days of consulting services to
explain its use and to tailor it to the environment of the specific proj-
ect and the needs of your team.

12. Consider using (or strengthening use of) bidirectional traceability of
requirements using your automated requirements tool.

13. Provide a team-building training for your project or organization,
perhaps facilitated by a trained facilitator from outside the organiza-
tion. During the training, keep a list of ideas contributed by the
participants concerning how the project or organization can
improve. At the conclusion of the training session, gain consensus2

210 Moving Forward: Knowable Requirements, Manageable Risk

2. A technique to gain consensus is multivoting. See Six Sigma Qualtec’s QI Story: Tools and Techniques, A Guidebook

to Problem Solving, [3, pp. 47–48].

among the participants concerning the priority of each suggested
idea. Implement the top one to six ideas (the number of ideas to be
implemented is determined by the extent of management commit-
ment to the ideas and the resources made available).3

14. Gain consensus on a set of “rules of conduct” that the members of
your task or project agree to support. Document and publish your
rules of conduct. Provide posters in each meeting room. Hold one
another accountable to them.

15. Develop a requirements plan for your project. Peer review the draft
requirements plan. Train the plan, being open to improvement sug-
gestions from participants. Deploy and implement the plan.
Collect data and information concerning results noted during its
deployment and implementation. Assess the impact of creating
and implementing a requirements plan, and consider initiating
an organizational policy or procedure that requires or encourages
development of a requirements plan for all new projects or efforts
larger than a set number of person-months of effort.

16. Form an RWG in your organization. Share and assess the
requirements policies, processes, mechanisms, practices, methods,
techniques, and tools that have been most successful on each proj-
ect. Document the results. Commit to expanded use of those that
have been most successful. Over a period of time (one to three
years), evolve a set of requirements best practices that work best in
your organization. Consider having an e-mail group of the RWG
members to provide a mechanism to ask questions and share
information.

17. Address the topic of “Improving Communication within My Project”
proactively. Brainstorm4 suggestions for improving communications
between and among project management and project members and
teams, your customers, and major stakeholders. Consider establish-
ing a project glossary and acronyms list.

18. Make a habit of “doing PDCA” at the end of each meeting and upon
reaching milestones. Document the ideas and suggestions offered.
Follow up on selected ideas and suggestions.

19. Further strengthen the acknowledgement of people for contri-
butions made to the task, project, or organization. Establish a mecha-
nism to celebrate team or project contributions. Form a habit of

Moving Forward 211

3. A suggested implementation approach is to ask an advocate of the idea to write an action plan and to lead a QI

team through the QI story. See Six Sigma Qualtec’s QI Story: Tools and Techniques, A Guidebook to Problem Solving,

[3, pp. 94–96 and 23–41].

4. Brainstorming is a valuable quality improvement tool to collect suggestions. See Six Sigma Qualtec’s QI Story:

Tools and Techniques, A Guidebook to Problem Solving, [3, pp. 43–46].

acknowledging people for new ideas and ongoing work products.
Catch people doing things well.

20. Initiate or strengthen your project or organization’s use of qual-
ity improvement tools such as brainstorming, multivoting, Pareto
charts, fishbone (or Ishikawa) diagrams, PDCA, rules of conduct,
barriers-and-aids analysis, countermeasures, and process flowcharts.

21. Review the reasons for requirements errors. Determine root causes.
Brainstorm ideas and suggestions (”countermeasures”) to tackle the
root causes. Select a few countermeasures to implement, and track
the results.

22. Examine whether you believe that your project’s meetings are as
effective as they can be. Consider ideas for making better use of
meeting time.

23. Review the status of your personal study program and your project
or organization’s improvement program every six months. Ask,
How am I (or how are we) doing? Do we need to reengage and
recommit? Do we need to change our approach? Do we need to
involve project or senior management and request stronger sponsor-
ship or other actions? Perform PDCA on status and gain some
consensus about where to go from there. Act on your findings.
Establish near-term milestones and status them weekly.

24. Make sure that the requirements are used and that they do not
become “shelf ware.” Enlist the support of the developers, and with
management, articulate the expectation that the requirements
training provided to them is an integral element of the expected
success.

25. Increase the visibility of requirements gathering—make sure that all
developers know when they are seeing new or changing require-
ments and that they must communicate this information to the
project CCB; otherwise, the project is in jeopardy of getting out of
control.

A Requirements Mandala
A “mandala” is a diagram—a circle divided into four quadrants, each with
symbology. It provides a map that sums up where an individual or organiza-
tion is and where it is going.

Figure 10.2 provides a mandala related to requirements engineering.
The requirements mandala may help you visualize some next steps that

you’ll want to take. I purposely have not provided candidate lists of things
to include for each quadrant—this should be your own creation. In the east
quadrant, list some requirements practices you have used in the past or that
have been applied on your project or in your organization. In the south
quadrant, list some feeds to an improved situation—ideas about better

212 Moving Forward: Knowable Requirements, Manageable Risk

practices that might be applied. In the west quadrant, list goals that you
want to achieve by applying more effective practices. In the north quadrant,
list characteristics of the desired end state—personal goals, project objec-
tives, organizational goals, or business objectives you want to achieve or
support.

This tool provides you an opportunity to reflect on all that you have
done in previous and current experiences, as well as what you have read in
this book and have learned in other ways. Each focal point provides an
opportunity for questions and ideas. Take a few moments to list some things
in each quadrant and reflect on them. In addition, have some discussions
about this among the members of your task, project, or organizational team.
This may lead to some useful directions. Perhaps everyone should take time
to draw his or her own mandala.

Summary
RAs and engineers are in a strategic position to improve project results and
success rates. Requirements are the basis for all of the follow-on work
that is done on systems and software engineering projects. Improving the
requirements practices being used can have a huge pay off. Be bold in offer-
ing your experience, energy, and insights.

Case Study
This case study is an example of how an effective RM process and adherence
to it can make resolution of requirements interpretation issues go smoothly,
even when the requirements change during the development effort.

A customer challenged the implementation of a software requirement
as not meeting the intent of the higher-level system requirement dur-
ing a design review on a project. The customer challenged the software
requirement as being deficient against the parent system requirement, but

Summary 213

Goals Requirements
practices

Desired
end state

Feeds to an
improved
situation

Figure 10.2 A requirements mandala.

acknowledged that the design did meet the software requirement. The soft-
ware requirements for the system had already been through the software
requirements review and approved by the customer following the project’s
RM process. The customer opened an action item in the design review as a
mechanism to formally document the software requirement interpretation
issue. At this stage of the design process, we knew more about the cus-
tomer’s environment and agreed (off the record) that they had a valid con-
cern. We were too far along in the development process to make the design
changes necessary to address this action item in this release of the product as
the software requirements had already been approved. Our RM process dic-
tated that an enhancement be submitted against the approved software
requirement to be addressed in a future release of the product. This allows
the project to continue against the current cost and schedule.

Following our system engineering process, we documented several solu-
tions to address the problem. Solutions included modifying the design to
address the new interpretation and proposing a manual process overlay
with the existing design to address the issue opened by the customer. Cost
and schedule estimates were laid out for each of the solutions. Senior engi-
neering management was briefed on the issue, the original requirements,
and the proposed solutions. Management agreed that we could not impact
the approved schedule and budget given the design satisfied the approved
software requirement. Our management team had gotten into trouble on a
previous contract for trying to be too responsive to the customer’s request,
resulting in late delivery and cost overrun. Management was determined
not to repeat that mistake.

We took the proposed solution to the action item back to the customer at
the design review closure meeting. We pointed out via trace reports that we
had formally decomposed the system requirements into software require-
ments. The decomposed requirements satisfied the intent to the best of our
knowledge at the time of approval. The software requirements were
approved as part of existing software requirements review. We presented
the formal signature page as proof of this approval.

We had now established that the customer had ownership in this issue.
When they saw the proposed options, they selected the one with the least
amount of schedule and cost impact, the manual process overlay. The action
was closed with a recommendation to propose the design change when the
preplanned product improvement phase of the contract was bid. We
acknowledged that the requirement did not address the customer’s issue as
raised during the design review, but the issue had not been raised during the
requirement review.

By following our RM process we were able to avert a large cost and
schedule impact to the program. The customer took ownership with us on
the problem. We developed a short-term low-to-no cost plan and agreed to
include the permanent solution in the next version of the product. It was
tempting to say, “yes Mr. Customer, you have a valid point and we will
modify the design to satisfy your need,” but this would have deviated from
our process and jeopardized contract completion within the planned

214 Moving Forward: Knowable Requirements, Manageable Risk

schedule and cost. If it had been a critical requirement, we would have
asked for approval from the customer for a cost and schedule replan as a
new requirement was being raised after approval of the requirements.

Don Young
Requirements engineer

Telelogic Corporation

References

[1] Humphrey, W. S., Introduction to the Personal Software Process, Reading, MA:
Addison-Wesley, 1997.

[2] Humphrey, W. S., Introduction to the Team Software Process, Reading, MA:
Addison-Wesley, 2000.

[3] Six Sigma Qualtec, QI Story: Tools and Techniques, A Guidebook to Problem Solving,
3rd ed, 1999. Copies can be ordered by calling (480) 586-2600.

Case Study 215

.

Glossary

Allocation Assigning each requirement to a component of the system
where it will be implemented.

Application The use of capabilities (services and facilities) provided
by an information system to satisfy a set of user requirements, such as
word processing.

Architecture The underlying structure of a system.

Artifact A document representing the result of effort. Artifacts are
often referred to as examples of work products needed to provide evi-
dence in support of assessments.

Attribute A characteristic of a requirement that is useful in sorting,
classifying, or managing requirements.

Baseline A specification or product that has been formally reviewed
and agreed on and thereafter serves as the basis for further development.
It is changed only through formal change control procedures.

Business requirements The essential activities of an enterprise. Busi-
ness requirements are derived from business goals (the objectives of the
enterprise). Business scenarios may be used as a technique for under-
standing business requirements. A key factor in the success of a system is
the extent to which the system supports the business requirements and
facilitates an organization in achieving them.

Business rules The policies, conditions, and constraints of the busi-
ness activities supported by a system; the decision processes, guidelines,
and controls behind functional requirements (e.g., procedures, defini-
tions, relationships and workflows in the business, and knowledge
needed to perform actions).

Business scenario A technique that can be used to understand an
enterprise or organization. A business scenario describes the business
process, application, or set of applications, the business and technology
environment, the people and computing components that execute the
scenario, and the desired outcome of proper execution.

217

Business system Hardware, software, policy statements, procedures,
and people that together implement a business function.

Client An application component that requests services from a server.

