Chapter IV

Facilitating PubMed Searches: JavaServer Pages
and Java Servlets

Introduction

J2EE is a powerful platform for developing sophisticated web-based
applications. This J2EE feature is especially critical for Bioinformatics
software development given the availability of a large number of important
biological sequence and biomedical data repositories on the WWW that
biologists need to access on a routine basis for their research. We will
explore one such resource - NCBI PubMed - in detail in this Chapter and
introduce the Java Servilet and JavaServer Pages (JSPs) technologies to
facilitate searching, retrieval and storage of biomedical data from PubMed.

HTTP and CGl

We will begin by refreshing our basic knowledge of standard protocols
such as the Hypertext Transfer Protocol (HTTP) and the Common
Gateway Interface (CGI) that allows for a server to pass requests from a
client web browser to an external application and in return allow the web
server to return the output from the application to the web browser.
Although there are several more HTTP commands than GET and POST,
we will introduce only these methods here and refer interested readers to
the HTTP specification Request for Comments 2616 (RFC 2616) for more
information.

156

HTTP Protocol

HTTP is a client/server protocol that WWW users utilize everyday to
download web pages to their web browsers. The client part of this protocol
is handled by the web browser that sends a request to the server (also
called an HTTP server or a web server). The server responds to the request
with a web page. That, put very simply is all that HTTP does, at least for
the purpose of this discussion.

The request sent by the client contains an HTTP command with a set of
parameters that define the request. For example, to request an HTML
document called index.shtml from the NCBI server, one can issue the
following command using telnet:

telnet www.ncbi.nlm.nih.gov 80
GET /blast/index.shtml HTTP/1.0

telnet is a program that connects a local computer to a server on the
network and allows users to issue commands directly to the remote server.
The HTTP protocol works over the Transmission Control Protocol/Internet
Protocol, a suite of communications protocols used to connect hosts on the
WWW, also called TCP/IP for short. In this case, the HTTP protocol
works over the TCP/IP protocol that one can access through a session
initiated by telnet, using the specified server address
(www.ncbi.nlm.nih.gov) and the port (80).

There are other pieces of information that could be passed to the
request, to specify information about the client and the type of data it
would like to receive. Also a blank line specifying the end of the request
must be added at the end.

When such a request is sent to the NCBI server, the output received
contains several difference bits of data, along with the actual document
requested, if found.

HTTP/1.1 200 OK

Date: Sun, 12 Feb 2006 18:13:42 GMT
Server: Nde

Accept-Ranges: bytes

Content~Type: text/html

Connection: close

<?xml version="1.0" encoding="UTF-8"?2>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 157

Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-
transitional.dtd">

(The output has been truncated for clarity.)

The first line corresponds to a code indicating the status of the response
- 200 OK - which means the requested operation was executed
successfully. After the status line we have information about the server
itself. Finally if the document is available it is sent within the rest of the
response.Other code and associated descriptions are defined in the HTTP
specification and provide information regarding any problems accessing
the server, if the requested document is not found, etc.

GET and POST Methods

Although a client can send different HTTP commands, the GET and
POST commands are the most commonly used. GET allows users to
retrieve or get information from an HTTP server, while the POST HTTP
command allows users to post or send information to the server. The POST
information resides on the server, usually within a database. The GET
command is just for querying the HTTP server and therefore won’t be
stored, unless for statistical purposes or for logging the load on the server.

GET can send parameters within the body of the URL to specifically
query the HTTP server. Since GET was designed for querying purposes,
the URL length is limited to a certain number of characters (250) on
certain servers. The POST method, on the other hand, can send more
information, including different documents types, and does not have a
constraint on length.

CGl For Generating Dynamic Content

According to RFC 3875, CGl is a

“... simple interface for running external programs,
software or gateways under an information server in a
platform-independent manner.”

158

This simply means that if you have a program that runs on your Unix
machine and you want to access it through a web browser, you can do so
using CGI. The way it works is that each time you request to run that
program, the web server will create an instance of the program, pass to it
all the parameters obtained from the request that was sent, wait for the
program to process the information and then wrap the program output into
an HTTP response.

This allows users to generate the content of a web page dynamically
instead of accessing static HTML content. It can be very slow when 100
users access the same program because the server must create 100
instances of the same program to run the 100 queries.

A number of vendors have implemented their own API’s to handle the
performance issues of CGI or to replace that interface with proprietary
protocols. Sun Microsystems, for example, has developed proprietary
technology that will run in a Java Virtual Machine and handle the required
processes that live on the server via the Serviets and JavaServer Pages
technologies.

Servlets and JavaServer Pages Technologies

Now that we’re more familiar with HTTP, it’s time to learn about
servlets and JSPs. Before we present the Java API, lets briefly review the
advantages of using servlets over typical CGI programs:

* Once the serviet container is started, each servler runs in the same
process as the container; this avoids creating new processes for each
request, unlike CGI programs.

* Because the servlet is created once at startup, it remains in memory and
there is no overhead associated with loading the Java class multiple
times. The service just needs to request the servier from a pool and call
its service method.

* A servlet is reusable, which saves memory and time.

These characteristics allow faster execution of the server processes to
generate dynamic content. In addition, the fact that it is Java brings with it
the power of the *“Write once, run everywhere” properties of the platform.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 159

Java API for Servlets and JSPs

From the servier specification available at the Sun Microsystems
website, a servlet is defined as a “Java technology-based Web component,
managed by a container, that generates dynamic content”. Servlets are Java
classes that implement a base interface called servlet, from the
javax.servlet package available in the Java Enterprise Edition Platform.
javax.servlet.Servlet is the basic interface which provides the
service() method that handles a client request independently of the
protocol used to communicate between the client and the server. To create
a servlet one can directly implement this interface or extend
GenericServlet Or HttpServlet.

The life cycle of a servlet is managed through three methods:

* init: the container instantiates a servlet object and calls init to
initialize it.

* service: upon a client request, the container get the servlet and calls its
service method.

* destroy: when the servlet is not in use any more, the container will call
the destroy method.

Fig. 4.1 below shows the life cycle of a serviet (called MyServlet) when
a client request comes to the container.

y

Client

\

response MyServlet.service()

Servlet Container

Fig. 4.1. Life cycle of servlets

Since we want to deal with HTTP requests, we are primarily interested
in the javax.servlet.http.HttpServlet package to create HttpServlet
Java classes. We will learn more about this package in the next few
sections.

160

kK

Before we delve into the servlet and JSP technologies, let’s briefly
review the MVC framework that we had introduced in Chapter 1, which
we will be using as a guiding principle for building our web application.
We will also briefly review the Apache Tomcat Server, which we will use
as our servlet container. Finally we will also talk briefly about the
JavaServer Pages Standard Tag Library (JSTL), to introduce the concept
for the benefit of readers to explore further on their own.

JavaServer Pages Standard Tag Library (JSTL)

JavaServer Pages (JSPs) use custom tags to perform all kinds of
manipulations like iterating over collections, transforming one object into
another, form processing, database access, and the like. The idea behind
JSTL is to create libraries with reusable tags. These tags can be used and
customized like functions or methods in Java. This also creates clarity in
the JSP file because the rags allow users to keep the JSP as the View and
the business logic or the Controller and the Model separated from each
other. In other words, one can think of JSTL as a Java package that groups
together functionalities into a set of independent and reusable and tags.

Apache Tomcat Server

Tomecat is an open source serviet container, which implements the Java
Servlet and JavaServer Pages technologies written in Java. This is the
servilet container we will be using in this Chapter. The Tomcat servlet
container allows developers to deploy web applications as well as to
monitor and manage them. Tomcat compiles the JSPs into serviets when
first called, or just before calling the application. Tomcat also allows
defining the realm for specific authentication and authorization services
that may be required for web applications. A "realm" in Apache
terminology is "a "database" of usernames and passwords that identify
valid users of a web application (or set of web applications), plus an
enumeration of the list of roles associated with each valid user." The reader
is referred to the Appendix for further information on how to install
Tomcat. More information can also be found at the Apache Tomcat Project
website of The Apache Software Foundation.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 161

The NCBI PubMed Literature Search and Retrieval
Service

PubMed is a resource maintained by the National Library of Medicine
(NLM), under the aegis of the National Center for Biotechnology
Information (NCBI, National Institutes of Health, USA) and provides
access to over 14 million citations for biomedical articles dating back to
the 1950's. PubMed is a vast resource and covers scientific findings from a
diverse array of disciplines including but not limited to the natural and
physical sciences. According to usage statistics from NCBI, over
59,000,000 queries secking scientific information were submitted to the
PubMed server in March 2004 alone
(http://www.ncbi.nlm.nih.gov/About/tools/restable_stat_pubmed.html).
Indeed, PubMed is an indispensable resource for researchers all over the
world.

As vast and valuable as PubMed is, average users still have to contend
with the problem of retrieving useful and relevant knowledge from the
underlying database in a piecemeal fashion using one or more keywords.
PubMed also doesn’t currently provide a way to intelligently or visually
analyze the results of a query (for example, by highlighting or color coding
the search terms in a retrieved abstract, etc). We will address some of these
issues and create solutions for them in this Chapter to enhance the value of
literature search and retrieval through PubMed.

Accessing Biomedical Literature Through Entrez

Access to information in NCBI databases is granted through a service
called Entrez, a search and retrieval system maintained by NCBI that
combines information on individual DNA and protein sequences, large-
scale sequence data from whole genomes, and information on 3-
dimensional structures of biomolecules. It also grants access to
MEDLINE, which covers research in a number of Life Science areas such
as medicine, nursing, dentistry, veterinary medicine, the health care
system, and preclinical sciences. The steps involved in a typical search on
PubMed are described below. We will use the generic keyword “HIV” (for
Human Immunodeficiency Virus, the causative agent of Acquired Immune
Deficiency Syndrome, AIDS) for the illustration.

