
Chapter VI

cancer Biomedical Informatics Grid (caBIG™)

cancer Biomedical Informatics Grid

Whole genome sequencing projects that led to the sequencing and
assembly of the human genome and scores of other vertebrate and
invertebrate genomes have changed the face of biology and medicine
forever. The convergence of molecular-scale biological science, high-
throughput technologies and large-scale computing has led to an explosive
growth in the volume of information that is available to the modern day
biomedical scientist. The success of biomedical research in designing
effective therapies for the treatment of complex diseases such as cancer is
fundamentally dependent on our ability to integrate and assimilate this raw
and largely unstructured data from a variety of experimental platforms
encompassing the genomics, proteomics, transcriptomics and the
pharmacological and clinical domains. It is also increasingly becoming
evident that cooperation among research organizations across geographical
boundaries and an open sharing of datasets and analytic tools as well as
individual expertise and knowledge is critical to the continued
advancement of biomedical research towards its goals.

The cancer Biomedical Informatics Grid project or caBIC^"
(pronounced see-ay-big) is built on this very premise. We had provided an
introduction to the caBIG™ program in Chapter 1. To recap, the caBIG
project was launched in July 2003 and is initiated and funded by the
United States National Cancer Institute (NCI) under the aegis of the United
States National Institutes of Health (NIH). CaBIG™ is a critical

250

component of NCI's challenge goal of eliminating suffering and death due
to cancer by the year 2015. Indeed, CaBIG™ is an effort designed to
achieve a level of cross-disciplinary integration that is unprecedented in
the history of cancer research. According to NCI Director, Dr. Andrew von
Eschenbach, "...caBIG will become the 'World Wide Web' of cancer
research informatics and will accelerate the development of exciting
discoveries in all areas of cancer research". According to the official
website (http://cabig.nci.nih.gov/), caBIG is a voluntary, open source, open
access initiative that is being designed and built in partnership with the
cancer research community across the United States. Since the caBIG pilot
program was launched, more than 50 interested NCI-designated cancer
centers and more than 800 individuals have participated in the
development of the vision, approach and structure of caBIG..

Structure and Organization of caBIG™

caBIG™ participating institutions are organized into Workspaces that
are devoted to specific domains of interest relevant to cancer research.
Currently, there are four Domain Workspaces, two Cross Cutting
Workspaces and three Strategic Level Workspaces. Table 6.1 provides
names and descriptions of the various Workspaces under caBIG™.

Table 6.1. Structure of caBIG'

Workspace name
Domain Workspaces
Clinical Trial Management
Systems Workspace

Integrative Cancer Research

Purpose

Modular development of tools for the management of
clinical trials. These include development of a
structured model for protocol representation as well
as tools for managing and reporting adverse events
that occur during the course of a clinical trial, a
laboratory interface module to facilitate automated
submission of data to clinical trials systems, a
reporting module to submit data electronically to
NCI's CDUS (Clinical Data Update System) and the
NCI's Clinical Trial Monitoring Service (CTMS) and
a financial/billing module to monitor budgets and
expenditure in clinical trials. The Workspace is
divided into special interest groups for each of these
difference activities.
Development of modular and interoperable tools and

