Chapter V

Creating a Gene Prediction and BLAST Analysis
Pipeline

Introduction

Gene prediction and gene annotation are fundamental aspects of
genome-sequencing projects and discovery research. These activities
involve determination of complete gene structures from the raw DNA
sequence and attributing functions to them, by way of computational
methods, at least as a first step. These methods try to implement an
understanding of the way in which the structural elements such as coding,
non-coding and regulatory elements are organized within genes, to extract
meaningful information from raw nucleotide sequences.

Gene prediction programs, specifically, are designed to recognize
genetic signals that are embedded in DNA sequences to make predictions
about gene structure. We will explore gene prediction programs in more
detail in this Chapter and build an analytic pipeline that will tie gene
prediction and the BLAST application we built in earlier Chapters.

Gene Prediction Programs

Gene prediction methods that rely only on information that is encoded
in the sequence itself to make predictions are called ab initio (Latin: from

210

the beginning) methods. These methods use signals within DNA such as
splice sites, start and stop codons, promoters and terminators of
transcription, polyadenylation sites, ribosomal binding sites, CpG islands,
and various transcription factor binding sites to predict the presence of
exons. ab initio methods such as Genscan rely on probabilistic models
known as Hidden Markov models (HMMs) to discern patterns within
DNA. An HMM models the different states that a DNA sequence can exist
in and the transition probabilities between the states. The different states of
DNA are the ones enumerated above such as promoter, intron, exon etc.
The term ‘Hidden’ comes from the fact that the sequence itself is visible
but the states are hidden.

DNA Transcription and Translation

Although a detailed treatment of these subjects are out of the scope of
this book, an introduction of the basic concepts in essential to understand
the biology and behavior of the DNA and RNA. We had mentioned the
terms transcription and translation in the last section. Transcription is the
process by which a DNA molecule is copied into an RNA molecule, while
translation is the process by which the RNA sequence is used by the
cellular machinery to synthesize proteins.

Transcription may result in one of three types of RNA: Messenger RNA
(mRNA), transfer RNAs (tRNA) or ribosomal RNA (rfRNA). mRNA
molecules serve as ‘messengers’ that specify the code for the synthesis of
amino acids (during translation) and therefore the name messenger RNA.
tRNAs form covalent attachments to individual amino acids and recognize
the encoded sequences of the mRNAs to allow correct insertion of amino
acids into the elongating polypeptide chain during translation. IRNAs are
assembled together with numerous proteins to form complexes known as
ribosomes. Ribosomes engage mRNAs and form a catalytic domain into
which the tRNAs enter with their attached amino acids. The proteins of the
ribosomes catalyze all of the functions of polypeptide synthesis.

During the process of transcription, the DNA double helix unwinds and
one strand serves as the template for the synthesis of the RNA strand.
Either strand can serve as the template - which strand becomes the
template depends on a combination of transcription initiation and
termination signals such as promoter and enhancer sequences that are
present on the DNA. Transcription is actually a polymerization reaction in

Creating a Gene Prediction and BLAST Analysis Pipeline 211

which individual nucleotides are linked together by an enzymatic reaction
(catalyzed by the enzyme RNA polymerase) into a chain to form RNA.

In nature, these processes are orchestrated in a finely tuned and
regulated manner involving an intricate interplay of a large number of
proteins, which recognize specific signals and patterns on the sequences
they bind. An example is what are known as CpG islands, which are
regions within DNA that often occur near the beginning of genes, where
the frequency of the dinucleotide CG (that is, the nucleotide bases cytosine
and guanine) is more than in the rest of the genome

We had also mentioned exons and introns and these are simply terms
used to refer to regions of DNA that code for or don’t code for proteins
respectively. To elaborate, higher organisms (eukaryotes) have what are
called “split genes”, that is, a large proportion of their genes are not
continuous linear entities, but instead may be interrupted throughout their
length by sequences that do not code for protein. A piece of DNA may
therefore contain coding sequences with intervening non-coding
sequences. The intervening non-coding segments are called the introns and
do not code for protein. The coding sequences are exons and do code for
protein. For example, the Cystic Fibrosis transmembrane regulator (CFTR)
gene's coding regions (exons) are scattered over 250,000 base pairs of
genomic DNA and is made up of 27 exons. During transcription, introns
are removed from the CFTR gene and exons are pieced together by a
process known as RNA splicing to form a 6100-bp mRNA transcript that is
translated into the 1480 amino acid sequence (the CFTR protein). In
contrast, the 384 nucleotide human pancreatic ribonuclease gene is
intronless and codes for a 128 amino acid protein. A highly schematic
view of the RNA splicing process is show in Fig. 5.1.

212

Intron Intron Intron Intron

Exon 1 l Exon 2 l Exon 3 J, Exon 4 + Exon 5 Exon 27

Genomic DNA 1 2 3 4 5 27 |
RNA
splicing
v
Nuclear RNA 1 2 3 4 6] 27
A 4 ¥ » ¥ ¥
mRNA 1 2 3 4 5 27

Fig. 5.1: Schematic of RNA splicing

Gene Prediction with Genscan

Genscan is one of the most effective among the many exon prediction
programs to date. In this Chapter, we will build an application that will
allow users to perform Genscan-based predictions on an unknown piece of
DNA and analyze the predicted genes and peptides with BLAST using the
SwingBlast application that we wrote earlier. The rationale to combine the
two programs into this pipeline is simple — once we know that a newly
sequenced stretch of DNA probably contains potential coding regions, we
would like to know what peptides they may code for and what functions
they perform. As we learned in Chapter 2, a BLASTX analysis of a
nucleotide sequence, for example, compares a nucleotide query sequence
translated in all reading frames against a protein sequence database and
produces matches to known proteins. This information in turn provides
clues to the probable function of an unknown peptide sequence. The
integrated Genscan and BLAST pipeline can be used to perform such
functional characterization of newly sequenced DNA fragments.

Genscan was written by Chris Burge and Samuel Karlin at the
Department of Mathematics, Stanford University. Genscan utilizes the
same basic signals described earlier to build complete gene structures (that
is, introns + exons) from human genomic sequences. Specifically, these
include transcriptional, translational and splicing signals (including
elements present in most eukaryotic promoters such as the TATA box and

Creating a Gene Prediction and BLAST Analysis Pipeline 213

cap site), as well as length distributions and compositional features of
exons, introns and intergenic regions. Importantly, Genscan also makes
use of the many substantial differences in gene density and structure based
on GC composition of the human genome. For example, it is known that
gene density in GC rich regions is five times higher than in regions with
moderate GC content and ten times higher in rich AT rich regions. Four
categories of DNA were identified based on their GC content:

1.<43% GC
2.43-51% GC
3.51-57% GC
4.>57% GC

These are known as isochores. Thus, if the input genomic sequence has
a GC content of 45 % it is said to have an isochore value of 2. ab initio
programs traditionally have been poor at predicting genes in regions
containing multiple genes, especially when present on both DNA strands.
Genscan addresses these problems by using an explicitly double-stranded
genomic sequence model, which has the likelihood of genes occurring on
both DNA strands. Second, while most programs assume the presence of
exactly one complete gene in the input sequence, Genscan treats the more
general case in which the sequence may contain a partial gene, a complete
gene, multiple complete (or partial) genes on either strand, or no gene at
all. A significant difference in Genscan also is the incorporation of splice
donor signal information based on the mechanism of donor splice site
recognition in pre-mRNA sequences by Ul small nuclear
ribonucleoprotein particle (Ul snRNP).