Step 1: User navigates to the NCBI PubMed website (Fig. 4.2):

162

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed

Step 2: User enters the search term 'HIV' (the search is case-insensitive)
in the search box and presses Enter. PubMed presents the user with a list of
citations relevant to the search term (Fig. 4.3). Internally, PubMed searches
for a match between the supplied keyword(s) and terms in the Medical
Subject Headings (MeSH) Translation Table, an alphabetical hierarchy of
controlled vocabulary terms used for subject analysis of biomedical
literature at the NLM. The list of citations may span several thousand
pages depending on the number of articles that match the search term.
Each journal article on PubMed is associated with a unique numeric tag
called the PubMed Unique Identifier or PMID.

Step 3: User clicks on the citation to display specific information (Brief,
Abstract, Medline etc) about each journal article (Fig. 4.4) or selects
several articles to display (Fig, 4.5).

[5F Entrez Pubbed - Mozilla
. B [e o (ockmaks loch wrdw b

i Qo 0 0 o i, ict.rie. . o ety eluery fogiidbeiubMedidnoisboobisr] [Aseaeh) dﬂm
Nattonal
PublfQed .M

Search PubMed = | for | Go || Clear |
Limits Previewlinder History Clipboard Detalls
« Enter one or more search terms, or click
Preview Tndes for advanced searching
* Enter author names as south je Iutials are
optional
o Enter jomnal titles in full or as MEDLINE
abbreviations. Use the Jowmals Database to
finel yournal titles

Entrez
PubMed

PubMed, a service of the Mational Library of
Medicine, includes over 15 million citations for
biomedical articles back to the 1950's. These
citations are from MEDLINE and additional life

science journals. PubMed includes links to many
sites providing full text articles and other related
resources.

PubMed
Sarvices

|| Bookshelf Additions [Clinical Queries

s page

Molecular Biolagy — The Clinical Qus
N of the Cell, 4th was redesig
Ed. and The provide an Improved

=l
E Lol

Fig. 4.2. The NCBI PubMed web resource

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 163

National

Library
af Medicine

Limits Previewfindex History Clipboard Details
Summary > Show: 20 ~| Sont o Text &
Items 1 - 20 of 176349 | Page | 1 of 8818
[1: El-Hoge ¥, Gurwell TA, Smgh IN, Euopp PE. Nath A, Houser EF. R
E"':;: : [E Swergistic increases in intracellular Ca(2+), and the release of MCP-1, RANTES, and
aeed IL-6 by astrocytes treated with opiates and HIV-1 Tat
Gilia, 2008 T 3: [Epub ahead of prut]
PMID: 15630704 [PubMed - as supphied by publicher]
m2: Easow BA. Doral: T, Tang IT
[Mflnence of Host Genetic Variation on Susceptibility to HIV Type 1 Infection

T lufect Dns. 2005 Feb 1,191{Suppl 1):568-77
PMID: 15630678 [Pubbed - m process)

r13: Papasmovas E Kosh TE.. Mo E. Grant BM. Gross B, Gallo O, Azzom L, Ralated Arcles, Lirks
Foul . Thuel . M. Mackiewic b J. Moutaner LT

[Randomized, Controlled Trial of Therapy Intermuption m Chronie HIV-1 Infection

PLoS Med. 2004 Dec.1(3)e64. Epub 2004 Dec 28

PMID: 15630409 [Pubed - as supplied by pubhsher]

» Wong FX X Y, Sullivan J. Souder E. Arsvrie EG, Achieaupong EA.

1 Anlicles, Links

PubMed

Services

i
M.\«Iadlc:::
Limits Previewlindex History Clipboard Details

Display | Abstract “|8how 20 ~ison |[Sendto|Tes |

1 Glia. 2005 Jan 3: [Epub ahead of prnt]

C. inerScionce

Entrez
Synergistic increases in intracellular Ca(2+), and the release of MCP-1,
RANTES, and 1L-6 by astrocytes treated with opiates and HIV-1 Tat.

4 El-Hage N, Gurwell JA. Singh IN, Knapp PE, Nath A, Hauser KF.
=Ll
Deepartment of Anatomy and Neurobiology, University of Kentucky Colleze of Medicine,
Lexington, Kentucky

PubMed

Services

Recent evidence suggests that myection drug users who abuse herom are at mereased risk of

CNS complications from mman unmunodeficiency virus (HIV) mfection. Opiate dmgs may

mtrnzically alter the pathogenesis of HIV by directly modulating e function and by

divectly modifving the CNS response to HIV. Despite this, the mechamsms by which opiates

ncrease the neuropathogenesis of HIV are uncertam. In the present study, we describe the

effect of morphine and the HIV-1 protemn toxin Tat(1-72) on astroglial function m cultures
—denved from ICR mice Astroelia mamtam the blood-bram barer and mflne

Fig. 4.4. Viewing abstracts for individual journal articles

164

3 Entrex PubMed - Mozilla Firefox

Ge ER Vom G Boclmeds ook Heb

G-y @r o) D) | % o)t b i o geeres{ ey S s arch A Bt

Avervics of e Watiosal Libvary of Medeoe
e the Nitiosal Inssnuies of Health

www. pobmed. gov

mwfinidex | Hissany | Clipooaen

v Sencito |

Duspley Abstract Snow| 20 ¥ | Senby
[Fage |11 of 9911 Mext
., 1 Petabed Aticlns, Link
=y Fetromrus ton strongly snhances scrapie miectivity release m cell culbae
25, [Epub whead of prnd]
Med . an pugpplied by publaher]
=2 Retabed Aticles, Links
= i sed gene expresnon through wiral evelubon
Sone Thee 2006 May 25, [Epih shesd of print]
FMIDY; 16734056 [Fublied - ax supphed by publishe:)
3 Lubsen NI S cha A, Dobous M, Pensey M Beez T Ameud I Titene M. Kiemer EL Coudese B Reiabes Aicies, Links

[=13:
E Lens cell targetting for gene therapy of prevention of pesterior capsule opacfication
Cens Thee 206 May 27, [Egur sk ad of past]

HIV deuabsts ignoce large gap o the srudy they cite,
Fature. 2006 May 12
FMID: [6724734 [Publied

m]
@

Pedated Atleles Links

Fig. 4.5. Selecting several articles to view abstracts

The user can save articles of choice in the chosen display format
(Summary, Abstract, etc) by selecting the required articles and pressing the
"Send to" button and selecting the appropriate format (Text, File, Email,
etc) (Fig. 4.6).

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 165

I Fntrez Pubberd - Mozilla

- Fe E® Yew G0 omais Joos Wedoe Heb

e T r—— D <% [
.‘<'<|l|nn4lﬁ
Library

of Medicine

« for HV [Go || Clear |

Limits Previewfindsx History Clipboard Datalis
Display | Summary v/8how: 20 ~ Sot ~|[Sendto|Temt |- '

Items 1 - 20 of 176349 L of BB18 hat
-~ File

@1 El-Hage N, Gurwell JA. Singh IN, Enapp PE. Nath A, Hager KF Clipboard

Entrez

PubMed E

Synerzstic mereases momtracellular Ca2+), and the release o NTES. and
IL-6 by astrocvies treated with oprates and HIV-1 Tat
Gl 2005 Jon 3 [Epob abead of prmt]

PMID: 15630704 [Publed - as supplied by publicher |

{ E-mail
Order

Influence of Host Genetic Vanation on Susceptibility to HIV Type | Infection
PubMed T Infect Dne. 2005 Feb 1191 (Suppl 1p568-77
5 PRMID: 15630678 [Publded - m process|
7 3: Pmpassvvac E. Eostinan TR, Mownzer K. Grant EM. Gross B. Gallo C, Azzom |
Foulkies A. Thiel B_ Pistilli M. icz A, Shull 1, Montaner 1T
Randomized, Controlled Trial of Therapy Intermuption in Clronic HIV-1 Infection
FLoS Med. 2004 Dec,1(3):e64. Epub 2004 Dee 28,
PMID: 15630469 [Pubhded - as supplied by pubisher]

Services

E w2 Y, Sullvcan 1, Sonder E, Asg
ML Thomson MA, Najern B, Frank [Eul

B I1.-7 1= a notent and vrovieal strain-soecific inducer of latent HIV-1 cellular rtn‘ﬂvujliqi ‘._E
==

Ed, Achemupong EA. Fisher 1. Sienan maigted Arhele
I, Powrerantz BJ, Numan G

Fig. 4.6. Saving search results for selected abstracts

The search process quickly becomes unwieldy especially when
information from a large number of citations needs to be extracted and
analyzed. In this Chapter, we will demonstrate the power of Sun’s
JavaServer Pages and Java Servlets technologies to build a web-based
application to simplify the process of accessing information on PubMed.
We will use the Apache Tomcat server as the servlet container and the
Apache Ant tool to build and deploy the Java web-based application.
Please refer to the Appendix to download the tools and for instructions on
using them.

Create Web Application With Servlets and JSPs

Servlets as we described earlier are Java code that run on a server and
provide a general framework for services built using the request-response
paradigm. HTTP, is one such paradigm that is implemented through the
Jjavax.servlet.http package from the Java Servlet API. On the other hand,
JSPs were designed to mainly allow the separation of the business logic
(what the application does) from the appearance of the page (how the
application displays the result).

166

The steps and the flow diagram below illustrate the behavior of such an
application (Fig. 4.7):

Step 1: The user accesses the application through a web browser. The
actual code that runs the application remains hidden from view. The user
only sees and interacts with an HTML page, which for our first application
will contain a simple search form consisting of a single text-box and a
submit button. The user enters a single keyword (search term) in the text-
box and presses the submit button. After the search is processed by the
application, the user sees the results in the web browser. Fig. 4.7 illustrates
the actions of the user in the User Space.

Step 2: The application is implemented as a servlet that gets the
information entered on the search form and processes the request on the
NCBI PubMed server. This involves a series of operations. The application
constructs the PubMed URL that is specific to the entered search term.
Next, through a URL object, it sends a request to the PubMed server. The
PubMed server performs the search using the keyword and formulates a
response, which is an HTML document containing a list of citations
matching the search term. These operations are shown in the Application
Space (Fig. 4.7).