cancer Biomedical Informatics Grid 251

Workspace

In Vivo Imaging Workspace

Tissue Banks and Pathology
Tools Workspace

interfaces that provide for integration of clinical and
basic research data derived from genomics and
proteomics platforms. The Workspace is organized
into special interest groups devoted to topics such as
Genome Annotation, Microarray Repositories,
Pathways Tools, Data Analysis & Statistics,
Population Sciences and Translational Tools. Tools
being developed under the Workspace include
Rproteomics (MALDI-TOF proteomics analysis
tool). Gene Ontology Miner (tool for aggregate
analysis of gene sets), HapMap (map of haplotypes in
human genome), caArray (cancer microarray data
management system), Distance Weighted
Discrimination (microarray data analysis integrator),
Visual and Statistical Data Analyzer (multivariate
statistical visualization tool for the analysis of
complex data), FunctionExpress (integrated analysis
and visualization of microarray data). Quantitative
Pathway Analysis in Cancer (pathway modeling and
analysis tool), TrAPSS (disease gene mutation
discovery and analysis tool), etc.
Development of tools to share and integrate the
wealth of information provided by in vivo imaging
with other types of data. The in vivo imaging
technologies and modalities will include systems for
research and clinical imaging of live patients and
animals (including single-cell organisms) used as
model systems for human disease.
Development and integration of tissue bank and
pathology tools and infrastructure components to
enable researchers to locate and analyze tissue
specimens for use in cancer research based on tissue,
clinical, and genomic characteristics. Tools created
under this Workspace include a standard
Biospecimen Object Model and suite of tools to
facilitate specimen management, annotation and
sharing. Specific applications being developed are a
specimen inventory and tracking system (caTISSUE
Core), a mapping module to get data from tumor
registries and clinical anatomy laboratory
information systems (caTISSUE Clinical Annotation
Engine) and a cancer Text Information Extraction
System to automate the process of coding, storing
and retrieving data from free-text Pathology Reports
(caTIES).

252

Cross Cutting Workspaces
Architecture Workspace Development of tools to ensure consistent application

of caBIG™ principles by the large caBIG™
developer community and to meet the caBIG'^"
program goals of data sharing and interoperability on
the grid. Activities include formulating guidelines
and definitions for caBIG™ participants to evaluate
the maturity level of potential caBIG™ systems and
applications (caBIG ™ Compatibility Guidelines),
development of the grid infrastructure to support the
caBIG •'̂ community (caGrid), development of a
comprehensive grid security infrastructure for
managing federated authentication and authorization
in caBIG™, etc.

Vocabularies and Common
Data Elements Workspace

Development of policies and guidelines to evaluate
and integrate systems based on vocabulary and
ontology content as well as software systems for
content delivery. Among the major deliverables of
this Workspace are the Common Data Elements
(CDE) Governance Model to manage the
development and administration of CDEs in the
Domain Workspaces, data standards approval
guidelines for defining the procedures for reviewing
and approving data standards, procedures for review
and approval of new VCDE content to provide for
overall standardization of CDEs within caBIG ™, a
vocabularies deployment document which lists
vocabulary standards consistent with caBIG ™
compatibility requirements and LexGrid, a
vocabulary server that can be accessed through a
well-structured application programming interface
(API) capable of accessing and distributing
vocabularies as commodity resources.

Strategic Level Working
Groups
Strategic Planning Working
Group

Development of strategic planning and vision
guidelines in support of the caBIG^" Oversight
Board. Activities include creating white papers and
planning documents that help define the strategic
goals for each individual Workspace as well as for
the overall caBIG™ project, along with metrics to
measure the success of defined objectives.

Data Sharing and Intellectualpevelop
Capital

ment of policies and white papers to clarify
caBIG's stand on issues surrounding data sharing and
intellectual property. Some of the major activities of

cancer Biomedical Informatics Grid 253

Training Working Group

the Working Group include development of
guidelines and a model agreement for use by
caBIG"^" participant institutions to distribute
caBIG'"^ software and related documentation, a
caBIG™ publications policy, guidelines on best
practices and model agreements for the sharing of
data and of biospecimens, reagents and other
materials, and a white paper on the de-identification
of patient data.
Development of a caCORE curriculum designed to
prepare caBIG"^" participants to operate and use the
NCI resources such as Enterprise Vocabulary
Services (EVS), Cancer Data Standards Repository
(caDSR), and Cancer Bioinformatics Infrastructure
Objects (caBIO) as well as creating templates and
guidelines for caBIG™ documentation and training
and organizing boot camps to impart training on
caBIG™ technologies.

Further details on caBIG™, its constituent Workspaces and Working
Groups and their objectives are available on the WWW at
http://cabig.nci.nih.gov/. The ultimate aim of caBIG™ is to enable
researchers to collect comprehensive data about cancer in a standardized
manner, to enable the study of cancer data as a whole, thereby accelerating
the pace of cancer research.