Running Genscan Analyses

Running and interpreting a Genscan analysis is rather straightforward.
Point your browser to the Genscan server at MIT:
http://genes.mit.edu/GENSCAN.html (Fig. 5.2). For this exercise we will
use a 175 kilobase human bacterial artificial chromosome (BAC) with the
accession number AC092818 from NCBI. Genscan has been ‘trained’ to
work with vertebrate, arabidopsis and maize sequences (Fig. 5.3). Since we
are analyzing a human BAC, we choose the vertebrate option. We will use
the default sub-optimal exon cut-off value of 1 for our purposes. This
value defines the threshold, which determines if exons that do not meet the
criteria (sub-optimal exons) will be shown or not.

214

You can give a sequence name if you are analyzing a large number of
sequences and want to label each output by a unique identifier. In this case,
we will just use the BAC accession number (Fig. 5.4). The program gives
an option to print out the predicted proteins or the predicted proteins along
with their nucleotide sequences. We will choose the latter option (Fig. 5.5).

2] A7 Wi Srrvrs 511 - Seznalt ikt Explre

The New GENSCAN Web Server at MIT

Identification of complete gene structures in genomic DNA

=
For information about Genscan, click here

-t for predicting the locations and exon-intron structures of genes in

B v

mumbers ignored):

esnumbers ignored):

To have the results mailed Lo you, enter your ema

[Genscan | oot |

Fig. 5.3. Setting Genscan parameters

Creating a Gene Prediction and BLAST Analysis Pipeline 215

The sequence can be either uploaded or pasted directly in the text box.
Uploading a sequence is more convenient if you are handling very large
sequences, as is the case here (Fig. 5.5). Finally, you can specify an email
address if you want to receive the results via email. We will hit the “Run
Genscan” button and just wait to see the results in the browser. Fig. 5.6 and
Fig. 5.7 show the results of the Genscan analysis.

Analyzing GenScan Output

The GenScan header gives information on the input sequence and the
parameters used such as name, size and isochore classification
(categorization based on GC content) of the sequence, and the matrix used
for the analysis (HumanIso.smat). The body of the analysis consists of the
predicted peptide and the corresponding CDS sequences. As is evident
from the output there were eight predicted peptides in this sequence. The
complete gene structure of each peptide is listed after the header (Table
5.1).

=il x|
De (% Yow Fpoim Dok teb end o
meks)+ x) (F]] e e e G - LR B @R ey ™
{7 e —— ey 8=

LT TR Frocictod poptdes only

Upl 0 A sequence file (one-letter code, upper or lower case, spaces/numbers ignored):

Or paste your DNA sequence here (one-letter code, upper or lower cas ces/mumbers ignored);

To have the results mailed to you, enter your email address here (optional). NG
s,

=) YTy

Fig. 5.4. Entering an identifier

216

Table 5.1. Gene structures

Date run: 16-May-105

FPar:

Predicted genesg/exons:

Type S .Begin ...End .Len Fr Ph IfAc Do/T CodRg

3609 3682
3826 3904
9758 9904
10302 10435
12763 12979
15363 15421
18293 18483
26161 26237
27474 27479

Init
Intr
Intr
Intr
Intr
Intr
Intr
Term
PlyA

MANNRENEEN
MANNEND =N

:
1.
155
1.
1.
1.
1.
1.
1.

O I S

PlyA 27633 27628
Term 48266 47967
Init 49500 45009
Prom 50548 50509

RN NN

52752 52791
54566 54649
59721 59785
67507 67704
68259 68338
68461 68595
73137 73264
73438 73443

Prom
Init
Intr
Intr
Intr
Intr
Term
PlyA

WWwwwwww
T T

The most important aspects f this table are the gene and exon number,
the type of exon, the strand information (+/-), the background and end
positions, the length of each exon in basepairs, the frame and the scores.
The key to the abbreviations is provided at the end of the output (Table
5.2).

Creating a Gene Prediction and BLAST Analysis Pipeline 217

Table 5.2. Abbreviations and explanations

iGn.Ex |gene number, exon number (for reference)

Type [Init = Initial exon (ATG to 5' splice site)

Intr = Internal exon (3' splice site to 5' splice site)

[Term = Terminal exon (3' splice site to stop codon)

Sngl = Single-exon gene (ATG to stop)

Prom = Promoter (TATA box / initation site)

PlyA = poly-A signal (consensus: AATAAA)

S IDNA strand (+ = input strand; - = opposite strand)

Begin |beginning of exon or signal (numbered on input strand)

End jend point of exon or signal (numbered on input strand)

Len length of exon or signal (bp)

Fr reading frame (a forward strand codon ending at x has frame x mod 3)
Ph net phase of exon (exon length modulo 3)

I/Ac [initiation signal or 3' splice site score (tenth bit units)

Do/T [5' splice site or termination signal score (tenth bit units)
CodRg [coding region score (tenth bit units)

P robability of exon (sum over all parses containing exon)
[T'scr jexon score (depends on length, I/Ac, Do/T and CodRg scores)

Each pair of peptide and CDSs (as shown below for the first set) are in
Fasta format and have unique identifiers where the sequences are
numbered sequentially.

>gi|GENSCAN_predicted_peptide_1|325_aa
MALISFTSPFNFIGKKSWQCITEAGFDKVDETIIFVISQSSRNVIVGEFLQDPCQGLPL

KDLSSKQAANLFPWQRMEAVACDILLIMQPGHGQPAFLQGMSSRLSGAAEQVGSWSMRS
RHSLLWSVPEPVQQAGFLFPEALQSAGCFLPSNIGLOVLQFWTLGLTSVVCQGLSGLWP
IEGCTVGFSTFEVLGLGLASLLLSLQTAYCGTSPCDHSSSLSDSKAAVLENIGLLPLTH
SECSRGGTQTGISGLKTELGAKVARVCQAEYGGESHAEREFWTPTEESLRVYKRGLISS
SGISVDHGSLPEGLTKTFIPEGYEP

>gi|GENSCAN predicted CDS_1|978 bp

atggccctaatcagttttacatctecgtttaattttattggaaagaagagectggcaatge
atcacagaggccggcectttgacaaagtggatgaaacaattatcttcgttatcagecaaage
agtagaaatgtgatagttggggaatttttgcaggacccatgeccagggcttacectetgeta
aaggatttgtcctcaaagcaggcagcaaatctgtteccecttggcagaggatggaageegtg
gettgtgacattcectectgataatgecagecaggeccacgggecagecagecatttetgecagggg
atgagctccaggctcagtggggcagcagagcaagtggggagetggtecatgaggagtcag
cgtcattccttgetgtggtetgttecetgaaccagtccaacaggectggecttectgttecca
gaagccctccaaagtgetggatgettecectgecatecgaacattggactccaagttettecag
ttttggactcttggacttacatcagtggtttgecagggactetcaggectttggectecag