Commercial-off-the-shelf An item of hardware or software that has
been produced by a contractor and is available for general purchase.

Complexity The degree to which a system has requirements, a design,
or an implementation that is difficult.

Configuration management A discipline that applies technical and
administrative direction and surveillance to (a) identify and document the
functional and physical characteristics of a configuration item; (b) control
changes to those characteristics; and (c) record and report changes to
processing and implementation status.

Constraint A necessary attribute of a system that specifies legislative,
legal, political, policy, procedural, moral, technology, or interface
limitations.

Customer The person(s) with the funds to pay for the project or its end
product. The customer is not necessarily the user.

Customer need The set of requirements desired by a customer.

Decomposition Breaking apart the attributes of a customer need (the
requirements of a system) so that they can be addressed.

Defect A variance from a desired product attribute.

Defect prevention Technologies and techniques (e.g., SPC) that
minimize the risk of making errors in deliverables.

Defect removal Activities that find and correct defects in deliverables.

Defect removal efficiency The ratio of development defects to cus-
tomer defects.

Derived requirement A requirement that is further refined from a
primary source requirement or from a higher-level derived requirement,
or a requirement that results from choosing a specific implementation or
system element.

Design The process of defining the architecture, components, inter-
faces, and other characteristics of a system.

Design pattern A description of a problem and its proposed solution
that indicates when to apply the solution and the consequences. See
Gamma et al., Design Patterns (Reading, MA: Addison-Wesley, 1995).

Development The process of transforming a design into hardware
and software components.

Domain expert An individual who has been working in a particular
field for an extensive period of time and who is trained in that area. A
domain expert is often referred to as a subject matter expert, or SME.

218 Glossary

Enterprise The highest level in an organization.

Feasibility study An analysis that provides an initial understanding
of the cost, viability, high-level technical architecture, and requirements
of a capability or system.

Framework A basic structure of ideas or frame of reference.

Function A useful capability provided by one or more components of
a system.

Function point A measure of the complexity of software
development.

Functional requirement A necessary attribute in a system that speci-
fies what the system or one of its products must do.

Functional specification or document A comprehensive collection
of the characteristics of a system and the capabilities it will make available
to the users. It provides a detailed analysis of the data the system will be
expected to manipulate. It may include a detailed definition of the user
interfaces of the system.

Gold plating Adding features and capabilities to systems when they
are not required by the system specification or the real requirements.

Information system The computer-based portion of a business
system.

Information technology An applied science utilizing hardware and
software to support the transfer of ideas.

Institutionalization The building of infrastructure and corporate cul-
ture that support methods, practices, and procedures so that they are the
ongoing way of doing business, even after those who originally defined
them are gone.

Interoperability The ability of two or more systems or components to
exchange and use information.

Iterate To repeat a sequence of operations to yield results that are suc-
cessively closer to a desired result.

Interface The interaction or communication between independent
systems or components of systems.

Integrated product team A group that includes customers and
developers and blends perspectives into a functioning or unified whole.
The joint team recommended in this book is an example of an IPT.

Life cycle The period of time that begins when a system is conceived
and ends when the system is no longer available.

Life-cycle model A framework of processes and activities concerned
with evolving a system that also acts as a common reference for communi-
cation and understanding among the participants in the effort.

Glossary 219

Major defect A problem that precludes effective use of a work prod-
uct, such as a design deficiency or discovery of conflicting requirements.

Mandala A diagram that provides a mapping for an individual or an
organization that sums up where one is and where one is going.

Measures of effectiveness High-level indicators of how well the sys-
tem performs its functions, defined in the terms and with the same dimen-
sionality of the requirements document. For example, if we are dealing
with a city’s metro system, we may specify that a typical user during rush
hour should not wait more than some period of time, on the average, for
the next train.

Mechanism A way to get something done or to achieve a result.

Method A way, technique, process, plan, mechanism, body of skills or
techniques, discipline, practice, system, model, framework, capability, or
procedure for doing something.

Methodology A body of methods, rules, and postulates employed by a
discipline; a particular procedure or set of procedures.

Minor defect A problem that doesn’t preclude effective use of a work
product, such as a formatting issue, spelling error, language usage prob-
lem, or acronym or definition not provided or explained.

Model A representation of reality that is intended to facilitate
understanding.

Nonfunctional requirement A necessary attribute in a system that
specifies how functions are to be performed, often referred to in systems
engineering as the “ilities” (e.g., reliability, reusability, portability, main-
tainability, compatibility, verifiability, predictability, safety, information
assurance, resource efficiency, completeness, and human factors).

Partnering A structured process designed to create an atmosphere of
commitment, cooperation, and collegial problem solving among organi-
zations and individuals who will work together.

Performance requirement A necessary attribute of a system that
specifies how well the system or one of its products must perform a func-
tion, along with the conditions under which the function is performed.

Practice The performance of work activities repeatedly so as to
become proficient; the usual way of doing something so as to produce a
good result.

Prioritized requirements Categorization of the real requirements
into subsets according to criticality of need for a system or capability.

Problem frame The definition of a problem class. A problem frame
consists of a frame diagram, domain characteristics, and the frame con-
cern. See Michael Jackson, Problem Frames: Analysing and Structuring Soft-
ware Development Problems (New York: Addison-Wesley, 2000).

220 Glossary

Process A set of activities that results in the accomplishment of a task
or achieving of an outcome.

Process capability The range of expected results that can be achieved
by following a process.

Process description A document that describes a process, including,
for example, its purpose, customers, customer requirements, entrance cri-
teria, inputs, outputs, exit criteria, tasks involved and who is responsible
for each, measurement indicators, resources needed, and version.

Process flowchart A diagram that shows a step-by-step series of
actions through a procedure using connecting lines and a set of standard
symbols adopted by an organization.

Process model A framework for identifying, defining, and organizing
the functional strategies, rules, and processes needed to manage and sup-
port the way an organization does or wants to do business. The process
model provides a graphical and textual framework for organizing the data
and processes into manageable groups to facilitate their shared use and
control throughout the organization.

Project An undertaking focused on developing or maintaining a prod-
uct. Typically a project has its own funding, accounting, and delivery
schedule.

Project champion An advocate who is very familiar with the set of
real customer needs for a system who provides an active role in the devel-
opment effort, facilitating the tasks of the development team.

Project or program manager The role with total business responsi-
bility for a project, ultimately responsible to a customer.

Prototyping A technique for building a quick and rough version of a
desired system or parts of that system. The prototype illustrates the capa-
bilities of the system to users and designers. It serves as a communications
mechanism to allow reviewers to understand interactions with the sys-
tem. It enables them to identify problems and consider ways to improve a
system. It sometimes gives an impression that developers are further
along than is actually the case, giving users an overly optimistic impres-
sion of completion possibilities!

Quality Meeting real customer needs.

Quality culture The presence of an attitude of continuous improve-
ment and customer satisfaction throughout an organization.

Quality function deployment A methodology originally conceived
in Japan in the 1970s that provides an opportunity for the user and devel-
oper of a system to understand requirements more fully and to prioritize
them.

Rational Unified Process A methodology advocated by Rational
Software, Inc. (now IBM, Inc.)

Glossary 221

Real requirements Requirements that reflect the verified needs for a
particular system or capability.

Requirement A necessary attribute in a system; also a statement that
identifies a capability, characteristic, or quality factor of a system in order
for it to have value and utility to a user.

Requirements allocation Assignment of requirements to architec-
tural components of a system (e.g., a hardware or software configuration
item, training, or documentation). Sometimes referred to as flowdown.

Requirements analysis A structured (organized) method to under-
stand the attributes that will satisfy a customer need.

Requirements baseline The set of requirements associated with a
particular release of a product or system.

Requirements definition A detailed description in general, rather
than functional, terms of the attributes needed in a system.

Requirements derivation Obtaining requirements for a system from
sources provided by the customer.

Requirements document A repository of the attributes in a system.

Requirements elicitation The process of drawling forth and bringing
out requirements based upon information provided by the customer.

Requirements engineering An area within the broader field of sys-
tems and software engineering that focuses on the RE process.

Requirements leakage The addition or leaking in of unofficial
requirements to the requirements specification, when the requirements
are not really needed.

Requirements management Tracking requirements status and
change activity and tracing requirements to the various phases and prod-
ucts of the development effort.

Requirements pattern A framework for the requirements set that
supports the product or service needs, minimizing gaps in knowledge that
might cause project failure. The requirements pattern helps to capture all
types of requirements, independent of the kind of design, implementa-
tion, or method used to capture and identify the requirements. See
P. Ferdinandi, A Requirements Pattern: Succeeding in the Internet Economy
(Boston: Addison-Wesley, 2002).

Requirements process A full system life-cycle set of actions concern-
ing the necessary attributes of systems. The requirements process involves
understanding customer needs and expectations (requirements elicita-
tion), requirements analysis and specification, requirements prioritiza-
tion, requirements derivation, partitioning and allocation, requirements
tracing, requirements management, requirements verification, and
requirements validation.

222 Glossary

Requirements traceability The ability to determine the customer
need to requirement relationship or connectivity, or the relationship of a
parent requirement to a child and vice versa. The ability to trace a require-
ment throughout the system development process, from requirements
specification to design, to system component through testing and system
documentation. Absolutely critical for all systems.

Requirements verification Independent assurance that require-
ments are addressed and met in a system.

Requirements verification matrix An analysis that shows the verifi-
cation method for each requirement.

Reuse Reuse has two meanings: (1) to take object X (e.g., an object,
subroutine, or COTS software) that was done by Y and use it directly in
another project; and (2) to tailor a developed work product (a specifica-
tion, a plan, or process for example).

Risk The possibility of suffering loss.

Robust architecture An underlying structure of a system that can
readily meet and adapt to real requirements.

Role A set of defined responsibilities that may be assumed by one or
more individuals.

Scalability The capability to grow to accommodate increased work
loads.

Scenario A technique used for understanding requirements.

Senior management A role sufficiently high in the organization that
its primary focus is on the long-term vitality of the organization.

Software quality Software that combines the characteristics of low
defect rates and high user satisfaction.

Specification A document that describes technical requirements and
verification procedures for items, materials, and services. An output of the
requirements analysis process.

Stakeholder Anyone who has an interest in a system or in its possess-
ing qualities that meet particular needs.

Stated requirements Requirements provided by a customer at the
beginning of a system or software development effort. To be distinguished
from real requirements.

Subject matter expert An individual who has been working in a
particular field for an extensive period of time and who is trained in that
area. A subject matter expert is often referred to as a domain expert.

Supplier An organization that contracts with a buyer to provide a
system.

System An integrated set of people, products, and processes that pro-
vide a capability to satisfy a customer need.