The purpose of this chapter is to not only inform the readers of current
efforts in the area of cancer research but also provide knowledge about the
technologies that are being developed as an integral part of the effort so
that the biomedical and the computer scientists among us can begin using
them and in so doing, contribute to their continued development that will
ultimately lead to better healthcare solutions and better care and treatments
for patients. We will begin by reviewing a few tools and technologies that
are relevant to our understanding of how information technologies can
assist biomedical research.

Data Integration and ETL

Biomedical researchers routinely need to access and cross-reference
sequence and related annotation data from a wide variety of sources such
as PubMed, Entrez Gene (previously called LocusLink), Gene Ontology

254

(GO), UniGene, Swiss-Prot, Ensembl, HomoloGene, UniSTS, etc. Because
difference data sources use different formats, it is not easy to compare and
combine data from these sources unless they are converted into a common
format. Data in UniGene, for example, is presented in text format; data in
the GO database is described in an XML format and data in Entrez Gene is
available in binary Abstract Syntax Notation number One (ASN.l) format.

CaBIG™ also handles a wide array of data sources, types and formats,
from a number of different public domain sources since one of its major
goals is to enable access to and sharing of translational research data
between cancer researchers. In order to facilitate integration of diverse data
types, tools that perform what is known as Extract, Transform and Load
(ETL) functions are used. These tools convert data in different formats into
a common, standard, usable format. The first step - Extraction - is the part
that establishes access to the external database or source that contains the
data of interest. The next step - Transformation - analyzes the original data
format and converts it to fit with the format of the target repository. For
example, information on a gene id can be coded as an XML tag in the
form:

<gene id="<my id>"/>

or, as an SQL varchar(64) which means a string of variable length with
a maximum size of 64 characters, and other formats. When we design the
ETL strategy, we will first create business rules and define the format of
the gene identifier that will be used to store that information in the target
repository. If this is the SQL varchar(64) type, we will transform data from
sources that use a different format into this pre-selected target gene ID
format.

The Transformation step can also involve a data-cleansing step to
eliminate bad or duplicate entries from input data sources. This process
can be done after transforming the data or just before adding data to the
target repository. The last step - Load - gets the transformed data loaded
into a data repository or a data warehouse, which is optimized to enable
faster access to the stored data. An additional step after Extract-Transform-
Load is Transportation, which facilitates transport of the formatted data
from its current location to the defined location, before it is processed or
used further.

cancer Biomedical Informatics Grid 255

A number of open source ETL tools are available, for example, Kettle
(available from http://www.kettle.be/). Octopus (available from
http://www.enhydra.org/tech/octopus/index.html), and others. Examples of
ETL tools being developed under the caBIG™ program include cancer
Function Express tool (caFE), which annotates individual probe sequences
(short DNA sequences that represent individual genes or transcripts from a
particular genome) on microarray chips (arrays of thousands of individual
probe sequences embedded on a substrate to detect the presence of specific
genes or transcripts in a given genome by hybridizing probes with nucleic
acids from the test sample) using data from a number of NCBI and other
public databases.

cancer Common Ontologic Representation Environment
(caCORE)

A critical component of the partnership between NCI and the Cancer
Centers in building the biomedical informatics grid is NCI's Center for
Bioinformatics (NCICB). NCICB's mission is to create a close knit and
cooperative cancer research community and an interoperable federation of
informatics resources covering all aspects of cancer research. NCICB is
providing critical support for caBIG through the development of caCORE,
an open source semantic enterprise architecture for NCI-supported
research information systems for genomic and clinical research. A large
number of NCI applications such as the Cancer Molecular Analysis
Project (CMAP), the Cancer Models Database (caMOD), and Gene
Expression Data Portal (GEDP) are directly supported by caCORE. A list
of publicly available data sources in the caCORE database is provided in
Table 6.2. More information on caCORE is available on the NCI caCORE.

Table 6.2. caCORE data sources

Name Purpose
CGAP Cancer Genome Determine the gene expression profiles of normal,
Anatomy Project (CGAP) precancer, and cancer cells, leading eventually to

improved detection, diagnosis, and treatment for
the patient.