218

attgaaggctgcactgtcecggcttectectacttttgaggttttgggacteggactggettece
ttgctectcagettgecagacagectattgtgggacttcaccttgtgatcattccagecage
ctttcggattccaaagecggetgtecctggaaaatatagggectecctteccactaaccecaccte
tctgaatgcagcagaggtggaacccagacagggatcagtgggttaaagacagagetggga
gccaaggtagccagagtttgeccaggcagagtatggeggagagagecacgcagagagagaa
ttctggacacctacggaggaatctcttcgagtatataaaagaggactgatcagcagtgea
tcaggtatctctgttgatcatggttctttacccgaaggactgactaaaacctttatteet
gaagggtatgaaccatag

S etter code, upper or lower case, spaces/umbers ignored):

A sequence here (one-letter code, uppe wer cise, spaces numbers ignoredy:

=
To have the results mailed to you, enter your email address here (optional): RGN

) the |

i D st

Fig. 5.5. Printing peptides and the corresponding coding sequences (CDS)

e VA Weh Serers ot ST M r ! Dofrenet Qaplevrs

equersce file (one-letter code, upper or lower case, spaces/numbers ignored).
Erowsn

{A sequence here (one-lett e, upper or lower case, spaces/numbers ignored):

To have the results mailed to you, enter your email address here (optional):

Fig. 5.6. Uploading the BAC sequence

Creating a Gene Prediction and BLAST Analysis Pipeline 219

[i et et et ol Linlx
th (& bon Fyves ne b Sfed e |
) | D] s e B[AR e *

s [] e fgmrs. it echuf et aown o el

Fh I/Ac Do/T CodRg

3609
3826
9758
10302
12763

113 48
100 33
134 z 101
4 63
97 78
95 106
29 127
57 - 105

BRSO R

Fig. 5.7. Genscan output: Header information

2 covsci ot st e breres I
Be fde Yew Fgoites Jook el iSond I
O - O - 1) (2] (| Plmed oreenw @ B35 0H- R B o
| Actdress. L8] hexp: figens. m exdufegi-band g arwn £ 8w

Predicted peptide sequence(s):

] Dera [} D Interee

Fig. 5.8. Genscan output: predicted sequences

220

Creating SwingGenscan

The swingGenScan application is composed of four packages as
described below:

* org.jfb.genscan: contains the Genscan API that provides a framework
for a Genscan implementation. It makes the implementation
more flexible by allowing us to optimize, thread, or queue requests and
perform other manipulations without having to change the whole
application; the way the implementation works is transparent to the
application.

* org.jfb.jgenscan: a Genscan implementation of the framework
defined by the org. jfb.genscan package.

* org.jfb.util: contains classes for performing operations such as
extracting the peptide and genes from a Genscan prediction.

* org.jfb.swinggenscan: contains all the classes to build the
SwingGenScan application.

* GenScanResult: contains the parsed peptide and the gene predictions.

* ResultDialog: a JDialog window that displays the result of Genscan
operation. In this window, users can select one or more sequences to
place into the BLAST pipeline using swingBlast.

* SwingGenScan: the main application window where users can select the
parameters for running a Genscan prediction against a chosen nucleotide
sequence

The goal of this Chapter is to create a gene prediction and annotation
pipeline which enables a user to perform gene prediction followed by
further downstream analysis of the predicted gene and peptide sequences
using BLAST. SwingGenScan uses SwingBlast to send Genscan predicted
sequences for BLAST analysis. To enable this, we have modified
SwingBlast version 2.5 that we created in Chapter 3 and separated the
functionality provided by that application into four packages that we will
use in SwingGenScan:

* org.jfb.blast: provides the BLAST API
* org.jfb.jgblast: provides an implementation of the BLAST API
* org.jfb.util: contains classes that provide functions that can be

shared by more than one application (to enable future code reuse). For
instance, the class QueryHelper in this package contains two methods

Creating a Gene Prediction and BLAST Analysis Pipeline 221

(sendQuery and postQuery) to send GET or POST HTTP requests and
the HTML result back.

* org.jfb.swingblast3: is the new refactored SwingBlast application.
Since this is a major change, we have named this version 3.

The four classes can be packaged into a jar file called swingblast.jar.
The jar file can serve as a library whose functionality can be used like any
other Java library by placing it in the Java classpath. The structure of the
SwingGenScan application is shown in Fig. 5.9.

SwingGenScan

L sre
L org
jfb

I— genscan
GenScan.java
GenScanException.java
GenScanManager.java

— jgenscan
JGenScan

—— swinggenscan
GenScanResult
ResultDialog

L SwingGenScan
— util

Fig. 5.9. The SwingGenScan application structure

Writing the Code for SwingGenScan

The org.jfb.genscan package contains the following Java classes:
GenScan. java

GenScanException.java, and

222

GenScanManager.java

As described earlier, this package contains the API that provides a
framework for a Genscan implementation. Let’s look at the code for the
first Java class Genscan located in the file Genscan.java (Listing 5.1).

Listing 5.1. Code for Java class GenScan

package org.jfb.genscan;

import java.util.HashMap;
import java.util.Observable;

public abstract class GenScan extends Observable {
public abstract Object submitQuery(Map parameters)
throws GenScanException;

public abstract Object requestResult(Object identifier)
throws GenScanException,
IllegalArgumentException;

}

When we run a Genscan analysis, we would like to know the status of
the Genscan operation - has the request been submitted and if so, is the
sequence currently in process, or has it encountered an error? The Genscan
class provides a simple way of being notified of events through the use of
the observer pattern as described in Chapter 2.

Next we define the GenScanManager class, whose purpose is to provide
an instance of GenScan (Listing 5.2). As we'll see later, an implementation
of the GenScan API will call the GenScanManager’s register method to
register itself as the default GenScan implementation.

Remember, we don’t want to modify our code if we change the
GenScan implementation to provide a multi-threaded, queued and multi-
server implementation in the future. So to load our GenScan
implementation we just pass the full name of the Java class to load,
through the JVM system property (defined as “genscanClass.driver”) using
the —-D option as explained earlier in Chapter 3. Another way is to call
Class.forName (“full name of the Java class”) to have the Java
classloader locate the implementation and load it into the JVM. The reader
will notice that the createGenScan() is thread safe, which means that a
different instance of the Java Genscan implementation will be loaded for

Creating a Gene Prediction and BLAST Analysis Pipeline 223

each thread and therefore it will not be a problem while accessing shared
resources. For the same reason, multiple Genscan analyses can be run in a
multi-threaded application. To return an instance of the implementation of
GenScan we then use the Java reflection API (defined in java.lang.reflect
package) to retrieve the constructor and create a new object of the
GenScan implementation here called JgensScan.

Listing 5.2. GenScanManager.Java

package org.jfb.genscan;

public class GenScanManager {
private static String genscanClass null;
private static boolean initialized = false;

il

public static synchronized void register(GenScan
genscan) {
genscanClass = genscan.getClass().getName();
initialized = true;

}
private static void loadInitialDrivers() {
final String driver =
System.getProperty("genscanClass.driver");
if (driver == null)
return;
try {

System.out.println("GenScanManager.Initialize:
+ driver);
Class.forName(driver);
} catch (Exception e) {
System.out.println("GenScanManager.Initialize:
load failed: " + e);
}

loading

}

public static GenScan createGenScan() throws
GenScanException {
if (!initialized) {
initialized = true;
loadInitialDrivers();
}
if (genscanClass == null)
throw new GenScanException("There is no driver
configured! "
+ "Please use genscanClass.driver Java
property or Class.forName" +
" to load the driver class.");

try {

224

// In a multi thread environment we need to
//make sure that the class is loaded

final Class aClass = (Class)
Class.forName(genscanClass, true,

Thread.currentThread().getContextClassLoader());
return (GenScan) aClass.getConstructor (new
Class[]1{}).newInstance(new Object[]1{});
} catch (Exception e) {
throw new GenScanException(e);

}

Next, we need to be able to get an instance of GenScan, or more
specifically, an instance of the implementation that fulfills our Java
GenScan declaration requirements. The design of the GenScan framework
provided by the API we wrote is to make the implementation transparent
to the user. For example, the implementation uses an HTTP server to run
the Genscan analysis and to retrieve the result. This entire process is
shielded from the user. The user simply calls the submitQuery method
with a Map of parameters and requests a result using an object identifier.