Step 3: After processing the request, the PubMed server sends the search
results back; the application reads the result from the URL using a
BufferedReader object to retrieve the content sent back from the server.

Step 4: Once the response is received, the application reads the contents
of the response using the BufferedReader object and prints it out to the
screen using the javax.servlet.http.HttpServletResponse object.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 167

»i Servlet

Receive request from HTML Form
[HitpServletRequest object]

HTML Form .
| Get the search term

Enter search term on PubMed server:

: Submit

Create NCBI URL with the search term

Send request to NCBI PubMed
| URL object]

Get abstract from NCBI PubMed
[BufferedReader object]

e

=y R ——r L Send the HTML document back
PublMed =M | HitpServietResponse object]

User Space Application Space

Fig. 4.7. The structure of the PubMed1 servlet

Web Application Structure

According to the Java Servlet API Specification 2.2
(http://java.sun.com/products/servlet/download.html), a web application
(or web app) is a collection of serviets, HTML pages, classes, images, and
other resources that can be bundled and run on multiple containers from
multiple vendors. Simply stated, a web app bundles resources together to
provide a portable and server independent way to access information via a
web browser. In order to be portable and server independent, a web app
must be designed according to a well-defined schema that dictates where
the resources used by the web app are to be placed. This ensures that there
is no conflict between the different resources used by the web app. The
web app has to be installed on the web application server and mapped to a
specific uniform resource identifier (URI) path (called also the serviet

168

context path) on the server. The file structure of the web app is archived
into a WAR file (Web application ARchive).

For example, the application we are writing is installed on the web
app server using the path pubmed, for example:

http://localhost:8080/pubmed

as is explained further below. Here is the file structure of the pubmed
web app being developed:

example.html

pubmedExample. jsp
jsp/moreSpecificPubmedExample. jsp
pics/pubmedLogo.png

anotherLogoExample.png

WEB-INF/web.xml
WEB-INF/classes/servlet/DataRetriever.class
WEB-INF/lib/Jakarta-regexp-1.3.jar

The basic layout that defines a web app file structure is as follows:

* HTML, JSP, PNG (image) and other resource files must be located in
the root directory to be visible in the web browser.

* web.xml is located in the WEB-INF directory under root. web.xml is the
Web Application Deployment Descriptor for the application. This file
defines in an XML format the configuration information utilized by the
web app such as initialization parameters, servlet mappings, security
constraints, etc.

* WEB-INF/classes: This directory contains all the Java classes (and
serviets) with any resources associated with them that make the web
app. The Java class servlet.DataRetriever is stored in WEB-
INF/classes/servlet/DataRetriever.class

* WEB-INF/Iib: This directory contains all the Java™ Archive (JAR) files
required to run the web app, including third parties libraries such as
Jakarta-regexp-1.3.jar for regular expression matching.

Access to the web app or any resource from the web application server
available at the localhost and port 8080 is through the following URL:

http://localhost:8080/pubmed

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 169

This access is set up in the Astp.conf configuration file located in the
Tomcat ‘conf directory. Any web application is deployed on the web
application server using a relative path.

If we want to access the HTML pages located in the WAR file in the
root directory, for instance, for a file called example.html, we open the
following URL in the web browser:

http://localhost:8080/pubmed/example.html

The WAR archive may also contain images that can be found in the
/pics directory. To access the pubmedLogo.png picture, for example, we
need to point our web browser to the following URL:

http://localhost:8080/pubmed/pics/pubmedLogo.png

To access the serviet DataRetriever, in the web app descriptor file we
wrote the mapping from the path in the URL to the actual Java class that is
going to handle the HTTP request. This Servlet can be accessed at the
following path:

http://localhost:8080/pubmed/DataRetriever

Creating a Servlet to Access Biomedical Literature

We begin by declaring a package called pubMed. Next, we import the
necessary packages, which contain the classes that are used by the servliet.
In order to implement the design described in Fig. 4.7, we need to create a
Java servlet class called PubMedServletl 1 that extends
javax.servlet.http.HttpServlet, the standard base class for HTTP
serviets. We then need to override the doGet () method as shown in the
code below. The doget() method takes two parameters: the
HttpServletRequest object (called req) which is the client request and an
HttpServletResponse object (called res) which is the response sent back
to the client. Since the method returns nothing, its return type is void.

It is conceivable that the process of sending a request to a remote scrver
and obtaining a response back may encounter errors. Java has objects
called Exceptions to handle such occurrences. The Java Virtual Machine
(JVM) will inform the caller using Exception objects when a program does
not behave the way it is supposed to do. This object is "thrown" when that
error or unusual condition occurs and it stores information about the

170

particular error event. In order to inform the developer that such an
exception can be “thrown” from the method, we use the appropriately
named "throws" Java keyword in the method signature. We declare
servletException, which defines a general exception a servlet can throw
when it encounters errors and I0Exception to catch errors due to failed or
interrupted I/O operations. Another way to handle exceptions is to use the
try-catch block. We will see how to use try-catch blocks later in the
Chapter.

Let’s return to the servlet creation process. The general signature of the
doGet method is shown below:

Protected void
doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException { }

since we are sending a text or HTML response, we set the content type
to text/html with the line:

res.setContentType("text/html");

Next we request a PrintWriter object to write the text to the response
message:

PrintWriter out = res.getWriter();

Next we create HTML to create a form that users can utilize for
conducting searches on PubMed. In its simplest state, the form will have a
title, a search box and a submit button. The HTML for the form is as
follows:

<HTML>
<HEAD><TITLE>PubMed Servlet 1.1</TITLE></HEAD>
<BODY>
Java for Bioinformatics:
PubMed Servlet version

1.1\n

Please enter a term to search on NCBI

PubMed:

\n
<FORM METHOD=GET>\n
<INPUT TYPE=TEXT NAME=searchTerm>

\n
<INPUT TYPE=SUBMIT VALUE=\"Search PubMed\">
\n

</FORM>
</BODY>
</HTML>

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 171

The search form as it appears in a browser is shown in Fig. 4.8.

[PubMed Servlet 1.1 - Mozilla

. Fle |Edt Wew Go Bookmarks Tools Window Help

GO 0 0 Q [\.- hittp:/flocalhost: 8080fpmd_05-01-03-201546/7searchTerm=HIV

Java for Bioinformatics: PubNled Serviet version 1.1

Please enter a term to search on NCBI PubMed:

Search PubMed_

Fig. 4.8. The PubMed servlet version 1.1 search form

To implement the form in code, we create an object called html of the
type StringBuffer:

StringBuffer html =

new StringBuffer("<HTML>");

and append the HTML code to it:

StringBuffer html =

new StringBuffer ("<HTML>");
html.append("<HEAD><TITLE>PubMed Servlet
1.1</TITLE></HEAD><BODY>\n");

html.append("Java for Bioinformatics: ");

html.append("PubMed Servlet version
1.1\n");

html.append("

Please enter a term to search on NCBI
PubMed:

\n");

html.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT NAME=searchTerm>

\n");

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\">
\n");

html.append("</FORM>\n");

The URL to send the search term is:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=pubmeds
cmd=search&term=term

In code we implement this in the following manner:

172

URL url = new URL
("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db
=pubmed&cmd=search&term=" + URLEncoder.encode(term, "UTF-
8"));

Note the parameters on the URL (separated by ampersand symbols '&")
that specifies what information we want to submit to the PubMed engine to
retrieve data:

dispmax=10
db=pubmed
cmd=search
term=term

We are limiting the search to ten articles (dispmax=10) for the purpose
of illustration only. We select the database as PubMed (db=pubmed) and
provide the command to search (cmd=search) with the search term
(term=term). Next, we open the connection to the server:

URLConnection urlConnection = url.openConnection();
BufferedReader reader = new BufferedReader (new
InputStreamReader
(urlConnection.getInputStream()));

In the next step, we construct a regular expression to extract the
PubMed Ids (PMIDs) of the abstracts that match the search term and create
an array to store them. To do this, we will use a Java Regular Expression
package available from The Apache Jakarta Project available as a JAR file
called jakarta-regexp-1.3.jar:

String s = null;
RE pmidRE = new RE("PMID: ([0-91+) \\[PubMed");
Collection pmids = new ArrayList();

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmids.add(pmidRE.getParen(1l));
}
}

reader.close();

Listing 4.1 shows the code for PubMed servlet version 1.1

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 173

Listing 4.1. PubMed Servlet version 1.1

package org.jfb.PubMed;

import org.apache.regexp.RE;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;

import java.net.URL;

import java.net.URLEncoder;

import java.net.URLConnection;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

import java.util.Properties;

public class PubMedServletl 1 extends HttpServlet ({
protected void doGet (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();

StringBuffer html = new StringBuffer ("<HTML>"});

html.append("<HEAD><TITLE>PubMed Servlet
1.1</TITLE></HEAD> <BODY>\n");

html.append("Java for Bioinformatics: ");

html.append("PubMed Servlet version
l.1\n");

html.append("

Please enter a term to search
on NCBI PubMed:

\n");

html.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT
NAME=searchTerm>

\n") ;

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\">
\n");

html.append("</FORM>\n");

String term = req.getParameter("searchTerm");
if (term != null) {
html.append("
<HR>
");
html.append("You have searched NCBI for the term
'" + term + "'.");
URL url = new
URL("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10
&db=pubmed&cmd=search&term=" + URLEncoder.encode(term, "UTF-
8"));
URLConnection urlConnection = url.openConnection();
BufferedReader reader = new BufferedReader(new
InputStreamReader (urlConnection.getInputStream()));

String s = null;

174

RE pmidRE = new RE("PMID: ([0-9]+) \\[PubMed");
Collection pmids = new ArrayList();

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmids.add(pmidRE.getParen(l));
}
}

reader.close();

html.append("

PMIDs found:
\n");
int i = 1;

for (Iterator iterator = pmids.iterator();
iterator.hasNext();) {
String sl = (String) iterator.next();
html.append("<a href=\"")

.append("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Re
trieve&db=pubmed&dopt=Abstract&list_uids=")
.append(sl)
.append("\">")
.append(sl)
.append("\n");
if (iterator.hasNext() && i++ != 5) {
html.append(" - ");
} else {
html.append("
");
}
}
}
html.append("</BODY></HTML>\n");
out.print(html.toString());
}
}

The next few lines of code iterate over the array for each of the PMIDs
of abstracts matching the search term and print them out along with a
hyperlink to the original abstract on PubMed. The structure of the servlet
and its component files is shown below (Fig. 4.9).