CGAP Genetic Annotation Develop a systematic and comprehensive notation
Initiative (GAI) of variations in the DNA sequences of each cancer-

related gene.
Mouse Models of Human Derive and characterize mouse models, and to
Cancers Consortium generate resources, information, and innovative

256

(MMHCC) approaches to the appUcation of mouse models in
cancer research.

Cancer Molecular Analysis Facilitate the identification and evaluation of
Project (CMAP) molecular targets in cancer by integrating

comprehensive molecular characterizations of
cancer.

Gene Expression Data Portal Provide access to microarray data as well as online
(GEDP) data annotation and analysis tools.

Integrated Molecular Establish a common resource of publicly available
Analysis of Genomes and cDNA libraries for access to sequence, map, and
their Expression (IMAGE) expression data.
Consortium

caCORE is built on the principle of Model Driven Architecture, which is
a way to organize and manage enterprise architectures supported by
automated tools and services for both defining the models and facilitating
transformations between different types of models. CaCORE is built on an
n-tier architecture model and provides open source Application
Programming Interfaces (APIs) which allow for easy access to data by
applications.

The main components of caCORE are:

• Enterprise Vocabulary Services (EVS): Controlled vocabulary resources
(such as the NCI thesaurus and metathesaurus) for the life sciences
domain that provide a context driven semantic basis for the construction
of data elements, classes, and objects.

• Cancer Data Standards Repository (caDSR); A metadata registry based
upon the ISO/IEC11179 standard that renders research data on cancer
reusable and interoperable. The 11179 standard created by the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (lEC) specifies the criteria
for metadata that are necessary to describe data, as well as the
management and administration of that metadata in a metadata registry.

• Cancer Bioinformatics Infrastructure Objects (caBIO): A suite of
software, vocabulary, and metadata models for cancer research.

We will explore caBIO objects in further detail in this chapter.

cancer Biomedical Informatics Grid 257

Cancer Bioinformatics Infrastructure Objects (caBIO)

caBIO objects constitute the primary programming interface to
caCORE. caBIO objects are implemented using Java and Java Bean
technology, and model the behavior of hierarchies of biological entities
such as genes, sequences and chromosomes, their constituent molecular
forms such as Single Nucleotide Polymorphisms (SNPs, a single nucleotide
difference at a defined location within an individual's DNA sequence), and
other entities such as clones, libraries, agents, pathways, tissues and
diseases. A representative list of objects and their descriptions are shown
in Table 6.3.

Table 6.3. caBIO domain objects

Object name Description
Gene

GeneAlias

GoOntology

Target

Protein

Disease

Pathway

The basic physical and functional unit of heredity. Gene
objects are the effective portal to most of the genomic
information provided by the caBIO data services such as
organs, diseases, chromosomes, pathways, sequence data,
and expression experiments.
An alternative name for a gene; provides descriptive
information about the gene (as it is known by this alias), as
well as access to the Gene object it refers to.
An object providing entry to a Gene object's position in
the Gene Ontology Consortium's controlled vocabularies.
GoOntology provides access to gene objects
corresponding to the ontological term, as well as to
ancestor and descendant terms in the ontology tree.
A gene thought to be at the root of a disease etiology and
targeted for therapeutic intervention. Defined and used by
the CMAP project.
An object representation of a protein; Protein objects
provide access to the encoding gene via its GenBank ID,
the taxon in which this instance of the protein occurs, and
references to homologous proteins in other species.
Specifies a disease name and ID; also provides access to
ontological relations to other diseases; clinical trial
protocolstreating the disease; and specific histologies
associated with instances of the disease.
An object representation of a molecular/cellular pathway
compiled by BioCarta. Pathways are associated with
specific Taxon objects, and contain multiple Gene objects,
which may be targets for treatment.

258

Therapeutic agent A therapeutic agent (drug, intervention therapy) used in a
clinical trial protocol.

ClinicalTrialProtocol The protocol associated with a clinical trial; organizes
administrative information about the trial such as
Organization ID, participants, phase, etc. provides access
to the administered Agents.