Glossary 223

System life cycle The set of activities involved in understanding a
customer need, defining and analyzing requirements, preparing a design,
developing a system, and testing, implementing, operating, and maintain-
ing it, ending in its retirement.

Systems engineering A technical and management discipline that
translates a customer need into a system that meets the customer need.
Another source states system engineering is the iterative, but controlled,
process in which user needs are understood and evolved into an opera-
tional system. The role of systems engineering is: technical authority on a
project; single interface to customer and project; architecture and system
design; requirements derivation, allocation and interpretation; and
others.

Tailoring The activity of modifying, elaborating, or adapting a process
or document for another use. Reuse of tailored artifacts saves time and
money and is an advantage of a process-oriented approach.

Teamwork Proactive support of one another; necessary for success of
any significant undertaking. Physical collocation facilitates teamwork and
may be a prerequisite to success.

TEAMWORKS An environment or work setting where working
together as an effective team is valued and appreciated

Technical performance measures Indicators of how well the sys-
tem works and how well the requirements are met; estimates or measures
of the values of essential performance parameters. Technical performance
measures are used to evaluate the impact to cost, schedule, and technical
effort.

Technical specification A comprehensive collection of the details of
how a system will be implemented, including the technical architecture
(hardware and software), decomposition of the system into subsystems,
identification of common modules that will be developed, and other
details requiring definition in order to allow development of the system.

Technique A set of rules to follow to accomplish a task, a treatment of
technical details, a body of technical methods, or a method of accomplish-
ing a desired aim.

Technology insertion Adding new technology to a system through-
out the system life cycle.

Tool Something used to facilitate performing an operation or practic-
ing a process or activity.

Trade study An analysis of alternative courses of action in which a
balancing of factors, all of which are not obtainable at the same time, is
performed.

Unified Modeling Language (UML) A general-purpose notation (a
way to document) that describes the static and dynamic behavior of a sys-
tem. It is not a design method or a development process.

224 Glossary

Use case A picture of action(s) a system performs depicting the
actor(s).

Use case driven Describing the behavior of a system based on how the
users interact with the system.

Use case model A description of the functional behavior of a system
that includes all of the actors and all of the use cases through which the
actors interact with the system.

User The individual or group who uses a system in its environment.

User friendly Easy to use.

User perspective Maintaining the view of what the user wants,
needs, prefers, is happy with, and can use.

User satisfaction Quality of clients being pleased with a vendor’s
products, quality levels, ease of use, and support.

Validation A process for confirming that the real requirements are
implemented in the delivered system.

Verification A process for assuring that the design solution satisfies
the requirements.

Verification methods The approaches used to perform verification:
test, inspection, demonstration, and analysis.

View A perspective of a system, such as the functional, implementa-
tion, or physical view.

Work product Something produced or created as a result of systems
or software development activity.

Glossary 225

.

List of Acronyms

AI action item

AKA also known as

AP action plan

APM Association of Project Managers (in the UK)

BOE basis of estimate

BSI British Standards Institute

BT British Telecommunications

CARE Computer-Aided Requirements Engineering, a require-
ments tool marketed by Sophist Technologies (Germany)

CCB configuration control board or change control board

CM configuration management

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMP configuration management plan

CMWG configuration management working group

CONOPS concept of operations

CORE a requirements tool marketed by Vitech Corporation

COTS commercial off-the-shelf software

CR change request

DACS Data and Analysis Center for Software

DAR decision analysis resolution

DES Defense Enterprise Solutions

DoD U.S. Department of Defense

DOORS Dynamic Object-Oriented Requirements System, a require-
ments tool marketed by Telelogic Corporation

DP defect prevention

227

EIA Electronic Industries Association (industry standards
group)

EPG engineering process group

EPI engineering process improvement

EPIP engineering process improvement plan

ESE engineering software environment

FD functional document

FP function point

FPA function point analysis

GSA General Services Administration

GUI graphical user interface

ICRE IEEE Conference on Requirements Engineering

IDEF integrated definition for functional modeling

IE impact estimation

IEEE Institute of Electrical and Electronic Engineers

IFPUG International Function Points User Group

ILS integrated logistics support

INCOSE International Council on Systems Engineering

IT information technology

ISO International Standards Organization

IV&V independent verification and validation

JAD joint application development

JT joint team

KPA key process area

MDD model-driven development

MQ maturity questionnaire

NGC Northrop Grumman Corporation

O&M operation and maintenance

OMA Object Management Architecture

OMG Object Management Group

OO object oriented

OOSE object-oriented software engineering

OSD/
AT&L

Office of the Secretary of Defense, Acquisition, Technology,
and Logistics

PA process area

228 List of Acronyms

PAL process asset library; purpose, agenda, and limit (in connec-
tion with a meeting)

PBS product breakdown structure

PD process description

PDCA plan-do-check-act

PI process improvement

PIP process improvement plan

PM program manager, project manager

PMP program management plan, project management plan

PP project planning or program plan

PR peer review

PRINCE a registered project management methodology supported
by the APM, closely allied with the British Standards
Institute

PSP personal software process

QA quality assurance

QAI Quality Assurance Institute

QFD quality function deployment

QI quality improvement

QIDW quality in daily work (also referred to as process
management)

QM quantitative management

QMB quality management board

R&D research and development

RA requirements analyst

RAD rapid application design, rapid application development

RD requirements document; requirements development (a
process area in the CMMI)

RDM requirements-driven management

RE requirements

REQM requirements management (acronym used in the CMMI

for this process area)

RESG Requirements Engineering Specialist Group (in the UK)

RFC request for change

RFI request for information

RFP request for proposals

List of Acronyms 229

RFQ request for quote

ReqPro Requisite Pro (a requirements tool marketed by IBM [for-
merly Rational] Corporation)

RM requirements management

RMA Risk Manager’s Assistant (a risk tool)

ROI return on investment

RP requirements plan

RRB requirements review board

RT Requirements Tracer, a requirements tool marketed by
Teledyne Brown Engineering (aka Xtie-RT)

RTM requirements traceability matrix

RTM
Workshop

a requirements tool marketed by Integrated Chipware

RUP rational unified process

RWG requirements working group

S&PE Systems and Process Engineering Organization in DES, NGC

SA system architecture

SCAMPI Standard CMMI Assessment for Managing Process
Improvement

SCE software capability evaluation

SDP software development plan

SE systems engineering

SE-CMM System Engineering Capability Maturity Model (EPIC)

SEI Software Engineering Institute

SEMP systems engineering management plan

SEP systems engineering process

SEPG systems or software engineering process group

SLA service-level agreement

SLATE an automated requirements tool

SLC systems life cycle

SME subject matter expert

SOW statement of work

SPE or PE software product engineering

Spec specification

SPI software process improvement

SPIP software process improvement plan

230 List of Acronyms

SPR Software Productivity Research, a wholly owned subsidiary
of Artemis Management Systems

SS system specification

STD standard

SRR system requirements review

SRS system or software requirements specification

SSQ Society for Software Quality

STQE Software Testing & Quality Engineering (a periodical;. see
www.stqemagazine.com.

SUNA scenario-based user needs analysis

SW software

SW-CMM capability maturity model for software (developed by the
SEI)

SWE software engineering

Synergy
RM

a requirements tool marketed by CMD Corporation

TBQ taxonomy-based questionnaire

TQM total quality management

TSP team software process

UBL Universal Business Language

UML Unified Modeling Language

URL uniform resource locator

V&V verification and validation

Vital Link a requirements tool marketed by Compliance Automation

WBS work breakdown structure

Xtie-RT requirements tracer, a requirements tool marketed by Tele-
dyne Brown Engineering

ZF Zachman framework

List of Acronyms 231

.

Bibliography

ABT Corporation, “Core Competencies for Project Managers,” White Paper,
2000. See www.tsepm.com/may00/art5.htm.

Adams, James L., Conceptual Blockbusting: A Guide to Better Ideas (3rd ed.),
Reading, MA: Perseus Books, 1986.

Adhikari, Richard, “Development Process is a Mixed-Bag Effort,” Client/Server
Computing, February 1996, pp. 65–72.

Afors, Cristina, and Marilyn Zuckermann Michaels, “A Quick Accurate Way
to Determine Customer Needs,” American Society for Quality: Quality
Progress, July 2001, pp. 82–87.

Alexander, Ian, Web site, easyweb.easynet.co.uk/~iany/index.htm.

Alexander, Ian F., and Richard Stevens, Writing Better Requirements, London,
UK: Addison-Wesley, 2002.

Alexander, Ian, and Andrew Farncombe, John Boardman Associates (JBA),
Stakeholder Analysis Template, Systems Engineering Foundation Course,
2003.

American Society for Quality (ASQ) Web site: www.asq.org/.

Andriole, Stephen J., Managing System Requirements: Methods, Tools, and Cases,
New York: McGraw Hill, 1996.

Bach, James, “James Bach on Risk-Based Testing: How to Conduct Heuristic
Risk Analysis,” Software Testing and Quality Engineering (STQE) Magazine,
November/December 1999, pp. 23–29.

Bachmann, Felix, Len Bass, Gary Chastek, Patrick Donohoe, and Fabio
Peruzzi, The Architecture Based Design Method, Software Engineering Institute,
Technical Report CMU/SEI-2000-TR-001, ESC-TR-2000-001, 2000.

Bass, Len, Paul Clements, and Rick Kazman, Software Architecture in Practice,
Reading, MA: Addison-Wesley, 1998.

Bennis, Warren, and Patricia Ward Biederman, Genius: The Secrets of Creative
Collaboration, Reading, MA: Perseus Books, 1997.

233

Bentley, Colin, PRINCE® 2: A Practical Handbook, Woburn, MA: Butterworth-
Heinemann, 1997.

Berezuk, Steven P., with Brad Appleton, Software Configuration Management
Patterns: Effective Teamwork, Practical Integration, Boston, MA: Addison-Wesley,
2003.

Bicknell, Barbara A, and Kris D., Bicknell, The Road Map to Repeatable Success:
Using QFD to Implement Change, Boca Raton, FL: CRC Press, 1995.

Boehm, Barry W., Software Engineering Economics, Englewood Cliffs, NJ:
Prentice Hall, 1981.

Boehm, Barry, “Spiral Model of Software Development and Enhancement,”
IEEE Computer, May 1988 (also published in Barry Boehm, Software Risk
Management, IEEE Computer Society Press, 1989, p. 26).

Boehm, Barry W., WinWin Spiral Model & Groupware Support System,
University of Southern California, 1998. Available at sunset.usc.edu/
research/WINWIN/index.html.