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 175

PubMed

|— &
L o
L jfb
_ PubMed

—— PubMedServiet1_1.java
—— PubMedServiet!_2 java
L—— PubMedServiet1_3 java

Fig. 4.9, The PubMed servlet structure

To see the servlet in action, start the Apache Tomcat Server, compile the
code and run it with the command:

ant install

Apache Ant is a Java-based build tool used to manage the different steps
in the development cycle of an application, which include compilation of
the code libraries needed for the application, creating the necessary JARs
for deploying an application, etc. It is available from The Apache Software
Foundation website. For further information on installation and use, please
refer to the Appendix.

T — =g
L0 0 9 Forww o) (s <4, mg

Apache Tomcat! 5.4

& e Avache Jakarta Profect

¥ you're sesing this page via s web browser, It means you've setup Tomeat succasstully.
Congratulations’

£ 23 b ol o the kgl

NEE O it o o e o Tl Mg Sgiconen” o imcabss SO0
U e

= 1

70 CHOCIEd - IC 5.l ®a

Fig. 4.10. Logging into the Tomcat Manager

176

Open the following URL:
http://localhost:8080

When the Apache Tomcat welcome page loads, click on the Tomcat
Manager visible on the left panel and login into the server using the
credentials you specified during installation (Fig. 4.10). Access the latest
build of the application to view the serviet. The output of the search with
the keyword HIV using the first version of our program, which we will call
PubMed Servlet version 1.1, is shown in Fig. 4.11.

[pubMed Servlet 1.1 - Mozilla

. File Edt Wiew Go Bookmarks Tools ‘Window Help

OO @Q O O | % hetp:jfiocathost:6080jpmd_05-01-05-2024017searchTerm=HIY

&} [S Entrez Pubied | 5 pubtied Serviet 1.1 I

Java for Bioinformatics: PubMled Servlet version 1.1

Please enter a term to search on NCBI PubMed:

Search PubMed

You have searched NCBI for the term "HIV'.

PMIDs found:
15630704 - 15630678 - 15630469 - 15630452 - 15630446
15630430 - 15630360 - 15629958 - 15629857 - 15629784

Fig. 4.11. Output from the PubMed servlet using search term "HIV"

In the first version of the application, we are simply validating our
approach and displaying just the PMIDs for the abstracts that match the
entered keyword. To check that the code works and retrieves the correct
data, we hyperlink the PMIDs to the original abstracts on PubMed.
Clicking on 15630704, for example, opens up the abstract corresponding

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 177

to the PMID for the abstract that shows up in the search performed directly
on the NCBI PubMed webpage (Fig. 4.12).

Nathonal
Library
r)(.‘lrdlnm;i

[Go Clear]
History Clipboard Diatails
= Show |20 =/ Sent <[Sendto | Tew

o1z Glia. 2005 Jan 3. [Epub ahead of prnt]
(L interscionce
Synergistic increases in intracellular Ca2+), and the release of MCP-1,
RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat.

El-Hage N. Gurwell JA. Singh IN, Knapp PE. Nath A. Hauser KF.

Diepartinent of Anatomiy and Newroliology, Universaty of Kentucky Colleze of Medicine.
Lexington, Kemucky.

Recent evidence sugzests that ijection dmz users who abuse herom are at increased nisk of

CNS complications from hman nnmmmodeficiency vims (HIV) mfection. Cpiate dugs may

mtrinsically alter the pathogenesis of HIV by directly modulating immmme function and by

directly modifying the CNS response to HIV. Despate this, the mechamsms by which opiares

urease the neropathogenesis of HIV are uncertan, I the present study, we describe the
. : : Tan1.7 ¥ i ;

Fig. 4.12. PubMed article corresponding to PMID 15630704

The results in Fig. 4.11 and Fig. 4.12 are identical to the search output
obtained from a search with the keyword 'HIV' at NCBI PubMed at the
time of this writing (Fig. 4.13).

N e

" Q’g @ @ B e] | [seareh | ﬂﬂm
e =T

athornal E

Pub&med

% i

Liree T rasawinge s Histry Chpbun
Ciaglay | Gral wiEewl 20 wfsen [Bendw]Ter

Thams 1 = 30 of 176342 =2 uf ERLE
e el ol Syuergistic mereaves it [PMID: 15530704 :
audow A of ol Influence of Host Clenetic Var. [PMID: 14630675]

+ Papaswcicas E ot ol Randonzed. Controlled Trial . [PMID. 1 5630468]

[di Wang FX et al L7 i 0 potent and proviral,[PMID- 15630452

ol Tdeutification of celila de [PRIID: 15630:446]
Gunzaler-Searsno F et ol The newspathogenesis of AIDS [PMIT 14630-430]
El et ol Alterations of Nasal Muconl . [PAID; 15630360}

t ol Protease Inhibitor Combuatio. [PAID: 14620045

(1% Wimnermwicz M et al Hamessmg HIV for therapy, b [P 14620857]
abey B et sl A PNA-asportan conjugate £ [PMID 156297%4]

{ al. Plophorylation of HIV Nef by, [PMID: 15620770]

I} et ol Masmmakan SCAN Domam Dimer L [PMID: 15629724]

Fig. 4.13. Results of NCBI PubMed search with keyword "HIV"

178

Displaying PubMed Abstracts

In order to make the search output more useful for researchers, we
would like to parse the abstract from each citation and make it available
for viewing right up front as part of the search results. We will now create
the code to parse out the abstract from each of the articles that are returned
by a search.

The general framework of the program is as follows:

1. Create the search form

2. Retrieve the keyword(s) provided by the user

3. Retrieve PMIDs from PubMed corresponding to the search term
4, Retrieve abstracts based on each of the PMIDs obtained in step 1
5. Iterate #4 until all abstracts have been retrieved

To create the search form, we create a method called
createSearchForm() which creates a variable of type StringBuffer called
html and append the various html tags to it in succession:

private StringBuffer createSearchForm() {

StringBuffer html=new StringBuffer();

html.append("<HTML>");

html.append("<HEAD><TITLE>" + TITLE +
"</TITLE></HEAD><BODY>");

html.append("Java for Bioinformatics: ");

//html.append("PubMed Servlet
version 1l.1\n");

html.append("<hl>" + TITLE +
"</hl>");

//html.append("Please enter a userKeywords to search
on NCBI:

\n");

html.append("
Please enter a term to search on
NCBI PubMed:

\n");

html,.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +
">

\n");

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\ ">
\n");

html.append("</FORM>\n");

return html;

}

Note that the text box for entering keywords is called KEYWORDS. We
will use this name to retrieve the user-supplied keywords. The resulting

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 179

search form for the next iteration of the application, which we will call
PubMed Servlet version 1.2, is shown in Fig. 4.13.

[PubMed Servlet version 1.2 - Mozilla

. File Edt Yiew Go Bookmarks Tools Window Help

@0 O @ Q |\ http:/flocalhost:8080/pmd_0S-01-12-212042]

Java for Bioinformatics:

PubMed Servlet version 1.2

Please enter a term to search on NCBI PubMed:

I Search PubMed]

Build #05-01-12-212042
Fig. 4.13. PubMed servlet search form version 1.2

We then retrieve the keyword(s) from the search box using a method
called getUserKeywords () :

String userKeywords = getUserKeywords (req);

This method takes in the HtfpServietRequest req object as a parameter to
return the keywords:

private String getUserKeywords (HttpServletRequest req) {
return req.getParameter (KEYWORDS) ;

}

The next few lines perform some basic user input validation. If you
press the search button without supplying any keywords, for example, the

180

program will return an error message: "Please enter keywords to search.”
(Fig. 4.14).

. File Edit Yiew Go Bookmarks Tools ‘Window Help

00 Q @ O [S httpifflocalhost:3080/pmd_05-01-10-210824/?keywords=

Java for Bioinformatics:

PubMed Servlet version 1.2

Please enter a term to search on NCBI PubMed:

Search PubMed

ERROR

Please enter keywords to search!

Build #05-01-10-210824
Fig. 4.14. User-input validation

We then create a variable of type StringBuffer called sbpmids to store
PMIDs corresponding to the search terms and a String variable called
searchURL to specify the search URL:

StringBuffer sbPmids = null;
final String searchURL =
"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=
pubmed&cmd=search&term=" + URLEncoder.encode (userKeywords,
"UTF-8");

Next we write a method called getPmids () to retrieve PMIDs from the
keywords. The method takes one parameter, the searchURL, which in turns

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 181

contains the keyword(s) embedded in it. The result of the operation is
stored in an object called sbPmids:

sbPmids = getPmids (searchURL);

We place the method within a try-catch block we had briefly mentioned
earlier to catch any exceptions that may arise while the request is sent to
PubMed. If we do indeed encounter an exception, the method will trap the
error, print out the offending error message and exit.

try {
sbPmids = getPmids(searchURL);
}
catch (IOException ioe) {
ioe.printStackTrace();
errorMes = "

We are sorry, the
system could not establish connection to the NCBI PubMed
server " + "with the URL "" + searchURL + "".
Please try again later.