The code below loads the class for the Genscan implementation:

(Class aClass = (Class) Class.forName(genscanClass, true,

Thread.currentThread().getContextClassLoader());
return (GenScan) aClass.getConstructor(new
Class{]}{}).newInstance(new Object[]{});

We use Java reflection 1o retrieve a class instance of the class defined
by the name genscanClass by calling the static method forName from
class class and we cast it to class. Then we use the class instance we
retrieved to construct an instance of that class by calling the
getConstructor method that we cast also to type GenScan. Casting an
object means forcing the object to be of a certain Java type. Of course, the
type one wants to cast an object into must be one that the object inherits
from. The new type can be an interface, an abstract class or a super class
type. Casting is done in Java by putting the new type in parentheses before
the object as shown above.

Note the static method in GenScanManager.Java:

Creating a Gene Prediction and BLAST Analysis Pipeline 225

public static synchronized void register(GenScan genscan) {
genscanClass = genscan.getClass().getName();
initialized = true;

}

This method allows any implementation to register itself to the
GensScanManager by calling it with an instance of an implementation of
GenScan in a static statement. The method just stores the full Java class
name of the implementation of Genscan by using Java reflection
(getclass() method) on an object. The name will be then used by the
createGenScan() method to provide an instance of GenScan.

Finally, the GenscanException class handles any exceptions that may
arise during the operation of Genscan (Listing 5.3).

226

Listing 5.3. GenScanException class

package org.jfb.genscan;

public class GenScanException extends Exception {
public GenScanException() {

}

public GenScanException(String message) {
super (message) ;

}
public GenScanException(String message, Throwable
cause) {
super (message, cause);
}

public GenScanException(Throwable cause) {
super(cause);

}

Next we implement Genscan as shown in Listing 5.4. In the JGenScan
class, the register () method is called by createGenScan() in case no
Java class name for any implementation has been provided. Next the
method loadInitialDrivers() will attempt to first retrieve the full Java
class name of the implementation by looking at a JVM system property
passed through the JVM as argument using the —D option as explained
before:

java —DgenscanClass.driver=org.jfb.jgenscan.JgenScan

The line above will define in the system the property
genscanClass.driver with the value org.jfb. jgenscan.JgenScan. We
get the system property back in the Java code like this:

System.getProperty('"genscanClass.driver"”);

If the value found is not null, the method will then attempt to load the
class through a class method call - class.forName (). If JGenScan is not
in the Java classpath, then the Java classloader will fail to load the class
and will throw a ClassNotFoundException. So it is important to make
sure that you declare JGenScan in the Java classpath. The method
forName () has the effect of initializing the class implementing GenScan.
Part of the initialization is to run the static statements and set up the static
fields or constants.

Creating a Gene Prediction and BLAST Analysis Pipeline 227

Listing 5.4. The JGenScan class

package org.jfb.Jjgenscan;

import org.jfb.genscan.GenScan;

import org.jfb.genscan.GenScanException;
import org.jfb.genscan.GenScanManager;
import org.jfb.util.QueryHelper;

import java.io.UnsupportedEncodingException;
import java.net.URLEncoder;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

public class JGenScan extends GenScan {
private static final String GENSCAN_HOSTNAME =
"genes.mit.edu";
private static final String GENSCAN PATH = "/cgi-
bin/oldgenscanw.cgi”;
private static final int GENSCAN_PORT = 80;

private static final String GENSCAN URL = “http://" +
GENSCAN_HOSTNAME + ":" + GENSCAN_PORT + "/" + GENSCAN_PATH;
static {
System.out.println("Registering " +

JGenScan.class);
GenScanManager.register(new JGenScan());

}
private static Map reqIdToResultFileName = new
HashMap();
private Collection currentRunningGenScan = new
ArrayList();
private static final int NUMBER_OF_SECOND = 3000;
public Object submitQuery(Map parameters) throws
GenScanException {
final String urlapiQuery =
createUrlapiQuery(parameters);
setChanged();

notifyObservers("Submitting the job to the server
with query\n" + urlapiQuery);
Runnable runnable = new Runnable() {
public void run() {
Object res;
try {
res =
QueryHelper.sendQuery(urlapiQuery, GENSCAN_URL, true);
} catch (Throwable e) {
res = new GenScanException("Problem
with URL " + GENSCAN URL, e);

228

}
final String key = "" + this.hashCode();

synchronized (reqIdToResultFileName) {
System.out.println("Storing the result
Y
reqIdToResultFileName.put (key, res);

}
}
}i
new Thread(runnable).start();
final String key = "" + runnable.hashCode();

currentRunningGenScan. add(key);
return key;

}

public Object requestResult(Object identifier) throws
GenScanException {
if (!currentRunningGenScan.contains(identifier))
throw new IllegalArgumentException(identifier +
" has no corresponding result!");
Map tmp = null;
boolean hasFinished = false;
int ct = 0;
synchronized (this) {
while (!hasFinished) {
tmp = new HashMap(reqIdToResultFileName);
hasFinished = tmp.containsKey(identifier);
if (hasFinished) {

reqgIdToResultFileName.remove (identifier);

break;
}
setChanged();
notifyObservers("Waiting " +
NUMBER_OF_SECOND
+ " seconds before re-trying (total
waiting time: "
+ (ct += NUMBER OF SECOND) +
"s).");
try {
wait (NUMBER_OF SECOND);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
final Object o = tmp.get(identifier);
if (o == null) return null;
if (o instanceof Throwable)
throw new GenScanException ("Embedded
exception", (Throwable) 0);
return o;

}

Creating a Gene Prediction and BLAST Analysis Pipeline 229

private String createUrlapiQuery(Map parameters) {
StringBuffer query = new StringBuffer();
try {
final Object org = parameters.get("organism");
final Object nam = parameters.get("name");

final Object sub =
parameters.get("subOptExonCutoff");
final Object dis =

parameters.get("displayOption");
query.append(" -
s=") .append(URLEncoder.encode((String)
parameters.get("sequence"), "UTF-8"));
if (org != null) {
query.append(" &~

o=").append(URLEncoder.encode((String) org, "UTF-8"));
if (nam != null) {
query.append (" &-
n=").append(URLEncoder.encode((String) nam, "UTF-8"));

if (sub != null) {
query.append (" &-
e=").append(URLEncoder.encode((String) sub, "UTF-8"));

if (dis != null) {
query.append (" &-
p=") .append(URLEncoder.encode((String) dis, "UTF-8"));
}

} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();

}

return query.toString();

Note the following piece of code in Listing 5.4:

new Thread(runnable).start();

final String key = "" + runnable.hashCode();
currentRunningGenScan.add(key);

return key;

Here, we are threading the process to be able to run more than one query
without having to wait for the first one to finish. Also because we’re
running in ¢ multi-threaded environment we want to synchronize the Map
called reqidToResultFileName, to safely save the right key with the right

230

result and to avoid more than one thread to modify the Map at the same
time that could potentially populate the Map with wrong data.