Boehm, Barry, Alexander Egyed, Julie Kwan, Dan Port, Archita Shah, and
Ray Madachy, “Using the WinWin Spiral Model: A Case Study,” IEEE
Computer, July 1998, pp. 33–44.

Boehm, B. W., and Hoh In, “Identifying Quality-Requirements Conflicts,”
IEEE Software, March 1996, pp. 25–35.

Boehm, Barry W., and Kevin J. Sullivan, “Software Economics,” CrossTalk,
The Journal of Defense Software Engineering, December 1999. See www.stsc.
hill.af.mil/.

Boehm, Barry, and Richard Turner, “Observations on Balancing Discipline
and Agility,” Excerpted from Balancing Agility and Discipline: A Guide to the
Perplexed, Boston, MA: Addison-Wesley, 2003.

Boehm, Barry, and Wilfred J. Hansen, “The Spiral Model as a Tool for
Evolutionary Acquisition,” A joint effort of the University of Southern
California Center for Software Engineering and the Software Engineering
Institute (SEI), CrossTalk, May 2001, pp. 4–11.

Brodman, Judith G., and Donna L. Johnson, The LOGOS Tailored CMM for Small
Businesses, Small Organizations, and Small Projects, LOGOS International, Inc.
www.tiac.net/users/johnsond.

Brodman, Judith G., and Donna L. Johnson, “Return on Investment (ROI)
from Software Process Improvement as Measured by U.S. Industry,” Software
Process Improvement and Practice, Sussex, England: John Wiley & Sons Ltd.,
1995, pp. 35–47.

Buede, Dennis M., The Engineering Design of Systems: Models and Methods, New
York: John Wiley & Sons, 2000.

Butler, K., “The Economic Benefits of Software Process Improvement,”
CrossTalk, 1995, pp. 28–35.

234 Bibliography

Capability Maturity Model Integration (CMMI) Project. See www.sei.cum.
edu/cmmi/.

Carr, Frank et al, Partnering in Construction: A Practical Guide to Project Success,
Chicago, IL: American Bar Association Publishing, 1999.

Clark, Bradford K., “Effects of Process Maturity on Development Effort,”
Available at www.ralphyoung.net/goodarticles/.

Cockburn, Alistair, Writing Effective Use Cases, Boston, MA: Addison-Wesley,
2001.

Data & Analysis Center for Software (DACS), DACS Technical Reports. See
www.dacs.dtic.mil/techs/tr.shtml.

Daughtrey, Taz (ed.), Fundamental Concepts for the Software Quality Engineer,
Milwaukee, WI: ASQ Quality Press, 2002.

Davis, Alan M., Just Enough Requirements Management (Redmond, WA:
Microsoft Press, forthcoming).

Davis, Alan M., “The Art of Requirements Triage,” IEEE Computer, IEEE
Computer Society Press, Vol. 36, No. 3, March 2003, pp. 42–49.

Davis, Alan M., Software Requirements: Objects, Functions, & States, Upper Saddle
River, NJ: Prentice Hall PTR, 1993.

Deming, W. Edwards, Out of the Crisis, MIT Center for Advanced Engineering
Study, 1986.

Dion, R., “Process Improvement and the Corporate Balance Sheet,” IEEE
Software, October 1993, pp. 28–35.

Eckes, George, Making Six Sigma Last: Managing the Balance Between Cultural and
Technical Change, New York: John Wiley & Sons, Inc., 2001.

Electronic Industries Alliance (EIA), EIA Standard 632 Processes for Engineering a
System, Arlington, VA, 1998.

Electronic Industries Association (EIA), EIA Standard 649, National
Consensus Standard for Configuration Management, Arlington, VA, 2001.

Engineering Process Improvement Collaboration (EPIC), A Systems
Engineering Capability Maturity Model, Version 1.1. Pittsburgh, PA: Software
Engineering Institute, Carnegie-Mellon University, 1995, Available at
www.sei.cmu.edu/pub/documents/95.reports/pdf/mm003.95.pdf.

Federal Information Processing Standards Publications (FIPS PUBS) 183,
Integration Definition for Function Modeling (IDEF0). Available from
www.itl.nist.gov/fipspubs/idef02.doc.

Feldmann, Clarence G., The Practical Guide to Business Process Reengineering
Using IDEF0, New York: Dorset House, 1998.

Ferdinandi, Patricia L., A Requirements Pattern: Succeeding in the Internet
Economy, Boston, MA: Addison-Wesley, 2002.

Bibliography 235

Fowler, Martin, Analysis Patterns: Reusable Object Models, Reading, MA:
Addison-Wesley, 1996.

Fowler, Martin, UML Distilled: Applying The Standard Object Modeling Language,
Reading, MA: Addison Wesley, 1997.

Gaffney, Steven, Just Be Honest, Arlington, VA: JMG Publishing, 2002.

Gaffney, Steven Web site, www.StevenGaffney.com.

Gamma, Erich, et al, Design Patterns, Reading, MA: Addison-Wesley, 1995.

Garmus, David, and David Herron, Function Point Analysis: Measurement
Practices for Successful Software Projects, Reading, MA: Addison-Wesley, 2001.

Gilb, Tom, Impact Estimation Tables: Understanding Complex Technology
Quantitatively, November 1997. White Paper available at Gilb’s Web site:
www.gilb.com.

Gilb, Tom, “Planning to Get the Most Out of Inspection,” in Fundamental
Concepts for the Software Quality Engineer, Taz Daughtrey (ed.), p. 178.

Gilb, Tom, Principles of Software Engineering Management, Harlow, England:
Addison-Wesley, 1988.

Gilb, Tom, and Dorothy Graham, Software Inspection, Boston, MA: Addison-
Wesley, 1993.

GOAL/QPC materials. See www.goalqpc.com.

Gottesdiener, Ellen, Requirements by Collaboration, Reading, MA: Addison-
Wesley, 2002.

Gottesdiener, Ellen, “Top Ten Ways Project Teams Misuse Use Cases—and
How to Correct Them,” Available at www.therationaledge.com/content/
jun_02/t_misuseUseCases_eg.jsp.

Gottesdiener, Ellen, and Jim Bruce, “The Value of Standardization of Business
Rules,” Available at www.ebgconsulting.com/BusRulesObjectMagsHTML.
html.

Gottesdiener, Ellen, “Capturing Business Rules,” Software Development Magazine,
Vol. 7, No. 12, December 1999. Available at www.sdmagazine.com/.

Gottesdiener, Ellen, “Turning Rules Into Requirements,” Application
Development Trends, July 1999. Available at www.adtmag.com/ print.asp?id=
3806.

Grady, Jeffrey O., System Validation and Verification, Boca Raton, FL: CRC Press,
1997.

Grady, Jeffrey O., Systems Requirements Analysis, New York: McGraw-Hill,
1993.

Hadden, Rita, Leading Culture Change in Your Software Organization, 2003.

Hadden, Rita, “How Scalable Are CMM Key Practices?” CROSSTALK, April
1998, pp. 18–23. See also www.ppc.com.

236 Bibliography

Hall, David C., “Best Practices: Using a Risk Management Maturity-Level
Model,” Software Quality Magazine, Vol. 2, No. 4., October 2002, Available at
www.sqmmagazine.com/issues/2002-04/maturity.html.

Harmon, Paul, and Mark Watson, Understanding UML: The Developers Guide,
San Francisco, CA: Morgan Kaufman Publishers, Inc, 1997.

Hay, David C., Data Model Patterns: Conventions of Thought, New York: Dorset
House, 1996.

Hay, David C., Requirements Analysis: From Business Views to Architecture, Upper
Saddle River, NJ: Prentice Hall PTR, 2003.

Hay, John, Requirements Analysis—From Business Views to Architecture,
Englewood Cliffs, NJ: Prentice Hall, 2002.

Herbsleb, James, Anita Carlton, James Rozum, Jane Siegel, and David
Zubrow, Benefits of CMM-Based Software Process Improvement: Initial
Results, Technical Report CMU/SEI-94-TR-013, Pittsburgh, PA: Software
Engineering Institute, August 1994.

Higgins, Stewart A., et al, “Managing Requirements for Medical Information
Technology Products,” IEEE Software 2003: 20(1), 26–33. See
www.computer.org/software.

Hooks, Ivy F., and Kristin A. Farry, Customer-Centered Products: Creating
Successful Products through Smart Requirements Management, New York:
AMACOM (publishing arm of The American Management Association),
2001.

Hooks, Ivy, “Writing Good Requirements: A One-Day Tutorial,” Sponsored
by the Washington Metropolitan Area (WMA) Chapter of the International
Council on Systems Engineering (INCOSE), McLean, VA: Compliance
Automation, Inc., June 1997.

Humphrey, Watts S., Introduction to the Personal Software Process, Reading, MA:
Addison-Wesley, 1997.

Humphrey, Watts S., Introduction to the Team Software Process, Reading, MA:
Addison-Wesley, 2000.

Humphrey, W. S., et al, “Software Process Improvement at Hughes Aircraft,”
IEEE Software, August 1991, pp. 11–23.

Inmon, W. H., John A. Zachman, and Jonathan C. Geiger, Data Stores, Data
Warehousing, and the Zachman Framework: Managing Enterprise Knowledge, New
York: McGraw Hill, 1997.

Institute of Electrical and Electronics Engineers (IEEE), IEEE Conference on
Requirements Engineering (ICRE) Web site: conferences.computer.org/RE/.

Institute of Electrical and Electronics Engineers (IEEE), IEEE 1220, IEEE
Guide for Information Technology-System Definition-Concept of Operations (ConOps)
Document, IEEE, New York, 1998.

Bibliography 237

Institute of Electrical and Electronics Engineers (IEEE), IEEE 1320.1, IEEE
Standard for Functional Modeling Language—Syntax and Semantics for IDEF0,
IEEE Computer Society, 1998.

Institute of Electrical and Electronics Engineers (IEEE), J-STD-016-1995,
Standard for Information Technology Software Life Cycle Processes Software
Development Acquirer-Supplier Agreement (Issued for Trail Use), New York: The
Institute of Electrical and Electronics Engineers, Inc., 1995.

Institute of Electrical and Electronics Engineers (IEEE) Software Engineering
Standards Committee, IEEE STD 830-1998, IEEE Recommended Practice for
Software Requirements Specifications, IEEE Computer Society, June 25, 1998.

Institute of Electrical and Electronics Engineers (IEEE) Software Engineering
Standards Committee, IEEE Std 1233a-1998, IEEE Guide for Developing
Software Requirements Specifications, IEEE Computer Society, December 8,
1998.

Institute of Electrical and Electronic Engineers (IEEE) Standard 12207, Software Life
Cycle Processes, New York: IEEE, 1998.