";

}
The method getPmids () itself looks like this:

private StringBuffer getPmids(String searchURL) throws
IOException {
BufferedReader reader = new BufferedReader (new
InputStreamReader (new
URL(searchURL) .openConnection().getInputStream()));
StringBuffer sbPmids = new StringBuffer();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(l);
sbPmids.append(pmid + ",");
}
}
reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;

} else {
return null;

182

The method:

BufferedReader reader = new BufferedReader(new
InputStreamReader (new
URL(searchURL) .openConnection().getInputStream()));

can be broken down into more readable chunks of code as follows:

URLConnection urlConnection = new
URL(searchURL) .openConnection();
InputStream inputStream = urlConnection.getInputStream();
BufferedReader reader = new BufferedReader (new
InputStreamReader (inputStream));

If no exceptions have been raised and if PMIDs have been obtained as a
result of the search, we proceed to get the abstracts from the PMIDs. The
method we use here is called getabstracts() and returns an object of
type StringBuffer called abstracts. The method takes a parameter called
urladdress, which specifies the location of the abstract based on the
corresponding PMID:

if (errorMes == null) {
if (sbPmids != null) {
String urlAddress = citationString +
URLEncoder.encode(sbPmids.toString(),
"UTF-8");
StringBuffer abstracts = null;

// 3. Retrieve the abstracts from the PubMed IDs
try {
abstracts = getAbstracts(urlAddress);
} catch (IOException ioe) {

ioce.printStackTrace();

errorMes = "

We are
sorry, the system could not retrieve the abstracts using
keyword(s) ""

+ userKeywords + "" with the URL

<PRE>"" + urlAddress + ""<PRE>

";

}
The code for the method getAbstracts() is as follows:

private StringBuffer getAbstracts(String urlAddress) throws
IOException {
BufferedReader citationReader =
new BufferedReader(new InputStreamReader (new
URL(urlAddress).openConnection().getInputStream()));
stringBuffer abstracts = new StringBuffer();

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 183

String s;
while ((s = citationReader.readLine()) != null) {
abstracts.append(s);

}

return abstracts;

Next we get information from the matching articles corresponding to
each abstract. This includes information such as the title, authors, source
journal in which the article was published, and the like. An example of the
MEDLINE format, which is parsed to extract this information, is shown in
Fig. 4.15. Note the tags on the left - PMID, OWN, DP, TI, AB, AU, AD,
SO. These represent respectively the PubMed ID, the owner (the
organization that supplied the citation data for MEDLINE), date of
publication, title, abstract, authors, address and source journal.

B Entone Publed - Mozilla

- B Bt Yew @ Qockmarks ook Wndow el

Q)o @ Q [tetp: e ncte rim. b o jenizeziquery fog M= Display Al B=pubmed | [ESenech | do g

d receptors, and are likely
tially activats mu-oploid
yte Function, when combined with

ubstituting a
ggest that

nergistically iner
t= flth°

may contrib

duals who &

of Anatomy and Neurobiology,
ine, Lexington, Kentucky.

I[atl-e H

80 - Glia 2005 dnn 37.

m ot | lf'-

Fig. 4.15. The MEDLINE format

Parsing of these elements is done using the jakarta regular expression
library. Let’s see how we can parse the PMID from the MEDLINE record
displayed above. Note that the PMID is bounded by the tags PMID and
OWN as shown in the enlarged Fig. 4.16 below.

184

[Entrez PubMed - Mozilla

. File Edit Yiew Go Bookmarks Tools

Window Help

-~

Q O O Q |\.— http:{{wwww.ncbi.nlm.nib, gov/entrez)i

1: El-Hage N et al. Synergistic increases in

PMID- 15630704

OWN - NLM

gaTaAT- Publisher

DA - 20050104

PUEM- Print-Electronic
I - 0894-1491

Der - 2005 Jan 3

Fig. 4.16. Parsing the PMID

We could use regular expressions to capture the PMID and other
information if all the MEDLINE records had the same standard format. A
few of these tags are not present wherever information is not available. For
example, sometimes the abstract is not available. In such cases the AB tag
is not present in the MEDLINE record which makes it a little more
difficult to construct a regular expression that is generic enough for all
cases. We demonstrate an alternate method that locates the position of
each start and end tag and captures everything in between. We will declare
the tags we will use to construct regular expressions at the beginning of the

program:

final
final
final
final
final
final
final
final
final
final
final

static
static
static
static
static
static
static
static
static
static
static

String
String
String
String
String
String
String
String
String
String
String

private
private
private
private
private
private
private
private
private
private
private

We will next create code for

pmidTag = "PMID- ";
pmidEndTag = "OWN - ";
titleStartTag = "TI - ";
titleEndTag = "PG - ";
abstractTag = "AB - ";
abstractEndTag = "AD -~ ";
fauthorStartTag = "FAU - ";
authorStartTag = "AU - ";
authorEndTag = "LA - ";
srcTag = "SO -";
medlineEndTag = "</pre>";

the method that we will call

getArticleInfo() for retrieving the information:

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 185

private StringBuffer getArticleInfo(StringBuffer tmp, int
pmidStart, int endMedline) ({
StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +
pmidTag.length(), tmp.indexOf(pmidEndTagqg));

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 |] titleEnd > endMedline)
titleEnd = tmp.indexOf (abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(fauthorStartTag);

}

if (titleEnd < 0 |] titleEnd > endMedline) ({
titleEnd = tmp.indexOf(fauthorStartTag);

}

String title = null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,
titleEnd).replaceAll (" (\\s+)", " ");
}

int end = tmp.indexOf (abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(fauthorStartTag);
tmpAbstractTag = fauthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf (authorEndTag);
tmpAbstractTag = authorStartTag;
}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end) {
article = tmp.substring(abstractStart +
tmpAbstractTag.length(), end).replaceAll(" (\\s+)", " ");

}

int authorStart = tmp.indexOf (authorStartTagqg);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {
authorStart += authorStartTag.length();

186

int authorEnd = tmp.indexOf (authorEndTag);
authors = tmp.substring(authorStart,

authorEnd) .replaceAll(authorStartTag, ",
").replaceAll(fauthorStartTag, ", ");

}

int srcStart = tmp.indexOf(srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {
journal = tmp.substring(srcStart + srcTag.length(),
endMedline);

}

// Let's create the document
articleTmp.append("<a href=\"" + PUBMED_ ARTICLE_LK +
pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ");
articleTmp.append(journal != null ? journal : "No
journal listed").append("
");
articleTmp.append("<u>Authors</u>: ");
articleTmp.append(authors != null ? authors : "No
authors listed").append("
"};
articleTmp.append("<u>Title</u>: ");
articleTmp.append(title != null ? title : "No
title").append("
");
articleTmp.append("<u>Abstract</u>: ");
articleTmp.append(article != null ? article : "No
article").append("
");
return articleTmp;

}

The output of the second version of the PubMed servlet program that
automatically parses the abstracts for each of the returned citations is
shown in Fig. 4.17. Each of the abstracts is marked at the beginning with
the PubMed ID which in turn is hyperlinked to the citation on PubMed if

the user wishes to see the original record at NCBI.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 187

[PubMed Serviet version 1.7 - Mazilla

- B ER Yew Go Qookmaks [ook Window el

gl QQ 0 Q [% hiap:jocsihost:5000jpmd 05-01-05-21 2852 arywords=HIV | (G Q‘.‘.‘o EIT._'Ii
[erves b | = Ptited St versn 1.2])
You have searched NCEI for the userleywords ‘HIV".

Articles found:

15630704

Journal GEa 2005 Jan 3,
Aushors: El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF
Title: Synergistic mereases in mntraceldar Ca(2+), and the release of MCP-1, RANTES, and IL-6 by astrocytes mmd with opsates and HIV-1 Tat
Abitract Rﬂmm:wwnﬂmnumtugwmwhnbwebem“ risk of CHS comph from buman o d wirus (HIV)
infection Cipeate druge may alter the path of HIV by directly modulating imnmee finction and by drectly modifying the CHS response to HIV.
Despate this, the mecharsms by which opiates merease the neuropathogeness of HIV are uncertain. In the present study, we describe the effect of morphine and the
HIV-1 protemn toxin Tat(1-72) on astroghsl function m cultures denved from ICK mice. Astroghs maintain the blood-brain harmer and mfluence nflammatory sgnabng in
the CNS. Astrocytes can express mus-opoid receptors, and are lkely targets for abused opsates, whach preferentially activate mu-opicad receptors, While Tat alane
desrupts astrocyte function, when comkbined with morphane, Tat causes synergistic increases in [Ca(2+))(1). Moreover, astrocyte cultures treated with morphne and Tat
showed exaggerated mcreases in chemakine release, including monocyte chemoattractant protein-1 (MCP-1) tndleg\d-ﬂ:d on activation, normal T cell expressed and
s:ueud(ﬂ.ANTES).alwelmamﬂ.edm i (IL-6). Morphine-Tat interactions were prevented by the antagomist bet: or

lizing Tat(1-72) or substituting a nostesdc, deletion mutant (Tat(Delta3dl-61)). Our Endings suwst that opdes ey merease the wulnerabaity of the CNS to
wiral entry (wia of phages) and ensung HIV mrp‘lmhx by Wmca‘ﬂy mereasing MCP-1 and RANTES release by astrocytes. The
results Further suggest that astrocytes are key diaries in opiate-HIV o and d m astroghal fimetion and nflamenatory signaling may contnbute to
an accelerated m HIV-nfected haals who abuse opiates. (c) 2004 Wiley-Liss, Inc

13630678

Joamal J Infect Dis 2005 Feb 1191 (Suppl 1):563-77.

Authors: Kaslow RA, Dorak, Teviik, Dorak T, Tang James Jasaring, Tang J1
Title: Influence of Host Genetic Variation en Susceptibity to HIV Type | Infection

Abatract For this review of genetic to huenan virus type | mfection, far more information was avadahle on factors mvolved in acqusition

nfﬂwwirushrmml’:cwd"wcipial'lha:myrwlwiwbyﬂuh&:ud'dwm'chui:warimiw iy alters ission from an infected host primandy by

neg\img... pl nfwmdﬂwr of particles k blood and d secretions of the potential donor. Thus, the effects of host genetic
a5 icably bound to the well-established and powerfil effects on virus load at different stages of mfection. Teasing apart the effects in both

mmmcwmhemmnﬂcmmhemﬁﬁc

15630469

Jourmal FLoS Med 2004 Dec;1{3ye64. Epub 2004 Dec 25.