After we have submitted the query, we retrieve the result by calling the
requestResult () method. That method will return only when the result is
available. One has to make sure that a call to that method is not executed
in the event-dispatching thread, because that will block the repaint of the
application.

The method requestResult () described in Listing 5.4 first checks that
the request identifier is a valid argument. If invalid, the method will throw
an exception that would allow us to track down multiple calls to the
method with the same argument that could probably imply an infinite loop.
We are protecting multiple threads from accessing the same block when
we are checking if the request is ready, by surrounding the block with a
synchronized () block. The synchronization is on the current object “this”
calling that method. That means that the JVM will set a lock (a unique
token) on the current object to the thread that first entered the block. Then,
until the thread inside that block releases the lock, any other threads
waiting to run that piece of code will have to wait for the lock to be
released. The actual processes are transparent to the developer because of
the use of the synchronized Java keyword.

The result of the Genscan operation is stored in the GenScanResult
object. This is essentially the predicted peptide and gene sequences and
any additional data about the search that the user may wish to save such as
the name of the server, the Genscan parameters used for the prediction as
well as the time taken to execute the prediction etc. The code for the
GenScanResult class is shown in Listing 5.5.

Creating a Gene Prediction and BLAST Analysis Pipeline 231

Listing 5.5. GenScanResult.Java

package org.jfb.swinggenscan;

public class GenScanResult {
private String[] peptideGene = null;

public void setPeptideAndGene(String[] pepGene) {
peptideGene = pepGene;
}

public String{] getPeptideGene() {
return peptideGene;

}

Next, the ResultDialog class takes a GenScanResult object and
displays its content.

public void showResult(GenScanResult result) {
String[] pepGene = result.getPeptideGene();
if (pepGene == null) {
list.setCellRenderer (new
DefaultListCellRenderer());

list.setListData(new String[]{"No Results
Found"});
} else {
list.setCellRenderer (new MyListCellRenderer());
list.setListData(pepGene);
}
}

The ResultDialog class also allows the user to run additional
analyses to be run on the predicted gene and peptide sequences. In this
case, we will add a functionality to perform a BLAST search on user
selected Genscan predictions. To do that, we add a check box against each
predicted sequence and a button called "Run Blast" at the bottom. Once
the user selects a sequence and hits the "Run BLAST" button, the
SswingBlast application we created earlier is invoked with the selected
sequences in the text area of the swingBlast application.

runBlastButton = new JButton("Run Blast");
runBlastButton.addActionListener (new
ActionListener() {
public void actionPerformed(ActionEvent e) {
if (!list.isSelectionEmpty()) {

SwingBlast3.launch(list.getSelectedValues()[0].toString());

232

The code for the Resultbialog class is shown in Listing 5.6.

Listing 5.6. ResultDialog.java

package org.jfb.swinggenscan;

import org.jfb.swingblast3.SwingBlast3;

import javax.swing.*;

import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;
import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ResultDialog extends JDialog {
private static final Dimension BD_PREF_SIZE
Dimension(530, 460);
private JList list;
private JButton runBlastButton;

public ResultDialog(Frame owner)
HeadlessException {
super (owner) ;
setTitle("GenScan Result Dialog");
}

public void init() {
list = new JList();

= new

throws

list.setSelectionMode (ListSelectionModel.SINGLE_SELECTION);

list.addListSelectionListener (new
ListSelectionListener() {

public void valueChanged(ListSelectionEvent e)

{
if (!e.getValueIsAdjusting()) {

runBlastButton.setEnabled(!list.isSelectionEmpty());
}
}
Y

JScrollPane scrollPaneArea = new JScrollPane(list);
scrollPaneArea.setPreferredSize(new Dimension(500,

400));
JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

panel.add(scrollPaneArea, BorderLayout.NORTH);

JPanel buttonPane = new JPanel();

buttonPane.setLayout (new BoxLayout (buttonPane,

Creating a Gene Prediction and BLAST Analysis Pipeline 233

BoxLayout.LINE_ AXIS));
buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea (new

Dimension(10, 0)));

runBlastButton = new JButton("Run Blast");
runBlastButton.addActionListener (new
ActionListener () {
public void actionPerformed(ActionEvent e) {
if (!list.isSelectionEmpty()) {

SwingBlast3.launch(list.getSelectedvalues()[0].toString());
}
}
)i

runBlastButton.setSize(new Dimension(80, 20));
runBlastButton.setEnabled(false);
buttonPane.add(runBlastButton);
panel.add(runBlastButton, BorderLayout.SOUTH);
getContentPane() .add(panel);
setSize(BD PREF SIZE);

setVisible(true);

}

public void showResult(GenScanResult result) {
String[] pepGene = result.getPeptideGene();
if (pepGene == null) {
list.setCellRenderer (new
DefaultListCellRenderer());

list.setListData(new String[]{"No Results
Found"});
} else {
list.setCellRenderer (new MyListCellRenderer());
list.setListData(pepGene);
}
}

private static «c¢lass MyListCellRenderer implements
ListCellRenderer {
public Component getListCellRendererComponent (JList
list, final Object value, int index, boolean isSelected,
boolean cellHasFocus) {
JPanel jPanel = new JPanel();
jPanel.setLayout (new BorderLayout());
final JTextArea textArea
JTextArea(value.toString());
final Font sf = textArea.getFont();
Font f = new Font("Monospaced"”, sf.getStyle(),
sf.getSize());
textArea.setFont(£f);
textArea.setLineWrap(true);
final JCheckBox comp = new JCheckBox();

new

234

comp.setSelected(isSelected);
jPanel.add(comp, BorderLayout.WEST);
jPanel.add(textArea, BorderLayout.CENTER);
return jPanel;

The SwingGenScan User Interface

The application interface is created using swing libraries. Listing 5.7
shows the code for the SwingGensScan application.

Listing 5.7. SwingGenScan user interface

package org.Jjfb.swinggenscan;

import org.jfb.genscan.GenScan;

import org.jfb.genscan.GenScanException;
import org.jfb.genscan.GenScanManager;
import org.jfb.util.Helper;

import javax.swing.*;

import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;
import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;
import java.util.HashMap;

import java.util.Observable;

import java.util.Observer;

public class SwingGenScan extends JFrame {
private static final String APP_NAME = "SwingGenScan';
private static final String APP_VERSION = "Version
1.0";
private static final String STATUS_LABEL = "Status: ";
private static final String STATUS READY = "Ready";

fl

private static final Dimension LABEL_ PREFERRED_SIZE
new Dimension(127, 16);

private static final Dimension COMBO_PREFERRED SIZE
new Dimension(60, 25);

private static final Dimension CP_PREF _SIZE = new
Dimension(450, 410);

private static final String[] ORGANISMS =
new String[}]{"Vertebrate", "Arabidopsis",