International Association of Facilitators Web site: www.iaf-world.org/.

International Council on Systems Engineering (INCOSE), INCOSE INSIGHT
(Journal of Systems Engineering) Web site: www.incose.org/insight.html.

International Council on Systems Engineering (INCOSE), INCOSE national
organization’s Web site: www.incose.org/se-int/.

International Council on Systems Engineering (INCOSE), INCOSE
Washington Metropolitan Area (WMA) Chapter Web site: www.
incose-wma.org/info/.

International Function Point Users Group (IFPUG) Web site: www.ifpug.org.

Jackson, Michael, Problem Frames: Analyzing and Structuring Software
Development Problems, London, UK: Addison-Wesley, 2001.

Jones, Capers, Assessment and Control of Software Risks, Englewood Cliffs, NJ:
Prentice Hall, 1994.

Jones, Capers, Estimating Software Costs, New York: McGraw Hill, 1998.

Jones, Capers, “Positive and Negative Factors That Influence Software
Productivity,” Burlington, MA: Software Productivity Research, Inc., Version
2.0, October 15, 1998.

Jones, Capers, Software Assessments, Benchmarks, and Best Practices, Reading,
MA: Addison-Wesley, 2000.

Jones, Capers, “Software Project Management in the 21st Century,” American
Programmer, Vol. 11, No. 2, February 1998. Also available at spr.com/
news/articles.htm.

Jones, Capers, Software Quality: Analysis and Guidelines for Success, London:
International Thomson Computer Press, 1997.

238 Bibliography

Jones, Capers, Software Quality in 2000: What Works and What Doesn’t, January
18, 2000.

Jones Capers, “What It Means To Be ‘Best in Class’ for Software,” Burlington,
MA: Software Productivity Research (SPR), Inc., Version 5, February 10,
1998.

Korson, Timothy, “The Misuse of Use Cases: Managing Requirements,”
Available at www.korson-mcgregor.com/publications/korson/Korson9803
om.htm.

Kotonya, Gerald, and Ian Sommerville, Requirements Engineering: Processes and
Techniques, Chichester, UK: John Wiley & Sons, 1998.

Kulak, Daryl, and Eamonn Guiney, Use Cases: Requirements in Context, New
York: ACM Press, 2000.

Leffingwell, Dean, and Don Widrig, Managing Software Requirements: A Unified
Approach, Reading, MA: Addison-Wesley, 2000.

Markert, Charles, Partnering: Unleashing the Power of Teamwork, 2002, briefing
available from markert@facilitationcenter.com.

McConnell, Steve, Software Project Survival Guide, Redmond, Washington:
Microsoft Press, 1998.

McGibbon, T., “A Business Case for Software Process Improvement Revised:
Measuring Return on Investment from Software Engineering and
Management,” Contract Number SP0700-98-4000, Data & Analysis Center
for Software (DACS), ITT Industries, Advanced Engineering and Sciences
Division, Rome, NY, September 30, 1999. Available at www.dacs.dtic.
mil/techs/roispi2/.

McKinney, Dorothy, “Six Translations between Software-Speak and
Management-Speak,” IEEE Software 2002: 19(6) 50–52. See www.computer.
org/software.

Northrop Grumman Information Technology Defense Enterprise Solutions
Press Release concerning CMMI Level 5. See www.irconnect.com/noc/
pages/news_releases.mhtml?d=35405.

Northrop Grumman Information Technology Defense Enterprise Solutions,
“The Road to CMM(I) Level 3,” White Paper available from ralph.
young@ngc.com.

Object Management Group (OMG), Introduction to the UML. See www.
omg.org/gettingstarted/what_is_uml.htm.

Object Management Group (OMG), OMG Unified Modeling Language
Specification, Version 1.4, September 2001 (566 pages). Available at
www.omg.org/technology/documents/formal/mof.htm.

Palmer, James D., “Traceability,” Software Requirements Engineering, R. H.
Thayer and M. Dorfman (eds.), 1997, pp. 364–374.

Bibliography 239

Paulk, M. C., “Using the Software CMM with Good Judgment,” ASQ Software
Quality Professional Vol. 1, No. 3, June 1999, pp. 19–29. Available at
www.sei.cmu.edu/publications/articles/paulk/judgment.html.

Paulk, Mark C., “Using the Software CMM with Good Judgment: Small
Projects & Small Organizations,” Presentation at the Washington, DC
Chapter, Society for Software Quality (SSQ) Roundtable 1998, January 26,
1998.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber,
Capability Maturity Model for Software, Version 1.1, February, 1993, Software
Engineering Institute (SEI), Carnegie-Mellon University, Pittsburgh, PA,
1993. See www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.
html.

Porter-Roth, Bud, Request for Proposal: A Guide to Effective RFP Development,
Boston, MA: Addison-Wesley, 2002.

Requirements Engineering Specialist Group (RESG) (in the UK) Web site:
www.resg.org.uk/.

Robertson, Suzanne, and James Robertson, Mastering the Requirements Process,
Harlow, England: Addison-Wesley, 1999.

Rogers, Everett M., Diffusion of Innovations (4th ed.), New York: The Free Press,
1995.

Ross, Jeanne W., and Peter Weill, “Six IT Decisions Your IT People Shouldn’t
Make,” Harvard Business Review, November 2002, pp. 85–91.

Sabourin, Rob Web site, www.amibug.com/index.shtm.

Scholtes, P., B. Joiner, and B. Streibel, The Team Handbook (2nd ed.), Madison,
WI: Oriel Inc., 2001.

Scott and Jaffee, Empowerment: A Practical Guide for Success.

Sharp, Helen, et al, “Stakeholder Identification in the Requirements
Engineering Process,” IEEE, 1999, pp. 387–391.

Six Sigma Qualtec, QI Story: Tools and Techniques, A Guidebook to Problem Solving,
Third Edition, 1999. Call 480-586-2600 for information. See also www.ssqi.
com/homepage.asp.

Smith, Preston G., and Donald G. Reinertsen, Developing Products in Half the
Time (2nd ed.), New York: John Wiley & Sons, Inc., 1998.

Society for Software Quality Web site: www.ssq.org/.

Software Development Magazine, Web site: www.sdmagazine.com/.

Software Engineering Institute (SEI), Taxonomy-Based Risk Identification,
Technical Report CMU/SEI-93-TR-6, Pittsburgh, PA: SEI, June 1993. See
www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf.

Software Productivity Research, Inc. Web site, www.spr.com.

240 Bibliography

Sommerville, Ian, Software Engineering (6th ed.), Reading, MA: Addison-
Wesley, 2001.

Sommerville, Ian, and Pete Sawyer, Requirements Engineering: A Good Practice
Guide, New York: John Wiley & Sons, 1997.

Sommerville, I., P. Sawyer, and S. Viller, “Viewpoints for Requirements
Elicitation: A Practical Approach,” Proceedings of the 1998 International
Conference on Requirements Engineering (ICRE ‘98), April 6–10, 1998, Colorado
Springs, CO, New York: IEEE Computer Society, 1998, pp. 74–81. See
computer.org/proceedings/icre/8356/8356toc.htm.

Sorensen, Reed, Comparison of Software Development Methodologies, Software
Technology Support Center, Jan 1995. Available at www.stsc.hill.af.mil/
crosstalk/1995/jan/comparis.asp.

Thayer, Richard H., and Merlin Dorfman (eds.), Software Requirements
Engineering (2nd ed. Revised), Los Alamitos, CA: IEEE Computer Society
Press, 2000.

Thayer, Richard H., and Mildred C. Thayer, “Software Requirements
Engineering Glossary,” Software Requirements Engineering (2nd ed.), Richard H.
Thayer and Merlin Dorfman (eds.), Los Alamitos, CA: IEEE Computer Society
Press, 1997.

The Standish Group International, Inc., CHAOS Chronicles 2003Report, West
Yarmouth, MA: The Standish Group International, Inc., 2002. See
www.standishgroup.com.

The Standish Group International, Inc, What are Your Requirements? 2003, West
Yarmouth, MA: The Standish Group International, Inc., 2002.

U.S. Army Corps of Engineers Integrated Product Team Web page. See
www.usace.army.mil/ci/lcmis/lcmipt.html.

Walton, Mary, The Deming Management Method, New York: The Putnam
Publishing Group, 1986.

Watts, F. B., Engineering Document Control Handbook: Configuration Management
in Industry (2nd ed.), Park Ridge, NJ: Noyes Publications, 2000.

Waugh, Penny, Peer Review Participant and Peer Review Moderator Training
Materials, Northrop Grumman Information Technology Defense Enterprise
Solutions, 2002. Contact her at PWaugh@ngc.com.

Webster Bruce F., Pitfalls of Object-Oriented Development, M&T Books, 1995.

Weinberg, Gerald M., “Just Say No! Improving the Requirements Process,”
American Programmer (10) 1995:19–23.

Whitten, Neal, “Meet Minimum Requirements: Anything More Is Too
Much,” PM Network, September 1998.

Wiegers, Karl E., Web site, www.processimpact.com/.

Wiegers, Karl E., Software Requirements (2nd ed.), Redmond, WA: Microsoft
Press, 2003.

Bibliography 241

Wiegers, Karl E., “Do Your Inspections Work?” StickyMinds.com, June 24,
2002. See www.stickyminds.com.

Wiegers, Karl E., Peer Reviews in Software: A Practical Guide, Boston, MA:
Addison-Wesley, 2002.

Wiegers, Karl E., “Inspecting Requirements,” StickyMinds.com, July 30, 2001.
See www.processimpact.com/.

Wiegers, Karl E., “Habits of Effective Analysts,” Software Development Magazine,
Vol. 8, No. 10 (October 2000), pp. 62–65.

Wiegers, Karl, “10 Requirements Traps to Avoid,” Software Testing and Quality
Engineering Magazine, January/February 2000. See www.stqemagazine.com/
featured.asp?id=8.

Wiegers, Karl E., “First Things First: Prioritizing Requirements,” Software
Development Magazine, Vol. 7, No. 9, September 1999, pp. 24–30.

Wiegers, Karl E., “Automating Requirements Management,” Software
Development, July 1999.

Wiegers, Karl E., Creating a Software Engineering Culture, New York: Dorset
House Publishing, 1996.

Wiley, Bill, Essential System Requirements: A Practical Guide to Event-Driven
Methods, Reading, MA: Addison-Wesley, 2000.

Wood, Jane, and Denise Silver, Joint Application Development, New York: John
Wiley & Sons, 1995.

Young Ralph R., “Early Project Requirements Briefing,” Web site: www.
ralphyoung.net.

Young, Ralph R., Effective Requirements Practices, Boston, MA: Addison-Wesley,
2001.