Histopathology An object representing anatomical changes in a diseased
tissue sample associated with an expression experiment;
captures the relationship between organ and disease.

caBIO provides programmatic access to a variety of open source
genomic, biological, and clinical data sources available from the NIH such
listed previously (such as Unigene, EntrezGene, etc.) as well as others
such as Biocarta and clinical trials protocols, etc. caBIO is built upon open
source technologies such as Java, Simple Object Access Protocol (SOAP,
an XML based platform and language independent protocol for
exchanging information between applications over the web), Apache,
Jakarta Tomcat, XML and UML. There are a number of ways that users
can access caBIO. Java-based clients communicate with caBIO via the
Java API, which contains the domain objects provided by the caBIO.jar
file. Non-Java based applications can communicate via SOAP, or by using
the caBIO HTTP API and receive objects as XML. caBIO provides access
to curated data from multiple sources as described in Table 6.4.

Table 6.4. caBIO data sources

NCBI UniGene Unigene provides a nonredundant partitioning of the
genetic sequences contained in GenBank into gene
clusters. Each such cluster has a unique UniGene ID and a
list of the mRNA and EST sequences that are subsumed
by that cluster.

NCBI Entrez Gene Entrez Gene contains curated sequence and descriptive
(previously called information associated with a gene such as gene name,
LocusLink) aliases, sequence accession numbers, phenotypes,

UniGene cluster IDs, OMIM IDs, gene homologies,
associated diseases, map locations, etc.

Gene Ontology (GO) The Gene Ontology Consortium provides a controlled
terms vocabulary for the description of molecular functions,

biological processes, and cellular components of gene
products.

NCBI HomoloGene HomoloGene is a resource for curated and calculated gene
homologs.

BioCarta pathways BioCarta provides detailed graphical renderings of

cancer Biomedical Informatics Grid 259

pathway information concerning apoptosis, cell signalling,
cell cycle regulation, immunology, metabolism, and
neuroscience, etc.

NCI Cancer Therapy CTEP funds an extensive national program of basic and
Evaluation Program clinical research to evaluate new anti-cancer agents, with a
(CTEP) particular emphasis on translational research to elucidate

molecular targets and drug mechanisms.
NCI Cancer Models caMOD provides information on animal models of human
Database (caMOD) cancer.

Downloading and Configuring caBIO

caBIO can be downloaded from the NCICB website at:

h t t p : / / n c i c b . n c i . n i h . g o v / d o w n l o a d / i n d e x . j s p

Download caC0RE3-l.zip file (or the latest available version), unzip to
extract the required libraries and save them in an appropriate location
making sure that the absolute path to client.jar is declared in the Java
classpath. Fig. 6.1 below shows the caCORE download page.

€?::̂ -:.....
^Si:|i?a^:

•, •..
• : ; : : • • • , . j

. ' ' . ' . ' ' • " " '

" • • . ' ' • • . . , ' : • ,

.... ... ,- .-
, . . y - ; - - • * • • „ • • • • •

"'. '
'.

'..- ' • • • • . -

'•' :•'•'." . • :•: v / . : ^ : i ! Jg i i iBJss lMsg^SSS

'•= ' ?i^i^^vSiMMiilfr^^
•.". *• "•. :::••:'. ^i'V!:MX-j&si:u.S^;mfsu ••--••

' - • ••••".QRE ^/Z.1

' 1 . ' ' . • " • • ' • ^S 'WaMi lHJ lu !)

• . ; .. rnmsfvcsC^RE dl^Ftulion cenlsiisitif ESCO^E -.Heni wrWs, 3 TsstCtienI aemonsiisHcn vrn'SfK
' . - •- :• ,iciC0"^6 3 ' : j ' * t -isiani inEnSfi&rse iythiiuM l-i^P iihi RtiiMl I'm ftir.lHr^.li) is .1 J w j atitam ilfh

• .• SMht,: 31! •iimi' f =uOt?t iiii-n)..H Aimm. S'i v*wi; a-.-. m.r^it;;i!;-.wrSu.-#is:e c\m^ ipquiw la HIUC
• : •:s!1al^#c3C0FE?5:5,s;.