Creating a Gene Prediction and BLLAST Analysis Pipeline 235

"Maize"};
private static final String[] PRINT_OPTIONS =
new String[]{"Predicted peptides
"Predicted CDS and peptides"};
private static final
SUBOPTIMAL_ EXON_CUTOFF_VALUES =
new String[]{"1l.00", "0.50", "0.25",
"0.05", "0.02", "0.01"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;
private JLabel statuslLabel;

private JLabel statusText;

private JComboBox organisms;
private JComboBox printOptions;
private JComboBox exonCutoffs;

private JButton clearBtn, submitBtn;

private JMenultem aboutItem;
private JMenultem quitItem;

public SwingGenScan() {
super();
seqFormInit();

}

private void seqFormInit() {
setTitle (APP NAME);

only",
String[]

"0.10",

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

newContentPane = new JPanel();
newContentPane.setOpaque(true);

newContentPane.setLayout (new BorderLayout());

getContentPane().add({newContentPane)
setContentPane(newContentPane) ;

// Create the menu bar
JMenuBar menu = new JMenuBar();

JMenu swingBlastMenu = new JMenu(APP_NAME);

quitItem = new JMenultem("Quit");
swingBlastMenu.add(quitItem);
menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutItem = new JMenuItem("About");
helpMenu.add(aboutItem);

menu.add (helpMenu);

setJMenuBar (menu) ;

236

// Create the sequence pane

JPanel sequencePanel = new JPanel();

JLabel sequence = new JLabel("Sequence");

sequenceArea = new JTextArea();

final Font sf = sequenceArea.getFont();

Font f = new Font("Monospaced", sf.getStyle(),
sf.getSize());

sequenceArea.setFont (£f);

sequenceArea.setLineWrap(true);

scrollPaneArea = new JScrollPane(sequenceArea);

scrollPaneArea.setPreferredSize(new Dimension(300,
200));

sequencePanel.setLayout (new
BoxLayout (sequencePanel, BoxLayout.LINE AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new
Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder (BorderFactory.createEmptyBorder (10,
0, 10, 0));

statusLabel = new JLabel (STATUS_LABEL);

statusLabel.setPreferredSize (new Dimension(50,
30));

statusText = new JLabel(STATUS_READY);

JPanel statusPanel = new JPanel();
statusPanel.setBorder(BorderFactory.createEmptyBorder (0, 5,
5, 5));

statusPanel.setLayout(new BorderLayout());
statusPanel.add(statusLabel, BorderLayout.WEST);
statusPanel.add(statusText, BorderLayout.CENTER);

// Lay out the buttons from left to right

JPanel buttonPane = new JPanel();
submitBtn = new JButton("Submit");
clearBtn = new JButton("Clear");

buttonPane.setLayout (new BoxLayout (buttonPane,
BoxLayout.LINE AXIS));

buttonPane.add(Box.createHorizontalGlue());

buttonPane.add(Box.createRigidArea(new
Dimension(10, 0)));

buttonPane.add(clearBtn);

buttonPane.add(submitBtn);

JPanel jPanel = new JPanel();

jPanel.setLayout (new BorderLayout());

jPanel.setBorder (BorderFactory.createEmptyBorder(0,
10, 10, 10));

Creating a Gene Prediction and BLAST Analysis Pipeline 237

jPanel.add(sequencePanel, BorderLayout.NORTH);
jPanel.add(createProgramPanel(),

BorderLayout .CENTER) ;
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.add(statusPanel,

BorderLayout .SOUTH) ;
newContentPane.setPreferredSize(CP_PREF_SIZE);
enableFunctions(false);

// Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width - CP_PREF_SIZE.width)

/2,

(screenSize.height - CP_PREF_SIZE.height) /

2);
setVisible(true);
addListeners();

}

private JPanel createProgramPanel() {
JPanel organismPanel = new JPanel();
JLabel organismLabel = new JLabel("Organism");

organismLabel.setPreferredSize (LABEL_PREFERRED SIZE);
organisms = new JComboBoOx(ORGANISMS);
organisms.setMaximumSize (COMBO_PREFERRED SIZE);
organismPanel.setLayout (new

BoxLayout (organismPanel, BoxLayout.LINE_AXIS));
organismPanel.add(organismLabel);
organismPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
organismPanel.add(organisms);
organismPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
organismPanel.add(Box.createHorizontalGlue());

JPanel exonCutoffPanel = new JPanel();
JLabel exonCutofflabel = new JLabel("Suboptimal
Exon Cuttoff");

exonCutofflLabel.setPreferredSize (LABEL_PREFERRED_SIZE);
exonCutoffs = new

JComboBox (SUBOPTIMAL_EXON_CUTOFF_VALUES) ;
exonCutoffs.setMaximumSize (COMBO_PREFERRED_SIZE);
exonCutoffPanel.setLayout (new

BoxLayout (exonCutoffPanel, BoxLayout.LINE_AXIS));
exonCutoffPanel.add(exonCutoffLabel);
exonCutoffPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
exonCutoffPanel.add(exonCutoffs);

238

exonCutoffPanel.add(Box.createRigidArea(new
Dimension(5, 0)));
exonCutoffPanel.add(Box.createHorizontalGlue());

JPanel printOptionsPanel = new JPanel();
JLabel printOptionsLabel = new JLabel("Print
Options");

printOptionsLabel.setPreferredSize (LABEL PREFERRED_SIZE);
printOptions = new JComboBox(PRINT OPTIONS);
printOptions.setMaximumSize (COMBO_PREFERRED_SIZE);
printOptionsPanel.setLayout (new

BoxLayout (printOptionsPanel, BoxLayout.LINE_AXIS));
printOptionsPanel.add(printOptionsLabel);
printOptionsPanel.add(Box.createRigidArea (new

Dimension(10, 0)});
printOptionsPanel.add(printOptions);
printOptionsPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
printOptionsPanel.add(Box.createHorizontalGlue());

JPanel paramPanel = new JPanel();
paramPanel.setLayout (new BoxLayout (paramPanel,
BoxLayout.PAGE_AXIS));

paramPanel.add(organismPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,
5)));

paramPanel.add(exonCutoffPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,
S5)))i

paramPanel.add(printOptionsPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,

5)))i

return paramPanel;

}

private void addListeners() {
quitItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
}yi

aboutItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(org.jfb.swinggenscan.SwingGenSc
an.this, APP_NAME + " " + APP_VERSION,
"About " + APP_NAME,
JOptionPane.INFORMATION MESSAGE);
}

Creating a Gene Prediction and BLAST Analysis Pipeline 239

)i

clearBtn.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
sequenceArea.setText("");
enableFunctions(false);
statusText.setText (STATUS _READY);

)i

submitBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

Runnable runnable = new Runnable() {
public void run() {
GenScan genScan = null;

try {
Class.forName("org.jfb.jgenscan.JGenScan");
genScan =
GenScanManager.createGenScan();
} catch (ClassNotFoundException

cnfe) {
cnfe.printStackTrace();
} catch (GenScanException gse) {
gse.printStackTrace();
}
Map param = new HashMap();
param.put("sequence”,
sequencelArea.getText ());
param.put("organism",
organisms.getSelectedItem());
param.put("subOptExonCutoff",
exonCutoffs.getSelectedItem());
param.put("displayOption”,
printOptions.getSelectedItem());
Object requestIdentifier = null;
try | ,
requestIdentifier =
genScan.submitQuery(param);
} catch (GenScanException gse) {
gse.printStackTrace();

}

Observer observer = new Observer()
{
public void update(Observable
o, Object arg) {