Young, Ralph R., “Recommended Requirements Gathering Practices,”
CrossTalk, 15(4), April 2002, pp. 9–12.

Young, Ralph R., Requirements Plan Template and Sample Requirements
Plan. See www.ralphyoung.net.

Young, Ralph R., “Requirements Tools Trade Study,” Available at www.
ralphyoung.net/publications/Requirements_Tools_Trade_Study1.doc.

Young, Ralph R, “The Importance and Value of Process Improvement.”
Available at www.ralphyoung.net.

Young, Ralph, “The Value of an Organizational Working Group.” Available at
www.ralphyoung.net.

Zachman Framework Web sites, e.g., see www.zifa.com/.

242 Bibliography

About the Author

Dr. Ralph R. Young is an active leader and contributor in systems, software,
and process engineering. His primary interest is to bring a sound working
knowledge of the best practices to a wide professional and academic com-
munity. In this pursuit, he teaches requirements and process engineering
courses and workshops, is a frequent speaker at meetings and conferences,
and maintains regular contact with industry experts. He has been awarded
teamwork, leadership, continuous improvement, and publishing awards
and is often recognized for his contributions in process management and
improvement. He has created a seven-text series that covers the full spec-
trum of achieving his vision of requirements engineering that is described in
Chapter 9. This is the second book in the series; his first book, Effective
Requirements Practices (Addison-Wesley, 2001), found a receptive audience
with RAs in computing and engineering, developers, and managers, and led
to a number of speaking and workshop presentation requests and other
writing opportunities.

Dr. Young is the director of engineering process improvement, systems
and process engineering, Defense Enterprise Solutions (DES), at Northrop
Grumman Information Technology, a leading provider of systems-based
solutions. Dr. Young helped lead his former business unit (Litton PRC) to
CMM Level 5 and his current business unit (DES) to CMMI Level 5. He
supports internal and external projects to improve their capabilities to utilize
process improvement techniques, implement effective requirements prac-
tices, and develop innovations to facilitate project management. He leads a
requirements working group that involves over 50 requirements engineers
from projects in his business unit.

Dr. Young is a graduate of the University of New Hampshire and earned
an M.A. in economics and a doctorate in business administration at George
Washington University in Washington, D.C. He has been involved in sys-
tems and software development activities for more than 35 years. In 1972,
he was appointed director of the Systems Development Branch for Fairfax
County, Virginia, where a group of 45 highly qualified developers provided
state-of-the-art systems for local government functions. Subsequently, he
was involved in and managed various systems and software activities at

243

Martin Marietta Corporation, TRW, PRC, Inc., Litton PRC, and Northrop
Grumman Information Technology.

He and his wife, Judy, have been married for 37 years. Judy is an asso-
ciation executive and leader in sports and physical activity, and thus has
Ralph out walking at an early hour every day! Ralph enjoys family activities
with children and grandchildren, music, singing, nature, the outdoors, and
the wilderness. A priority in his life is active involvement in the faith com-
munities of local churches. After retirement, Judy and Ralph have a dream
of living aboard a trawler and traveling extensively.

244

Index

A
Afors, Cristina, 98, 106
After the Gold Rush: Creating a True Profession of

Software Engineering, 199
Agile development methodologies, 154, 155
Aldridge, E. C. Jr., 73
Alexander, Ian, 35, 44, 56, 60, 65, 73, 95, 96,

104, 105, 166
American Society for Quality (ASQ), 37
Analysis Patterns, 20
Analyze candidate solutions (ACS), 88
Approaches, 121
Automated requirements tools, 210

acquiring, 91–92
experiences, 87
industrial-strength, using, 118–19
list of, 87
questions for, 87–88
selecting, 86–91

B
Basis of estimates (BOE), 150
Behavioral requirements. See Functional

requirements
Best practices, 103, 109–26, 207

agreed-on goal, purpose, mission, 121
automated requirements tool use, 118–19
categories, 110
change control, 117–18
customer/user involvement, 115
document inspections, 117
domain experts/SMEs utilization, 116
effective meetings/e-mailing guidelines, 122
effective requirements gathering techniques,

115
gold plating and, 115
improvement climate, establishing, 123
list, for requirements development and

management, 110, 111–12

meeting rules development, implementation,
enforcement, 121–22

minimum requirements identification,
116–17

objectives identification, documentation,
agreement, 113

organizational/project requirements policies,
119–20

prioritizing requirements, 117
project glossary/acronym list use, 115
proven mechanisms, approaches, methods,

techniques, tools, 120–21
real requirements identification, 114
requirement rationale documentation, 114
requirements, 109
requirements decisions, 115
requirements iteration, 115–16
requirements plan development, 112
requirements training, 114
requirements workshops, 113
risk assessment, 122
ROI quantification, 116
stakeholder identification/involvement, 113
summary, 123
team management, 122–23
versions/releases use of work products, 118
write requirements, 112–13
See also Requirements Analysts (RAs)

Bicknell, B. A., 153, 166
Bicknell, K. D., 153, 166
Bidirectional traceability, 210
Blitz QFD, 153
Boehm, Barry, 23, 73, 105, 154, 159, 166, 167
BPwin, 97
Brodman, J.G., 140, 156, 166
Buede, Dennis, 56, 60, 96, 97, 106
Build-to requirements, 48
Business drivers, 170
Business requirements, 49–50

245

Business rules, 50–51
baselining, 51
documentation, 51
as functional requirements basis, 50
list of, 50–51

Butler, K., 156, 166

C
Caliber RM, 88, 186
Candidate improvement areas, 209–12
Capability Maturity Model (CMM), 6, 139,

174, 193
as orthogonal to project success, 156
process maturity measurement, 156

Capability Maturity Model Integration
(CMMI), 6, 139, 193

Casual Analysis and Resolution (CAR), 145
customer, product, product component

requirements, 48
requirements analysis, 48
Web site, 13, 60

Carr, Frank, 96, 196
Carroll, Pete, 93, 95
Case studies

customer requirement prioritization, 104–5
effective RM process, 213–15
federal board contractor, 163–64
PM discussions, 12
project failure, 24–25
quality improvement sidetracked, 189–91
senior manager, 43
systems integration legal case, 123–26
Web site completion, 200–202
Web site performance, 57–60

Change control, 18–19
board (CCB), 67
mechanism, establishing, 83–85, 209
procedure illustration, 133
product quality and, 85

Change requests (CRs), 132
Change(s)

after requirements baseline, 118
commitment, 209
management, 198
operational, management, 134
project costs and, 118
risk assessment for, 122
suppressing, 85
See also Change control

CHAOS Report, 12, 55
Clark, B. K., 7, 156, 166, 191
Cockburn, Alistair, 96, 136, 165
Code inspections, 103
Collaboration, 15–18, 114
Communications improvement, 211

Component requirements, 55
Concept of operations (CONOPS), 65
Configuration audits, 134
Configuration control, 132–33
Configuration control board (CCB), 115, 117,

133
defined, 133
for review, 134

Configuration management (CM), 129–35
automated tools, 89
defined, 129
metrics, 134–35
plan, 3, 70, 131
policies, 131
RA and, 129–35
RM coordination, 131
SMEs, 89
techniques, 83
tools, 131

Configuration status accounting, 134
CORE, 186
Countermeasures, 149
CrossTalk, 34, 96
Customer-Centered Products: Creating Successful

Products through Smart Requirements
Management, 97, 127

Customers
collaboration with, 114
involvement strategy, 67–69
makeup, 67
preferences, 89
requirements, 55
satisfaction surveys, 175–76
support, 198
talking to, 90

D
Data Model Patterns: Conventions of Thought, 20
Daughtrey, T., 151, 152, 166
Davis, Alan, 5, 54, 60, 198, 203
Decision Analysis Resolution (DAR), 19, 88
Defect prevention (DP), 145–49

analysis, 146
defined, 145
process, 145–46
process illustration, 146
workshops, 146

Defects
detection, 150
major, 150
removal, 84

Deming, W. Edwards, 39, 43, 177, 194, 202
Derived requirements, 52
Design

constraints, 52

246 Index

inspections, 103
process, 77, 176, 180–87, 210
requirements, 48, 52
risks, 161

Designers, involving, 98
Design Patterns, 20
Developers

expectations, 199
support, 198–99

Developing Products in Half the Time, 153
Development risks, 162–63
Diffusion of Innovations, 19
Dion, R., 156, 167
Doing PDCA, 39, 211
Domain experts, 116
Dynamic Object-Oriented Requirements System

(DOORS), 55, 88, 119, 186
attributes, 92, 94
modules, 95
system attributes use insights, 94–95
See also Automated requirements tools

E
Eckes, G., 202
Effective Requirements Practices, 3, 17, 20, 21, 67,

70, 71, 78, 86, 97, 98, 103, 116, 120,
122, 183

Electronic Industries Association (EIA)
Standard, 649, 165
Standard 632, 48

Employee satisfaction surveys, 176
Engineering baselines, 131
Engineering change proposals (ECPs), 132
Engineering Documentation Control Handbook:

Configuration Management for Industry,
134

Engineering Process Improvement
Collaboration (EPIC), 60

Engineering software environment (ESE), 92
Engineering specialties risks, 162
The Engineering Design of Systems: Models and

Methods, 96, 97
Entry-level RAs, 30
Environmental requirements, 55
Essential System Requirements: A Practical Guide to

Event-Driven Methods, 97
Evolutionary model

comparison, 74–75
illustrated, 76

F
Facilitation, 144–45

mediation, 22–23
process design, 183
skills, 37–38

Farncombe, A., 105
Farry, K. A., 13, 85, 97, 106, 164, 203
Feldmann, C.G., 139, 165
FIPS PUB 183, 139, 165
Focus, 40–41, 42
Fowler, Martin, 20, 26, 101, 135, 165
Functional document (FD), 51–52
Functional requirements, 51–52

business rules basis, 50
defined, 51

Function point analysis (FPA), 140
Function points (FPs), 151
Fundamental Concepts for the Software Quality

Engineer, 151, 152

G
Gaffney, Steven, 37, 44
Gamma, Eric, 20, 26, 165
Garmus, David, 151, 166
Gartner Group, 194
Geiger, J. C., 60
Gilb, Tom, 104, 142, 143, 150, 151, 166
Gold plating, 41, 115, 199
Gottesdiener, Ellen, 37, 44, 46, 51, 67, 70, 79,