Authors: Papasavvas E, Kostman JR, Mounzer K, Grant RM, Gross R, Gallo C, Azzord L, Foulkes A, Thiel B, Putlk M, Mackiewice A, Shull I, Montaner L)
domized Controlled Trial of Theram:. m Cheanac HIV. | Infrctinn

_m-m i Eens &=
Fig. 4.17. Displaying abstracts for matching PubMed articles

The complete code for the second version of PubMed servlet (version
1.2) is shown in in Listing 4.2.

Listing 4.2. PubMed Servlet version 1.2
package org.jfb.PubMed;

import org.apache.regexp.RE;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServlietRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;

import java.net.URL;

import java.net.URLEncoder;

import java.net.URLConnection;

import java.util.Properties;

public class PubMedServletl 2 extends HttpServlet {

private static final String TITLE = "PubMed Servlet
version 1.2";
private static final String KEYWORDS = "keywords";

private static final String PUBMED_ARTICLE_LK =

188

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrievesd
b=pubmed&dopt=Abstract&list_uids=";
private static final String citationString =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieves&d
b=PubMed&dopt=medline&list_uids=";

private static final RE pmidRE = new RE("PMID: ([0-9]+)
\\{PubMed");

private static final String pmidTag = "PMID- ";

private static final String pmidEndTag = "OWN - ";
private static final String titleStartTag = "TI - ";
private static final String titleEndTag = "PG - ";
private static final String abstractTag = "AB - ";
private static final String abstractEndTag = "AD - ";
private static final String firstAuthorStartTag = "FAU -
1
private static final String authorStartTag = "AU - ";
private static final String authorEndTag = "LA - ";
private static final String srcTag = "SO -";
private static final String medlineEndTag = "</pre>";

protected void doGet (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
StringBuffer html = new
StringBuffer (createSearchForm());

// 1. Extract the user-supplied keywords
String userKeywords = getUserKeywords(req);
if (userKeywords != null) {
if (userKeywords.equals("")) {
String errorMes;
errorMes = "

ERROR
Please enter keywords to
search!

";
html.append(errorMes);
} else {
html.append("
<HR>
");
html.append("You have searched NCBI PubMed with the
keywords '" + userKeywords + "'.");

// 2. Retrieve the PubMed IDs from the user
// keywords
StringBuffer sbPmids = null; //sbpmids
final String searchURL =
"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=
pubmed&cmd=search&term="
+ URLEncoder.encode(userKeywords, "UTF-8");

String errorMes = null;

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 189

try {
// if (true) throw new IOException("Testing the

connection failure here!");

sbPmids = getPmids(searchURL);

} catch (IOException ioe) {

ioe.printStackTrace();

errorMes = "

We are sorry,
the system could not establish connection to the NCBI PubMed
server "

+ "with the URL "" + searchURL + "".

Please try again later.

";

}

if (errorMes == null) {
if (sbPmids != null) {
String urlAddress = citationString +
URLEncoder.encode(sbPmids.toString(), "UTF-8");
StringBuffer abstracts = null;

// 3. Retrieve the abstracts from the PubMed
// 1IDs

try {
abstracts = getAbstracts(urlAddress);

} catch (IOException ioe) {
ioe.printStackTrace();
errorMes = "

We are
sorry, the system could not retrieve the abstracts using

keyword(s) ""
+ userKeywords + "" with the URL
<PRE>"" + urlAddress + ""<PRE>

";

}

if (errorMes == null) {
int pmidStart = abstracts.indexOf (pmidTag);
StringBuffer tmp = abstracts;
html.append("

Articles
found:

\n");
StringBuffer article;

// 4. Extract information from the articles
try {
while (pmidStart !
int endMedline =
tmp.indexOf (medlineEndTag) ;
article = getArticleInfo(tmp, pmidStart,

endMedline);
html.append(article);

tmp.delete(0, endMedline +
medlineEndTag.length());
pmidStart = tmp.indexOf(pmidTaqg);

if (pmidStart != -1) {

190

html.append("<HR>");

}
}

} catch (Exception e) {
e.printStackTrace();
errorMes = "

<h1>ERROR</h1>
We are sorry, the system could
not retrieve the articles for PMIDs <PRE>""
+ sbPmids + ""<PRE>

";
html.append(errorMes);
}
} else {
html.append(errorMes);
}

} else {
html.append("
No abstracts found!");

} else {
html.append(errorMes);
}
}
}

appendBuildProperty(html);
html.append("</BODY></HTML>\n");

// 5. Print the results
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.print(html);

}

private String getUserKeywords(HttpServletRequest req) {
return req.getParameter (KEYWORDS);

}

private StringBuffer createSearchForm() {
StringBuffer html=new StringBuffer();
html .append("<HTML>");
html.append("<HEAD><TITLE>" + TITLE +

"</TITLE></HEAD><BODY>");
html.append("Java for Bioinformatics: ");

html.append("<hl>" + TITLE +

"</hl>");
html.append("
Please enter a term to search

on NCBI PubMed:

\n"};

html.append("<FORM METHOD=GET>\n");
html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +

">

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");

Facilitating PubMed Searches: JavaServer Pages and Java Serviets 191

html.append("</FORM>\n");
return html;

}

private StringBuffer getPmids(String searchURL) throws

IOException {

URLConnection urlConnection = new
URL (searchURL) .openConnection();

InputStream inputStream =
urlConnection.getInputStream();

BufferedReader reader = new BufferedReader(new
InputStreamReader (inputStream));

StringBuffer sbPmids = new StringBuffer();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(1l);
sbPmids.append(pmid + ",");
}
}

reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;
} else {
return null;
}
}

private StringBuffer getAbstracts(String urlAddress)
throws IOException {
BufferedReader citationReader =
new BufferedReader (new InputStreamReader (new
URL(urlAddress).openConnection().getInputStream()}));
StringBuffer abstracts = new StringBuffer();

String s;

while ((s = citationReader.readLine()) != null) {
abstracts.append(s);

}

return abstracts;

}

private StringBuffer getArticleInfo(StringBuffer tmp, int
pmidStart, int endMedline) {
StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +
pmidTag.length(), tmp.indexOf(pmidEndTag));

192

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf (abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf (firstAuthorStartTag);

}
String title = null;

if (0 <= titleStart && titleStart < endMedline) ({
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,

titleEnd).replaceAll("(\\s+)", " ");

}

int end = tmp.indexOf (abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(firstAuthorStartTag);
tmpAbstractTag = firstAuthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(authorEndTag);
tmpAbstractTag = authorStartTag;
}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end)
article = tmp.substring(abstractStart +

tmpAbstractTag.length(), end).replaceRll("(\\s+)", " ");

authorEnd) .replaceAll(authorStartTag, ",

}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {
authorStart += authorStartTag.length();
int authorEnd = tmp.indexOf(authorEndTag);
authors = tmp.substring(authorStart,

").replaceAll (firstAuthorStartTag, ", ");

}

int srecStart = tmp.indexOf (srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {

{

Facilitating PubMed Searches: JavaServer Pages and Java Serviets 193

journal = tmp.substring(srcStart + srcTag.length(),
endMedline);
}

// Let's create the document

articleTmp.append(”<a href=\"" + PUBMED ARTICLE LK +
pmidl + "\">" + pmidl + "").append("
");

articleTmp.append("<U>Journal</u>: ");

articleTmp.append(journal != null ? journal : "No
journal listed").append("
");

articleTmp.append("<u>Authors</u>: ");

articleTmp.append(authors != null ? authors : "No
authors listed").append("
");

articleTmp.append("<u>Title</u>: ");

articleTmp.append(title != null ? title : "No
title").append("
");

articleTmp.append("<u>Abstract</u>: ");

articleTmp.append(article != null ? article : "No
article").append("
");

return articleTmp;

}

private void appendBuildProperty(StringBuffer html) {
Properties buildInfo = null;

try {
buildInfo = new Properties();
InputStream buildStream =
getClass () .getClassLoader().getResourceAsStream(" /build-~

info.txt");
buildInfo.load(buildStream);

} catch (Throwable e) {
e.printStackTrace();

}

if (buildInfo != null) {
html.append("
<HR>Build #");
html.append(buildInfo.getProperty("buildNumber"));
html.append("\n");
}
}

public static void main(String[] args) throws Exception {
new PubMedServletl 2();

}
}

Highlighting Search Terms in Retrieved Abstracts

In version 1.3 of the PubMed servlet, we will enhance the usefulness of
the search results by highlighting the search terms in the retrieved

194

abstracts. One way to do this is to convert the search terms and the abstract
into lower case, locate the matches and then highlight the terms in the
abstract. In this method, we lose the case of the words in the original
abstract (because we converted that into lower case). To fix this, we could
find the exact location of the match and the length of the match and use the
original abstract to highlight the matching term(s).

Another way is to use the equalsIgnoreCase() method which
compares strings irrespective of case. For example, the following code will
find a match to the term "HIV" in text even if it contains HIV in different
forms such as hiv, Hiv, Hlv, hIV, etc.

if (word.equalsIgnoreCase("HIV")) {
//code for highlighting matching terms;
}

To use this method, we have to first create an array of words in the
abstract and test if any of the individual words match the search term.
However, there are limitations to this method also. The
equalsIgnoreCase () method searches for exact matches and will not find
words containing punctuation marks and other characters. If, for example,
HIV-1 is found at the end of a sentence, the array element will be "HIV."
(with a period) and "HIV" is not equal to "HIV.", To fix this we need to
get rid of all such punctuation marks and other special characters.