SwingGenScan.this.statusText.setText (arg.toString());
}
};
genScan.addObserver (observer);
Object text = null;

240

try {
text =
genScan.requestResult(requestIdentifier);
} catch (GenScanException gse) {
gse.printStackTrace();
}
final GenScanResult result
Helper.extractPeptideAndGene(text.toString());
EventQueue.invokelater (new

i

Runnable() {
public void run() {

statusText.setText (STATUS_READY);
final ResultDialog
resultDialog = new ResultDialog(SwingGenScan.this);
resultDialog.init();

resultDialog.showResult(result);
}
i
}
}i
new Thread(runnable).start();
} .
})i

sequenceArea.getDocument () .addDocumentListener (new

DocumentListener () {
public void insertUpdate(DocumentEvent e) {

enableFunctions (sequenceArea.getText().trim().length() > 0);

}

public void removeUpdate (DocumentEvent e) {

enableFunctions(sequenceArea.getText ().trim().length() > 0);

}

public void changedUpdate(DocumentEvent e) {

}
)i

private void enableFunctions(boolean enabled) {
organisms.setEnabled(enabled);
exonCutoffs.setEnabled(enabled);
printOptions.setEnabled(enabled);

}

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {

Creating a Gene Prediction and BLAST Analysis Pipeline 241

new SwingGenScan();
})i
}

The swingGenscan user interface is shown in Fig. 5.10.

= SwingGenScan
SwingGenScan Help

Sequence

LA

Organism Vertebrate ~
Suboptimal Exon Cut... | 1.00 ¥ |
Print Options | Predicted CDS and peptides ¥

Clear Submit

Status: Ready

Fig. 5.10. SwingGenScan user interface

After the Genscan prediction has finished, we need to parse the raw
results, which are presented as an HTML page to extract the actual
predicted gene and peptide sequences. This is done through the Helper
class within the org.jfb.util package. We have created a separate
package for this to enable developers to use this code in a different
application that requires similar functionality without the need to extract it
from the main application or block of code (Listing 5.8).

Listing 5.8. org.jfb.util package

package org.jfb.util;

import org.jfb.swinggenscan.GenScanResult;

242

import java.util.ArrayList;
import Jjava.util.Collection;

public class Helper {

public static GenScanResult
extractPeptideAndGene(String rawHtml) {
final String begin = "Predicted peptide
sequence(s):";
final String end = "Explanation";
String allSequences =
rawHtml.substring(rawHtml.indexOf (begin) + begin.length(),

rawHtml.indexOf (end));
if (allSequences.indexOf("NO PEPTIDES PREDICTED") >

0) {
return new GenScanResult();
}
int beginIndex = allSequences.indexOf('>');
allSequences = allSequences.substring(beginIndex +

1, allSequences.length());
beginIndex = allSequences.indexOf('>");
allSequences = allSequences.substring(beginIndex,
allSequences.length());
final String[] results = allSequences.split("\n");
Collection sequences = new ArrayList();
StringBuffer sb = new StringBuffer();
for (int i = 0; i < results.length; i++) {
final String line = results[i];
if (line.trim().length() == 0) {
sequences.add(sb.toString());
sb = new StringBuffer();
} else {
sb.append(line).append("\n");
}
}

sequences.add(sb.toString());

String[] res = new String[sequences.size()];
sequences.toArray(res);

final GenScanResult result = new GenScanResult();
result.setPeptideAndGene(res);

return result;

Running SwingGenScan

Fig. 5.11 to Fig. 5.14 demonstrate a typical run of the swingGenscan
application beginning with the pasting of a sequence — in this case — the
complete sequence of the human chromosome number 8 (GI number
24850538) and the printing of the predicted genes and peptides.

Creating a Gene Prediction and BLLAST Analysis Pipeline

243

= SwingGenScan

SwingGenScan Help

1124850538 | gb |ACO92818. 4| Homo sepiens chromoscpe 8, clome RPLL-419C2~
3, complete sequence
GAATTCTGTATTCCACATTTTTTTCTGACTCCAGTTCCAGAATCCACATATTTGTGTTTCTGGCTCCAGT
TCTAACAGTCAAGGC GTGTCAGTGTGTGATGAGTGTGCAGCAACTGTCCC T
GAGRAACACCCAGTAGGACTCTTTAAGGACARGCARAGTATCTTCTTCATCTTCACATTCCCTCCTGRCC
Sequence AGTACATTGCTAAGACTTAAAGCTTTCATTTGTTAACTCARTARTARARGTTTGTTTCTCTTTAKAGCAT
TGCTAGCCATGAGGCTTCCAGGTATTCTTGCTGEGATGAATCCTTTTATTTTAGATATTTTCTTCCCTAA
GCTTGTTCTTTICTTTCTTTTTAGATGAGGC CATCTTTTATTCACATAGTAAGAGC GGGATTGGAATAGA

CTGCCACCTCCATTTGAGCATCATTGCT GAG
GCAATGGACTCCATCCCAGTCTGTTTTCTGCAGGAGCAGGTTCAMGGTAAGTATAATTTTCTTAATGAGG
ATCTGARTAATGAACATCTTCCACCCATCCTGTTTCTCTTAAGGAGC CATGCAGGCCGCAGGCCCTTGAT

Organism [vertebrate ~
Suboptimal Exon Cut...

Print Options | CDS and -

_ Clear | Submit_|

Status: Ready

Fig. 5.11. Running SwingGenScan

= GenScan Result Dialog,

>gi | GENSCAN_predicted peptide_l|325_aa |~
MALISFTSPFNFIGEKSWQCITEAGFDEVDETIIFVISQSSENVIVGEFLODPCOGLPLL
KDLSSKQAANLFPWORMEAVACDILLIMQPGHGQPAFLQGHSSRLSGAAEQVGSWSHRSQ
RHSLLWSVPEPVQQAGFLFPEALQSAGCFLPSNIGLOVLOFWTLGLTSVVCOGLSGLWPQ
IEGCTVGFSTFEVLGLGLASLLLSLQTAYCGTSPCDHSSSLEDSKAAVLENIGLLPLTHL
SECSRGGTITGISGLETELGARKVARVCOAEYGGE SHAEREFWTPTEE SLEVYFRGLISSA
SGISVDHGSLPEGLTETFIPEGYEF

>gi | GENSCAN_predicted_CD5_1|978_bp

oy gtre gtttaattttat gy g

agt agt catgccagggcttacctotgota
ol gRagteyty
JeLLgLyacatLCtCCLyataatyCageCayyCCaACyYYCaAyCCaAyCatttotyCagyyy
atgagctocagy gLyygYCcayCaAyayCaArtYgYAYCLYY gagyagtcag
Ccgtcattocctigotgtygtotgt |) gyctggcttcctgttccca
gaagcoctocasagtgotgyatgottoctyocatogaacattggactocaagttottoag
[[] trtrggactettggacttacatcagtyytttgccagygactetcagycctitygectoay

at o L v L oy oy b oy oy tee

aaggattigrec goagcasatctytice gg

) g Jyeay! g JLggy yLgalLa’ yay!

cLLtogy: goggctygtoctygy g o} CCAcCte

totgaatgcageagagytyyaacccagacagyy grogy gacagagctggga
agayt CJ ggcagagratggcggagagagccacgcagagagag

ttotgy T ttogagtat o gcagtgca

Run Blast

Fig. 5.12. SwingGenScan results

244

The "rRun Blast" button remains disabled as long as no sequence is
selected for BLAST analysis and becomes active after a sequence is
selected (Fig. 5.12 and Fig. 5.13). Fig. 5.13 and Fig. 5.14 further demonstrate
how predicted sequences can be selected and sent for further analysis using
BLAST. Note that selected sequences can be unselected by simultaneously
pressing the Control and the left click button on the Mouse (on Windows)
and the Apple button and the click (on Mac).