96, 98, 105, 113, 135, 165
Grady, Jeffrey O., 46, 53, 60, 85, 97, 104, 106,

153, 166
Growth path, 21
A Guide to Software Configuration Management,

134–35
Guiding principles, 171–72
Guiney, E., 136, 165

H
Hadden, R., 139, 166
Hardware requirements, 46

constraints, 46
performance, 46
view examples, 58
See also Software requirements

Harmon, Paul, 97
Harroff, Noel, 167
Hay, David, 18, 20, 25, 26
Hay, John, 48, 60
Herbsleb, J., 156, 167
Herron, David, 151, 166
High-level requirements, 50

focusing on, 82
rewriting, 81–82

Historical information review, 64
Hooks, I.F., 13, 26, 79, 85, 97, 104, 106, 114,

127, 164, 198, 203
Humphrey, Watts, 39, 85, 97, 150, 152, 166,

167, 199, 205, 206, 215

Index 247

I
IEEE Conference on Requirements Engineering,

35, 44
IEEE Software, 34
Ilities, 53–54
Impact estimation (IE), 142–43

defined, 142
error possibilities, 143
uses, 142–43

Improvement areas, 209–12
Incremental development model

comparison, 74–75
illustrated, 76

Inmon, W. H., 60
INSIGHT, 34
Inspections

code, 103
design, 103
in development, 150
requirements-related documents, 117–18,

150–52
Institute of Electrical and Electronics Engineers

(IEEE)
Conference, 35
Standard 830, 165
Standard 1233, 136, 165
Standard 1471, 137
Standard 12207, 48
See also Standards

Integrated logistics support (ILS) requirements,
54

Integrated product team (IPT) approach, 198
Integrated quality approach, 169–91, 207

components, 172–73
components illustration, 173
QI and, 173–79
summary, 189
teamwork and, 187–89
See also Quality

Integration Definition for Function Modeling
(IDEF), 139, 140

Integration risks, 161–62
Interface requirements, 53
International Association of Facilitators, 37, 44
International Council of Systems Engineering

(INCOSE), 37, 44
International Standards Organization (ISO), 169
Introduction to the Personal Software Process, 97,

150, 205
Introduction to the Team Software Process, 150

J
Jackson, Michael, 20, 26
John Boardman Associates (JBA), 65
Johnson, D. L., 140, 156, 166

Joint Application Development, 97
Joint teams, 8, 78, 114, 198
Jones, Capers, 84, 85, 103, 106, 107, 150, 151,

153, 166
Junior RAs, 30

K
Key requirements, 56
Knowledge PLAN, 150
Korson, T., 82, 83, 106, 136, 165
Kotonya, Gerald, 97
Kulak, D., 136, 165

L
Leffingwell, Dean, 18, 25, 79, 97, 101, 106
Leon, Alexis, 134, 165
Levels of abstraction, 82
Life cycle

activities, 16
approach decision, 73–77
model comparison, 74–75

Logistics support requirements, 54
LOGOS Tailored CMM for Small Business, Small

Organizations, and Small Projects, 140

M
Managing Software Requirements: A Unified

Approach, 18, 97
Markert, C., 13, 69, 104
Mastering the Requirements Process, 7
McConnell, Steve, 97, 199
McGibbon, T., 156, 167, 203
McKinney, Dorothy, 38, 44
Mechanisms, 120–21
Mediation facilitation, 22–23
Meetings

guidelines, developing/applying, 122
minimum requirements, 116
rules, 121–22

Methods, 121
Metrics

CM, 134–35
performance monitoring through, 177
RA role, 22
using, 22

Michaels, M.Z., 106
Mid-level RAs, 30
The Misuse of Use Cases, 136

N
Needs

defined, 45
minimum requirements meeting, 116

Negotiable requirements, 55

248 Index

Nonfunctional requirements, 52
Nonnegotiable requirements, 55

O
Object Management Architecture (OMA), 136
Object Management Group (OMG), 135, 165
Object-oriented (OO) development, 22
Operational change management, 134
Operations baselines, 131
Organizational policies, 64–65, 119
Originating requirements, 56

P
Palmer, James D., 98, 106
Pareto analysis, 148
Pareto charts, 148
Partnering, 68–69

costs, 68
defined, 68
initiating, 210
success elements, 69

Partnering in Construction: A Practical Guide to
Project Success, 96, 196

Paulk, M.C., 13, 139, 153, 165, 202
PDCA

cycle, 179
doing, 39, 211
performing, 212

Peer reviews, 150
initiating, 210
process, 71

Peer Reviews in Software: A Practical Guide, 71, 97
Performance requirements, 46, 53
Personal Software Process (PSP), 206
Policies, 119–20

CM, 131
defining/documenting, 210
organizational, 64–65, 119
requirements, 210

Porter-Roth, B., 105
Practical Guide to Business Process Reengineering

Using IDEFO, 139
Practical knowledge, 154
PRINCE2 methodology, 158
Prioritizing requirements, 4–5, 104–5, 117, 198,

209
Priority management, 172
Process

approach, 6–7
engineering, 183
indicators, 185
management, 176–77
owner, 183
requirements, 54

Process description (PD), 6

template, 183, 184–85
writing, 183

Process design, 176–77, 180–87, 210
activities, 180
completed flowchart, 183
exercise, 182–83
facilitating, 183
flowchart symbols, 182
flowchart template, 181
process, 180–82
workshop, 183

Process improvement, 176–77, 210
climate, 123
plan (PIP), 190
PMs and, 155
support, 154–56

Process reuse, 19–20
defined, 19
example, 20
resources, 20

Product breakdown structure (PBS), 157–59
advantage, 158
as project planning tool, 159

Product requirements, 54
Project management plan (PMP), 70
Project managers (PMs), 2

challenges, 196
focus, 195, 196
meeting with, 10–11
process improvement and, 155
quality and, 195
support, 197–98

Project risk
management activities, 84
process, 42

Projects
acronyms list, 72–73, 115
glossary, 72–73, 115
objectives, 113
O&M, 131
plan, 3
R&D, 86
small, 11
“tiny,” 206
vision and scope document, 69–70

Prototyping, 102–3

Q
Qualification requirements, 53
Quality

applying, 152
attributes, 53–54
business drivers for, 170
commitment to, 170
guiding principles for, 171–72

Index 249

Quality (continued)
indicators, 185
integrated approach, 169–91
management role in, 170–71
PMs and, 195
See also Integrated quality approach

Quality assurance (QA), 176
plan, 3, 70
proactive, 152
reviews, 176
specialists, 153

Quality Function Deployment (QFD), 153
Quality improvement

customer satisfaction survey, 175–76
cycle, 174
employee satisfaction surveys, 176
PDCA cycle, 179
performance monitoring, 177
process design, management, improvement,

176–77
process improvement models and, 174–75
QA, 176
story, 177–79
teams, 175
techniques, 169, 173–79, 177
training, 175

Quality management board (QMB), 174
Quantitative management (QM), 22

R
Rationale documentation, 83, 114, 198, 209
Rational Rose, 97
Rational Tool Suite, 119
Rational Unified Process (RUP), 119
Reading, 209
Real requirements, 56

defined, 2
developing, 83
evolving, from stated requirements, 78–80,

84
identification mechanism, 209
identifying, 2, 114
loading, 92–95
stated requirements vs., 50
walkthroughs, 46–47
See also Requirements

Real work, 2
Recommended strategy, 9–10
References, 9
Reinertsen, D. G., 153, 166
Requirements

activities, 3–5
allocating, 5
analyzing, 4
attributes identification, 88

attributes matrix, 93
best practices, 103, 109–26
build-to, 48
business, 49–50
clarifying, 4
collaborative, 17
component, 55
customer, 55
decisions, not making, 115
defined, 1–2, 45
definition, 4
definition of requirements process, 9
derived, 5, 52
design, 48, 52
detailed context examples, 58
elicitation techniques, 17–18, 96
environmental, 55
evolution of, 7–8
functional, 50, 51–52
good, criteria of, 8
hardware, 46
hardware/software view examples, 58
high-level, 50, 81–82
identifying, 4, 101–2
ILS, 54
importance of, 1–12
interface, 53
iterating, 115–16
key, 56
knowable, 205–13
labeling, 92
leakage, 70
logistics support, 54
managing, 5
mandala, 212–13
minimum, 116–17
negotiable, 55
nonfunctional, 52
nonnegotiable, 55
originating, 56
partitioning, 5
performance, 46, 53
policies, 210
prioritizing, 4–5, 104–5, 117, 198, 209
process, 54
product, 54
qualification, 53
rationale documentation, 83, 114, 198, 209
RA view examples, 59
real, 2
restating, 4
risks, 160–61
roles and responsibilities, 8
software, 46, 81–82
source, 55

250 Index

specialty engineering, 53–54
specifying, 4, 142
stated, 2
subsystem, 55
system, 50, 55
taxonomy, 47
taxonomy examples, 58–59
terminologies to avoid, 55–56
testing, 5
tracking, 5
training, 114
types, RA view, 49
types examples, 56–57
types of, 45–60
unknowable, 2, 54
user, 50
validated, 5, 53
verified, 5, 53
views of types, 45–48
volatility, 84
workshops, 67, 113
writing, 112–13
See also Requirements engineering

Requirements Analysis: From Business Views to
Architecture, 18, 48

Requirements analysts (RAs), 2
achievable goals, 42
attitude of continuous improvement, 39
best practices, 109–26, 207
challenges, 24
change control role, 18–19
characteristics, 34–42
characteristics as countermeasures, 35
characteristics list, 36–37
CM and, 129–35
collaborative role, 15–18
communication with management, 38
continuing education, 34–36
effective, 34–42
effective practices application, 38–39
evolving technology knowledge, 41–42
facilitation/mediation role, 22–23
facilitation/negotiation skills, 37–38
as facilitators, 144–45
focus, 40–41
growth path role, 21
junior (entry-level), 30
leadership, 143–44
learning, 38–39
levels of, 29
life cycle activities, 16
as listener, communicator, writer, 37
making a difference, 42
metrics role, 22
mid-level, 30

new technology role, 19
persistence/perseverance, 38
proactive, 38
process reuse role, 19–20
quality principles application, 152
in requirements gathering, 62
requirements types view, 49
resource/time estimation, 39–40
responsibility for views, attitudes,

relationships, 39
risk process contribution, 42
roles, 15–23, 16, 206
senior-level, 30–31
skills, 27–34, 206
skills matrix, 28–29
specialty skills, 127–64, 207
strengthening activities, 36–37
study role, 23
success rate improvement, 195
support methods/techniques role, 21–22
thinking outside box, 41
training, 81

Requirements analysts (RAs) job description,
32–34

Description, 32
Knowledge Needed, 32
Measures of Performance, 33
References, 34
Responsibilities, 32–33
Skills Needed, 32