An easier method to circumvent these issues is described below. In this
method, we iterate over the text in the abstract highlighting each term as it
is found. The regular expression itself is of the type:

(ala) (b|B) (c|C)..

which will match any word irrespective of case. Surrounding such
expression in parentheses allows us to extract specific sub-strings from a
string based on a specified pattern. This is implemented in code as follows:

StringBuffer sb = new StringBuffer("(");
for (char c¢ : chars) {
char charUp Character.toUpperCase(c);
char charLo Character.tolLowerCase(c);

Hon

sb.append(" (") .append(charLo).append("|").append(charUp).appe
nd(")");

}

sb.append(")");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 195

final String regex = """ + sb.toString() + "|["a-zA-Z]" +
sb.toString();

We will not only highlight the search term in the abstracts, we will also
color them differently for better visibility and readability. To do this, we
need to declare an array called COLOR of color elements to store the
selection of colors we wish to use:

private static final String[] COLOR = new String[]{"blue",
"#98cc02", "purple", "red", "#£7dc88"};

For each of the characters in the search term, a regular expression of the
type indicated above (with both lower and upper case forms) is created.
Next when the term is found in the article text, it is highlighted using a
different color for each matching term.

highlightedText = re.subst(highlightedText, "\\\\$0",
RE.REPLACE_BACKREFERENCES) ;
}

The complete code for the method which we will call highlight() is as
follows:

private String highlight (String articleText, Stringf]
terms) {
String highlightedText = new String(articleText);
for (int i1 = 0; i < terms.length; i++) {
final String term = terms[i];
final char[] chars = term.toCharArray();

// Here we are creating the regular expression to find any
// word irrespective of case.
StringBuffer sb = new StringBuffer("(");
for (char c¢ : chars) {
char charUp = Character.toUpperCase(c);
char charLo = Character.tolLowerCase(c);

sb.append("(").append(charLo).append("|").append(charUp).appe
nd(")");

}
sb.append(")");
final String regex = """ + sb.toString() +

"|["a-2A-Z]" + sb.toString();

// Replace the text by a HTML FONT tag that
// wraps the term found
RE re = new RE(regex);

196

highlightedText = re.subst(highlightedText,
"\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +
"\">$0", RE.REPLACE_BACKREFERENCES);

}
return highlightedText;

}

The regular expression for highlighting matched text with colored text is
constructed using the Jakarta regular expression library. In particular we
are using the subst method (short for substring), which is defined as
follows:

re.subst(stringl, string2, rules)
where,

stringl: the String to make the substitution in
string2: String to substitute into stringl
rules: rules that define how substitutions are to be done in stringi

To refer to the contents of a parenthesized expression within a regular
expression, we use what are known as 'backreferences'. The first
backreference in a regular expression is denoted by \1, the second by \2
and so on.

The rules are set as follows:

REPLACE_FIRSTONLY: replace only the first occurrence of the
regular expression in string1

REPLACE_ALL: replace all occurrences of the regular expression in
string]

REPLACE_BACKREFERENCES: all backreferences will be
processed, which in this case means that all matched patterns within the
article text will be replaced with string2

In our case,

stringl = highlightedText

string2 = "W\<font style=\"\\+2\" color=\"" + COLOR[i] +
"\">$0"

and

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 197

rules = REREPLACE_BACKREFERENCES

The extra backslashes in string2 are escape characters. Note that the
expression “$0” represents the whole match, which in this case, represent
the search term(s). The output of PubMed servlet version 1.3 obtained
from an ANDed search of the terms HIV AND AIDS is shown in Fig. 4.18.

¥ PubMed Serviet 1_30 - Mozilla

- Ble Edt Yew Go fochmarks Jooks Window Help

" Q O Q Q [% hpifocatust:600jpma_05-01-21-21334 Phaywords=HIV AND-HAIDS | [Cysearch | C:':(o
15657048
Joumal: Eur J Inmwmol 2005 Fan 18:.
Authors: Stewart-Tones GB, di Glena E. Kolluberger 8, McMichael AT, Jones EY, Bowness P
Title: Crystal stchwes and EIRIDLL recogmtion of three don viral peptides complexed to HLA-B*2705,
Abstract: We have solved the crystal structures of three HLA-B'2705-peptide plexes with the domn viral peptides: EBV
EBNA3C 258-266 (RRIYDLIEL), influenza (flu) nucleoproten NP383-391 (SRYWAIRTR), and HIV gag 264-273 (KRWIILGLNE).
+ o 1on dunng HIV mfection has been ted with pr 1on by HLA-B*2705, and T cell recogmtion, of the
lnvhh mnu\uodmmlaut ERWILGLNE peptide. The tight lydrogen-bonding network observed between the HLA-B*2705 B-pocket and
the peptide P2 argmine guanadinnum anchor explams why mutation of this residue during HIV mfection results i loss of pepfide binding.
escape and progression to Promanent, solvent-exposed structures within these peptides may participate m ting T cell [
P to these don pitopes. In the HLA-B'2705 complex with flu NP383- 391, the aniino acid side chans of residues
7 and 8 are solvent-exposed whulst . i the HIV decamer, the mam-cham bulges mto the solvent around P7. Thus, HLA-B'27035
pre:cll.h- vwral pephides m a range of conf 1ons. Tetr 1 plexes of HLA-B*2705 wath the HIV and flu but not EBV peptides
bound stronghy to the Jaller-Tg-like ptor (EIR)3DL1. Substtution of EBV P8 gl to tl e allowed stion by EIR3DLL.
In the HLA-B*2705-EBV structure the P8 glhitamate sude chiam s sobvent- ::qmscd and may mlubit KIR3DL1 Innllmg thwough
lectrostatic forces. See panying C tary: luttp://cbe. doiorg/10. 1002 /eji. 200425875,

- =

15657945

Jowmal: Eur J Inmwmol 2005 Fan 18:.

Authors: de Castro JA

Title: HLA-B27: portrayi donunant viral

Abstract: A.III.\ough the cn rystal structure of HLA-B27 has been known for a long tune. only recently have Xeray diffraction studies of this

molecule m complex with individual peptides become avalable. The report of three such structhres mvohimg viral epitopes that are

wumunodominant i HLA-B27- 1T cell resp agamst mfl Epstem-Barr and HIV viruses sigfic antly maproves our

percephion of entical aspects of the i logical and patl tic roles of HLA-B27, nlcllldulz (1) the molecular basis of its

pephde-bmding specificity aud ho\\ tlus 15 modulated Ir} mbh‘pc polymorph {2} the relationslup between the structural and the
hgeme features of o t viral epitopes. (3} lhc Inﬂs for long term non-progression to of HIV-infected HLA-B27(+)

mdnviduals, and (4) the structural features of nucrobial pepti 1g NE receptor engagement. Here, I discuss the unplications of

this and related studies for the relevance of HLA-B27 in host defense and as 2 pathogenetic molecule m spondyloarthritis See

accompanymg article: bittp://de doiorg/10.1002/ep 200425724,

E
F

Fig. 4.18. Highlighting search terms in PubMed abstracts

As the output shows, both keywords have been highlighted (blue and
green respectively, as specified in the array of HTML colors).

The complete code for PubMed servlet version 1.3 is shown in Listing
4.3.

Listing 4.3. PubMed Servlet version 1.3
package org.jfb.PubMed;

import org.apache.regexp.RE;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

198

import javax.servlet.http.HttpServletResponse;
import java.io.¥*;

import java.net.URL;

import java.net.URLEncoder;

import java.util.Properties;

public class PubMedServletl 3 extends HttpServlet {
private static final String TITLE = "PubMed Servlet
1.30";
private static final String KEYWORDS = "keywords";
private static final String PUBMED_ARTICLE LK =

"http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?cmd=Retrievesad
b=pubmed&dopt=Abstract&list uids=";
private static final String citString =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieves&d
b=PubMed&dopt=medline&list_uids=";

private static final RE pmidRE = new RE("PMID: ([0-91]+)
\\[PubMed");

private static final String pmidTag = "PMID- ";

private static final String pmidEndTag = "OWN - ";
private static final String titleStartTag = "TI - ";
private static final String titleEndTag = "PG - ";
private static final String abstractTag = "AB - ";
private static final String abstractEndTag = "AD - ";
private static final String firstAuthorStartTag = "FAU
- 7
private static final String authorStartTag = "AU - ";
private static final String authorEndTag = "LA - ";
private static final String srcTag = "SO -";
private static final String medlineEndTag = "</pre>";

private static final String[] COLOR = new
String[]{"blue", "#98cc02", "purple", "red", "#£7dc88"};
private String[] params;

protected void doGet (HttpServletRequest req,
HttpServletResponse res) throws ServletException, IOException

{
StringBuffer html = new StringBuffer();

// 1. Retrieve the user supplied keywords
printHeader (html);
String userKeywords = req.getParameter (KEYWORDS);

if (userKeywords != null) {
params =
userKeywords.replaceAll({"\\s*(\\+| ((a|2) (Njn)(D|d)) | ((o]0O) (|
R)))\\s*", " ").split(" ");

html.append("
<HR>
");
html.append("You have searched NCBI for the

userKeywords

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 199

+ highlight(userKeywords, this.params)
ERY

// 2. Retrieve the PubMed IDs from abstracts
// matching user supplied keywords.
StringBuffer sbPmids = null;
final String spec =
"http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?dispmax=10&db=
pubmed&cmd=search&term="
+ URLEncoder.encode(userKeywords, "UTF-

8");
String errorMes = null;
System.out.println("spec = " + spec);
try {

sbPmids = getPmids (spec);
} catch (IOException ioe) {
ioe.printStackTrace();
errorMes = "

We are
sorry, the system could not retrieve the PubMed IDs using
keyword(s) ""
+ userKeywords + "" with the
URL <PRE>"" + spec + ""<PRE>

";
}

if (errorMes == null) {
if (sbPmids != null) {
String urlAddress = citString +
URLEncoder .encode(sbPmids.toString(), "UTF-8");
StringBuffer abstracts = null;