GenScan Result Dialog

>gi | GENSCAN _predicted _peptide_l|325_sa
LISFTSPFNFIGKKSWQCITEAGFDRVDETIIFVISQSSRNVIVGEFLODPCQGLPLL
{DLSSKQAANLFPUORMEAVACDILLIMQPGHGOPAFLQGHSSRLSGAAEQVGSWSHRSQ
SLLWSVPEPVOOAGFLFPEALQSAGCFLPSNIGLOVLOFUTLGLTSVVCQGLSGLWPQ
IEGCTVGFSTFEVLGLGLASLLLSLOQTAYCGTSPCDHSSSLSDSKAAVLENIGLLPLTHL
SECSRGGTQTGISGLKTELGAKVARYCOAEYGGESHAERE FWTPTEESLRVYKRGLISSA
SGISVDHGSLPEGLTKTFIPEGYEP

gi|GENSCAN predicted CDS_1|978_bp
atggcccraatcagttrtacatctocgtttaattttattggaaagaagagctygcaatgce
atcacagaggccggctttgacaaagtggatgaaacaattatcttcgttatcagccaaage
agtagasatgtgatagttggggaatititgcagyacccatyccaggycttacctctgcta
aagyatttgtecte gecaggcag ctgttocococttggcagaggatggaagcogty
gctrgtgacattctoctgataatgocagecagygccacgggoagecagecatttotgcagggy
atgagctccaggctoagtyggycageagagcaagtygggagotyyteccatgagyagtocay
cgrtocattccttgetytyggtetyttoctgaaccagtocaacaggoctygcttcctgtiecca
gaagccotccaaagtgctyggatygcttecctgoccatcgaacatiggactocaagttcttecag
CLLCYgactottygacttacatCaytyytityccayyyactoteagyCccLiLyycctoag
‘attgaagyctgcactytegygcttctetacttityagytitigggacteggactyggettee
|CtgctcctocagecttgecagacagectatLgtgygactLcaccttgtgatcattoccageage
| Ctttcggattccasagcggctgtoctygaaaatatagggetocticcactaacccaccte
totgaatgcagcagagytyyaaccoagacagyyatoagtygggttasagacagagetygya
gccaaggragecagagttigecaggcagagtatgycggagagageccacygcagagagagaa
ttctygacacctacyggaggaatctoticgagtatataaaagagyactygatcagcagtyca
tcagygtatctetyttgatcatygttocrtacccyaagyactgactaaaaccttrattect
R T m

Fig. 5.13. Selecting sequences for BLAST analysis

Creating a Gene Prediction and BLAST Analysis Pipeline 245

< SwingBlast Version 3.0

SwingBlast Blast Result Help

BGGLTGLLTICC TG ICCCAGARGL LU TC LA AL TGL IGGATGLTICCTG
CCATCGAACATTGGACTCCAAGTTCTTCAGTTTTGGACTCTTGGACTTAC
ATCAGTGGTTTGCCAGGGACTCTCAGGCCTTTGGCCTCAGATTGAAGGCT
GCACTGTCGGCTTCTCTACTTTTGAGGTTTTGGGACTCGGACTGGCTTCC
MTTGCTCCTCAGCTTGCAGACAGCCTATTGTGGGACTTCACCTTGTGATCA
TTCCAGCAGCCTTTCGGATTC CAAMAGCGGCTGTCCTGGAARATATAGGGE
Sequence cCTTCCACTAACCCACCTCTCTGAATGCAGCAGAGGTGGAACCCAGACA
GGGATCAGTGGGTTAAAGACAGAGCTGGGAGCCAAGGTAGCCAGAGTTTG
CCAGGCAGAGTATGGC GGAGAGAGCCACGCAGAGAGAGAATTCTGGACAC
CTACGGAGGAATCTCTTCGAGTATATARAAGAGGACTGATCAGCAGTGCA
TCAGGTATCTCTGTTGATCATGGTTCTTTACCCGAAGGACTGACTAAAAC
CTTTATTCCTGAAGGGTATGAACCATAG

ID

Program [viBlastN [] BlastX [] TBlastX
Database nr il

E-value 0.001 ¥

| clear | Submit

Status: Ready

Fig. 5.14. Sending predicted genes to SwingBlast for BLAST analysis

Only BLASTN has been implemented in the swingGenscan application
for the purpose of demonstration. The user can further develop the
application by adding functionality for other BLAST operations. The
Genscan-BLAST analysis pipeline can be implemented in a completely
different manner than described here. For example, the Genscan output
window displaying the gene and peptide predictions can be modified to
contain the appropriate widgets to perform multiple BLAST analyses on
multiple selected sequences without the intermediate step of invoking the
SwingBlast application. The implementation shown here is one of many
ways to achieve the same end-result.

Summary

In this Chapter, we have demonstrated how we can create a basic gene
prediction and annotation pipeline by connecting the Genscan and BLAST
programs together. We created the BLAST application separately and tied
it together with Genscan thereby building an analytic pipeline that
demonstrates reuse of existing code libraries. The addition of functionality

246

to Genscan to enable BLAST analysis of predicted sequences is an
example of a real-life use case that will have much practical utility for
researchers who are involved in the sequencing and study of new genomes.

Questions and Exercises

1. The sSwingGenScan application created in the Chapter
demonstrated the ability to perform BLASTN searches. Extend the
application to enable other types of BLAST searches (BLASTX,
BLASTP, etc.).

2. An important goal of gene prediction is to decipher gene structure
— that is, the location of exons and introns — in the input nucleotide
sequence. Think about how you would identify intron-exon

boundaries from Genscan predictions and align the individual
introns and exons along the original nucleotide sequence.

Additional Resources

* GenomeScan - http://genes.mit.edu/genomescan.html

* Glimmer - http://www.cbcb.umd.edu/software/glimmer/
* HMMGene - http://www.cbs.dtu.dk/servicessHMMgene/

* TwinScan - http://genes.cs.wustl.edu/

Selected Reading

Prediction of complete gene structures in human genomic DNA. Burge, C.
and Karlin, S. (1997) J. Mol. Biol. 268, 78-94.

Finding the genes in genomic DNA. Burge, C. B. and Karlin, S. (1998)
Curr. Opin. Struct. Biol. 8, 346-354.

Creating a Gene Prediction and BLAST Analysis Pipeline 247

Computational inference of homologous gene structures in the human
genome. Yeh, R.-F., Lim, L. P., and Burge, C. B. (2001) Genome Res. 11:
803-816.

Improved microbial gene identification with GLIMMER (1999) A.L.
Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Nucleic Acids
Research 27:23, 4636-4641.

Two methods for improving performance of an HMM and their application
for gene finding. In Proc. of Fifth Int. Conf. on Intelligent Systems for
Molecular Biology, ed. Gaasterland, T. et al., Menlo Park, CA: AAAI
Press, 1997, pp. 179-186.