Requirements by Collaboration: Workshops for
Defining Needs, 96

Requirements engineering
challenges, 195–97
difficulty, 1, 194
goals, 193
vision, 193–202

Requirements Engineering: A Good Practice Guide,
97

Requirements Engineering: Processes and Techniques,
97

Requirements Engineering Specialist Group
(RESG), 37, 44

Requirements errors, 127–29
defined, 127
expense, 127
frequency, 129
industry experience, 129
reasons for, 212
reducing, 128–29
reduction actions, 130
types of, 129

Requirements gathering, 61–105
applying, 114

Index 251

Requirements gathering (continued)
automated requirements tool acquisition,

91–92
automated requirements tool selection,

86–91
change control mechanism establishment,

83–85
checklist, 63, 207
completing, 103–4
customer/user involvement strategy, 67–69
effective techniques, 115
effective use of, 208–9
historical information review, 64
levels of abstraction, 82
life-cycle approach decision, 73–77
organizational policy review, 64–65
performing, 96–98
practices, methods, techniques selection, 86
principles, 82–83
project glossary/acronym list, 72–73
project vision/scope document, 69–70
proof of concept approach, 102–3
rationale documentation, 83
real requirements development, 83
real requirements evolution, 78–80
real requirements load, 92–95
requirements best practices incorporation,

103
requirements identification, 101–2
requirements plan, 70–72
requirements-related training sessions,

80–81
reviews of requirements, 98
scenarios in, 99–101
software requirements rewrite, 81–83
stakeholder identification, 65–67
summary, 204
tailoring, 77–78
traceability strategy development, 98–101
visibility, 212
V&V planning, 85–86

Requirements management (RM), 40
best practices, 110, 111–12
CM coordination, 131

Requirements plans (RPs), 7–10
background, 7
contract/project summary, 7
defined, 3
developing, 70–72, 112, 211
evolution of requirements, 7–8
purpose, 7
sample Table of Contents, 71
writing, 3

Requirements process
appendixes, 10

developing, 120
improvement ideas, 147–48
interactive, 2
investment in, 5–6
iterative, 2
mechanisms, methods, techniques, tools, 9
practices integration, 9
recommended strategy, 9–10
references, 9
requirement, 3
tailoring, 77–78, 120

Requirements repository
composition of, 86
elements, 91

Requirements specifications, 141–42
Requirements traceability matrix (RTM), 30
Requirements working group (RWG), 185–87

advantages, 185–86
briefing, 187
defined, 185
evolution, 186
forming, 211
initiating, 185

Requisite Pro, 88, 119, 186
Return on investment (ROI)

inspection in development, 150
quantifying, 116

Risk Manager’s Assistant (RMA), 40
Risk(s)

analysis, 160–63
assessment, 122
design, 161
development, 162–63
engineering specialties, 162
integration, 161–62
manageable, 205–13
process, 42
requirements, 160–61

The Road Map to Repeatable Success: Using QFD to
Implement Change, 153

Robertson, J., 13, 165
Robertson, S., 13, 165
Rogers, Everett M., 19, 26
Ross, J. W., 44
RTM Workshop, 88, 186
Rules of conduct, 211

S
Sabourin, Rob, 151–52, 166
SATURN system, 57
Sawyer, Pete, 97
Scenario-Based User Needs Analysis (SUNA),

97, 99, 101
Scenarios

defined, 99

252 Index

in requirements gathering, 99–101
use outline, 100–101

Scholtes, P.R., 203
Senior-level RAs, 30–31
Service-level agreements (SLAs), 134
Sharp, Helen, 66, 105
Shewhart, Walter, 39
Silver, Denise, 97, 106
Six Sigma, 193
SLIM, 150
Small projects, 11
Smith, P.G., 153, 166
Society for Software Quality (SSQ), 37
Software

development plan (SDP), 3
global trends, 138–39
QFD, 153

Software Development Magazine, 34
Software Productivity Research (SPR), 149, 150
Software Project Survival Guide, 97
Software Quality: Analysis and Guidelines for

Success, 85, 153
Software requirements, 46

rewriting, 81–82
view examples, 58
See also Hardware requirements

Software Requirements: Objects, Functions, & States,
54

Sommerville, Ian, 97, 159, 167
Sorensen, R., 105
Source requirements, 55
Specialty engineering requirements, 53–54
Spiral model, 7, 73–75

comparison, 74–75
illustrated, 77

Stakeholders
identifying, 4, 65–67, 113
involving, 113
project objectives and, 113
requirements communication, 80
roles, 66

Standard operational procedures (SOPs), 131
Standards

EIA 632, 48
EIA 649, 165
FIPS PUB 183, 139, 165
IEEE 830, 165
IEEE 1233, 136, 165
IEEE 1471, 137
IEEE 12207, 48

Standish Group International, 194
Stated requirements

collaboration concerning, 114
defined, 2
evolving real requirements from, 78–80

real requirements vs., 50
See also Requirements

Statement of work (SOW), 2, 119
Statistical process control (SPC), 152
Stevens, R., 56, 60, 96
Subject matter experts (SMEs), 72, 116
Subsystem requirements, 55
Surveys

customer satisfaction, 175–76
employee satisfaction, 176

System architects, involving, 98
System requirements, 50, 55
System Requirements Analysis, 97
Systems Engineering Capability Maturity Model

(SE-CMM), 45, 88
Systems-engineering management plan

(SEMP), 3, 70
Systems Requirements Analysis, 53
System Validation and Verification, 97

T
Tailoring, 19, 20

criteria, 89
as critical skill, 78
defined, 19
requirements process, 77–78, 120

Taxonomy-Based Questionnaire (TBQ), 159
Team-building training, 210–11
Teams

high-performance, 187, 188
joint, 8, 78, 114, 198
management and, 188–89
managing, 122–23
members, 187, 197

Team Software Process (TSP), 206
Teamwork, 187–89

effective, 188
evolution factors, 187–88

TEAMWORKS environment, 72, 79, 84
Techniques, 121
Technologies

evolving, knowledge of, 41–42
new, 19

Test plan, 3
Tools, 121

automated requirements, 86–92, 87, 118–19,
210

requirements process, 9
Total Quality Management (TQM), 169
Traceability strategy, 98–101
Trade studies lessons, 89–91
Training, 199

plan, 70
providing, 114, 210
as quality improvement technique, 175

Index 253

Training (continued)
RAs, 81
requirements-related sessions, 80–81
resistance, 80
team-building, 210–11

Turner, Richard, 154, 166

U
UML Distilled: Applying The Standard Object

Modeling Language, 135
Understanding UML: The Developers Guide, 97
Unified Modeling Language

application, 136
defined, 135
diagrams, 136
experience in using, 137
OMG, 135
RA knowledge of, 135–39
in requirements-related work, 136–37

Unknowable requirements, 2, 54
Use Cases: Requirements in Context, 136
User requirements, 50

V
Validated requirements, 53
Validation, 154
Verification, 153
Verified requirements, 53
Vital Link, 186
V&V planning, 85–86

W
Walton, Mary, 43, 166, 191
Waterfall model

comparison, 74–75
illustrated, 76

Watson, Mark, 97
Watts, Frank B., 134, 165
Waugh, Penny, 71, 105
Webster, B.F., 26
Weill, P., 44
Weinberg, G.M., 105, 203
Whitten, Neal, 40, 44, 55, 60, 79, 117
Widerman, Max, 167
Widrig, Don, 18, 25, 79, 97, 101, 106
Wiegers, Karl, 31, 35, 44, 70, 71, 78, 88, 97,

104, 105, 106, 107, 135, 191, 195
Wiley, Bill, 97
Wood, Jane, 97, 106
Work breakdown structure (WBS)

application, 156–59
challenge, 157
defined, 156
as “dog of a job to undo,” 158
organization, 157

Work products, 157
Writing Better Requirements, 56, 96
Writing Effective Use Cases, 96, 136

Y
Young, Don, 215
Young, R. R., 13, 25, 44, 55, 60, 97, 105, 106,

191

Z
Zachman, J. A., 60
Zachman Framework, 48, 60

254 Index

	The Requirements Engineering Handbook
	Cover

	Contents
	Foreword
	Preface
	Acknowledgments
	1 The Importance of Requirements
	What Are Requirements and Why Are They Important?
	Why Plan?
	A Suggested Strategy
	Requirements Activities in the System Life Cycle
	Investment in the Requirements Process
	A Process Approach
	The Requirements Plan
	Factors Affecting Your Career Decisions
	A Comment Concerning Small Projects
	Summary
	Case Study
	References

	2 The Roles of the RA
	Suggested Roles of the RA
	Summary
	Case Study
	References

	3 Skills and Characteristics of an Effective RA
	Skills of the RA
	Characteristics of an Effective RA
	Summary
	Case Study
	References

	4 Types of Requirements
	Views of Requirements Types
	Definitions and Descriptions of Requirements Types
	Business Requirements
	Stated Requirements Versus Real Requirements
	User Requirements
	High-Level or System-Level Requirements
	Business Rules
	Functional Requirements
	Nonfunctional Requirements
	Derived Requirements
	Design Requirements and Design Constraints
	Performance Requirements
	Interface Requirements
	Verified Requirements
	Validated Requirements
	Qualification Requirements
	The "Ilities" and Specialty Engineering Requirements
	Unknowable Requirements
	Product Requirements
	Process Requirements
	Logistics Support Requirements
	Environmental Requirements
	System, Subsystem, and Component Requirements

	Terminologies to Avoid
	Source or Customer Requirements
	Nonnegotiable Versus Negotiable Requirements
	Key Requirements
	Originating Requirements
	Other Guidelines

	Examples of Requirements Types
	Summary
	Case Study
	References

	5 Gathering Requirements
	Plan the Approach
	Summary
	Case Study
	References

	6 Best Practices for Requirements Development and Management
	Summary
	Case Study
	References

	7 The RA's Specialty Skills
	Summary
	Case Study
	References

	8 An Integrated Quality Approach
	Business Drivers for Quality
	Management's Role
	Guiding Principles
	Priority Management
	The Components of an Integrated Quality Approach
	Quality Improvement Techniques
	The PDCA Cycle
	How to Design a Process
	Teamwork
	Summary
	Case Study: An Example of Quality Improvement Sidetracked
	References

	9 A Vision for Requirements Engineering
	How Should We Support PMs?
	How Should We Support Customers?
	How Should We Support Developers?
	Summary
	Case Study
	References

	10 Moving Forward: Knowable Requirements, Manageable Risk
	Where to Go from Here
	Moving Forward
	A Requirements Mandala
	Summary
	Case Study
	References

	Glossary
	List of Acronyms
	Bibliography
	About the Author
	Index
	Team DDU