// 3. Retrieve abstracts corresponding
// to the PubMed IDs
try {
abstracts =
getAbstracts (urlAddress);
} catch (IOException ioce) ({
ioe.printStackTrace();
errorMes = "

We are sorry, the system could not retrieve the
abstracts using keyword(s) ""
+ userKeywords + ""
with the URL <PRE>"" + urlAddress +
"" ; <PRE>

";
}

if (errorMes == null) {
int pmidStart =
abstracts.indexOf (pmidTag) ;
StringBuffer tmp = abstracts;
html.append("

Articles
found:

\n");
StringBuffer article;

200

// 4. Formatt the articles

try {
while (pmidStart 1= -1) {
int endMedline =
tmp.indexOf (medlineEndTag) ;
article = getArticle(tmp,
pmidsStart, endMedline);
html.append(article);
tmp.delete(0, endMedline +
medlineEndTag.length());
pmidStart =
tmp. indexOf (pmidTag) ;
if (pmidstart != -1) {
html.append("<HR>");
}
}

} catch (Exception e) {
e.printStackTrace();
errorMes = "

<font

color=red><h1>ERROR</h1>
We are sorry, the system could
not retrieve the articles for PMIDs <PRE>""
+ sbPmids +
"" ; <PRE>

";
html.append(errorMes);
}

} else {
html.append(errorMes);
}
} else {
html.append("
No abstracts found!");
}
} else {

html.append(errorMes);
}
}

appendBuildProperty(html);
html.append("</BODY></HTML>\n");

// 5. Print the results
res.setContentType ("text/html");
PrintWriter out = res.getWriter();
out.print(html);

}

private void printHeader (StringBuffer html) {
html.append("<HTML>");
html.append("<HEAD><TITLE>" + TITLE +
"</TITLE></HEAD><BODY>\n");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 201

html.append("<hl>" + TITLE +
"</h1l>\n");

html.append("Please enter a userKeywords to
search on NCBI:

\n");

html.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +
">

\n");

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\ ">
\n");

html.append("</FORM>\n");

}

private StringBuffer getPmids(String spec) throws
IOException {

BufferedReader reader = new BufferedReader (new
InputStreamReader (new
URL(spec).openConnection().getInputStream()));

StringBuffer sbPmids = new StringBuffer();

String pmid;

String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(l);
sbPmids.append(pmid + ",");
}
}

reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;
} else {
return null;
}
}

private StringBuffer getAbstracts(String urlAddress)
throws IOException {
BufferedReader citReader =
new BufferedReader (new
InputStreamReader (new
URL(urlAddress).openConnection().getInputStream()));
StringBuffer absSb = new StringBuffer();

String s;

while ((s = citReader.readLine()) != null) {
absSb.append(s);

}

return absSb;

202

private StringBuffer getArticle(StringBuffer tmp, int
pmidStart, int endMedline) {
StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +
pmidTag.length(), tmp.indexOf(pmidEndTag));

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf (abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf (firstAuthorStartTag);

}

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(firstAuthorStartTag);

}
String title

null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,
titleEnd).replaceAll (" (\\s+)", " ");
}

int end = tmp.indexOf(abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(firstAuthorStartTag);
tmpAbstractTag = firstAuthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf (authorEndTag);
tmpAbstractTag = authorStartTag;

}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end)

{
article = tmp.substring(abstractStart +
tmpAbstractTag.length(), end).replaceAll(" (\\s+)", " ");
}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {

Facilitating PubMed Scarches: JavaServer Pages and Java Servlets

203

authorStart += authorStartTag.length();

int authorEnd = tmp.indexOf(authorEndTag);

authors = tmp.substring(authorStart,
authorEnd) .replaceAll (authorStartTag, ",
").replaceAll (firstAuthorStartTag, ", "):

}

int srcStart = tmp.indexOf (srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {
journal = tmp.substring(srcStart +
srcTag.length(), endMedline);
}

// Create the output

articleTmp.append("<a href=\"" + PUBMED_ARTICLE_LK

+ pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ");
articleTmp.append(journal != null ? journal

journal listed").append("
");
articleTmp.append("<u>Authors</u>: ");
articleTmp.append(authors != null ? authors

authors listed").append("
");
articleTmp.append("<u>Title</u>: ");

"No

"No

articleTmp.append(title != null ? highlight(title,

params) : "No title").append("
");
articleTmp.append("<u>Abstract</u>: ");
articleTmp.append(article != null ?
highlight(article, params) : "No article”").append("
");

return articleTmp;

}

private String highlight(String articleText, String[]

terms) {

String highlightedText = new String(articleText);

for (int i = 0; i < terms.length; it++) {
final String term = terms[i];
final char[] chars = term.toCharArray();

// Create the regular expression to find search terms
// irrespective of case

StringBuffer sb = new StringBuffer("(");
for (char c : chars) {
char charUp = Character.toUpperCase(c);
char charLo = Character.toLowerCase(c);

sb.append(" (") .append(charLo).append(”|").append(charUp).appe
nd(")");

}

sb.append(")");

final String regex = """ + sb.toString() +

"|["a-2A-Z]" + sb.toString();

204

// Replace the text by a HTML FONT tag
// that wraps the term found
RE re = new RE(regex);
highlightedText = re.subst(highlightedText,
"\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +
"\">$0",
RE.REPLACE_BACKREFERENCES) ;

}
return highlightedText;

}

In this Chapter, we have attempted to demonstrate how web applications
can be created using the J2EE JSP and servlets technology based on a
literature search and retrieval service that is indispensable for today’s fast
paced scientific research environment. In particular, we created a web
application that provides the same powerful search capabilities provided
by the NCBI PubMed server but further enhanced it by displaying the
abstracts for each of the matching articles right up front and highlighting
the search terms in the abstract. The rationale behind this strategy was that
researchers may find it difficult to recognize the relevance of an article to
their area of research simply by looking at the article title. If the abstract
was displayed and the search terms were highlight and color coded, it
becomes much easier to understand the context in which the abstract is
relevant vis-a-vis the input search terms. This design saves the researcher a
few extra clicks and makes data more readable and useful.

Note: This Chapter uses resources referred to in the Appendix:
Setting up Apache ant and Apache Tomcat.

Summary

The ability to query and mine the rich scientists datasets in PubMed is a
powerful way to further experimental science using a hypothesis driven
research methodology where researchers build on scientific findings
reported by scores of researchers around the world. In this Chapter, we
have demonstrated how to create a web application with Java Serviet/JSP
technology to access PubMed data and how to enhance the functionality
provided by the resource. Processing and presentation of biomedical data
in ways that provide additional benefit for the researcher is a fundamental
contribution of information technologies and it is hoped that this Chapter
has illustrated a small example of how this can be accomplished.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 205

Questions and Exercises

1. Visit the NCBI PubMed website and become familiar with the
service. Try out searches with different keywords and view the
results using the various available Display (Brief, Abstract,
Citation, XML, etc.), Sort by (Pub Date, First Author, Last
Author, etc.) and Limits (Dates, Type of Article, etc.) options.
Think of ways you can enhance the capabilities of the service from
the user’s point-of-view.

2. PubMed abstracts are a powerful source of data on protein-protein
interaction networks. For example, two or more proteins
mentioned in the same sentence within an abstract most likely
interact with or are related to one another in some fashion.
Enhance the PubMed web application we created in the Chapter
by:

a. highlighting gene/protein names mentioned in the abstract
b. hyperlinking protein names to an appropriate annotation
resource or database on the web

One such solution can be based on the use of gene symbols defined by
the HUGO Gene Nomenclature Committee (HGNC). According to HGNC
convention, human gene symbols are designated by upper-case Latin
letters or by a combination of upper-case letters and Arabic numerals, with
some exceptions. For example, the Approved Gene Symbol for the breast
cancer 1, early onset gene is BRCAL.

For the second part of the exercise, the NCBI Entrez Gene resource can
be used as an annotation resource. The link to the BRCA1 gene on Entrez
Gene, for example, is identified by the following URL:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve
&dopt=full_report&list_uids=672

3. Enhance the user interface of the web application to include the
capability to:
a. save selected abstracts on your local machine
b. filter articles by special criteria, for example, limit journals
by name (Science, Nature, etc.)

206

Additional Resources

* The Apache Software Foundation - http://tomcat.apache.org

* The Apache Jakarta Project - http://jakarta.apache.org/regexp/
* The Apache Ant Project - http://ant.apache.org/

* Entrez - http://www.ncbi.nlm.nih.gov/Database/index.html

* HUGO Gene Nomenclature Committee -
http://www.gene.ucl.ac.uk/nomenclature/

* Java Servlet API Specification 2.2 -
http://java.sun.com/products/serviet/download.html

* JavaServer Pages[tm] Technology - White Paper -
http://java.sun.com/products/jsp/whitepaper.html

* The Java Servlet API White Paper -
http://java.sun.com/products/servlet/whitepaper.htmi

* Java Servlet Technology -
http://java.sun.com/products/servlet/index.jsp

* PubMed Help website -
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubmed.chapter.p
ubmedhelp

e RFC2616 - http://www.w3.org/Protocols/rfc2616/rfc2616.html

* RFC 3875 - http://www.rfc-archive.org/getrfc.php?rfc=3875

Selected Reading

The HUGO Gene Nomenclature Database, 2006 updates. Eyre TA,
Ducluzeau F, Sneddon TP, Povey S, Bruford EA and Lush MJ. Nucleic
Acids Res. 2006 Jan 1;34(Database issue):1D319-21.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 207

Guidelines for human gene nomenclature (1997). HUGO Nomenclature
Committee. White JA, McAlpine PJ, Antonarakis S, Cann H, Eppig JT,
Frazer K, Frezal J, Lancet D, Nahmias J, Pearson P, Peters J, Scott A,
Scott H, Spurr N, Talbot C Jr, Povey S. Genomics. 1997 Oct 15;45(2):468-
71.