" • • -•• ^'^ i'?M^f2:iS?
• • - . . C E l i R-.;i'3?ewors? o C t ^ O ' mis?m

• ., • 0"r: l-im.^ft-msiArae (sC0?iSrJ~MbP:''^}'£-P~

. , . •••-..»;«eaiie-SfifvMi WiliUiiHtoii

• . taCOPE 3 S imiit.9tmefs&im sumnXtui'Sf-c^'iUm-=. ^h&Sjl ̂ m.itA i^O'-- of r.aCC'SE, -•- Csf-'sW*'-'!?
: r e : - ! « .«! t i le. ar. e=.-.E£ ! H jm^i {S^--;*-t lB . m i . Sti.j i c J C O S L - ? i -ML m M e l -̂t E w i - t s t l ? ^ i-nh-f! i

:•• • fiiftlorma

• . • ' •••.-Sie :E.C0R£3-! SOUf?CEj!!P

. •CPESayt.MlJeifciK^a.ji^ia .^C0Kt*3-i 60VBCE f-B'^'Uti^i

.•.../.iy.Ut.sOit.-^.liu^n

. . !;a?lO-MODdist!nijiani^&t>'*:S'is?Hiirrijo*,T"oae!1ie=. ThecaBlC ifOC'3-i^P^TnSA.^f Sp&fristn<
•• •: sBO and tai.iCO < .mtr.ai aii4msnutiruna fm 'itstaiiinq i-oca! «f:'ni>t an^mo-WjUmitmsL Thu
• ..-, C'-Ji'ODj- i„^6'-? drnj' ftJ Sies cinUtis tre ^ft js; u^fe ir isoittlile UIE 'J5:alins9. E'us ;.jili} ac.».-il£jBd
••• : i l i u i f . ' h e o..l3f-.i-)-> iJant| i !=:,-^ -.fs.-" l-r&is-ti ai> -'iki I1 i - i i - !i1u^

, . :-.:!"-mTaNT: OZ'!!v! 3 2 •; lewn-c k. 'Mms\hi aaiatssae JcTisfiie £iy= wth6 siiS'C'mecaiarassaurais
•• •:, nt& retgmmgr-ja^ shntv^u Bi^-«n-y.Ti ami ,nsla»'''Sgi '''^U^'i '> ̂ :!)nf:niar!f| t != hmtfim leiiwf-r.Q

•• .=j,sMs<s Of ' ^^ 'B ' . ' ^ . ^ J H ^ l # ! ! Q M^chaM

s •

M
J

1

v

Fig. 6.1. caBIO download page

260

Now that we have reviewed some of the concepts, technologies and
resources available to us from NIH, NCI and other sources, we will create
a simple practical application to demonstrate how to integrate the
individual isolated bits of data together into a richer, more usable dataset.

Creating the JcaBIO Application

We will create an application based on the caBIO API that we will call
JcaBIO to demonstrates how data pertaining to the Gene and the Agent
object can be retrieved using caBIO API. We will create three search
functions as outlined below that will define the business logic of the
application:

Gene search function: The gene search function will create a report that
provides information such as gene name and symbol, Unigene Cluster ID,
associated GO terms, gene product name and aliases.

Pathway search function: The pathway search function creates a report
that provides information on the pathways that a gene participates in along
with a description and a link to the pathway map on BioCarta.

Agent search function: The agent search function creates a report that
contains the names of the target(s) that a therapeutic agent binds, the
clinical trials that an agent is involved in along with the status. Phase and
the name of the institution conducting the trial.

According to this scheme, we will need four command buttons - one
each for creating the Gene, Pathway and Agent report and one to clear the
report. We will label the command buttons, "Run a Gene Search", "Run a
Gene/Pathway Search" and "Run an Agent Search" respectively. We will
need a text area to display the reports. We will place this below the
command buttons. We will need one text box each to enter the gene name,
the agent name and specify the number of reports we want to retrieve for
each search. We will place a default value of 10 in the last text box to
begin with. We also need a message area to provide the users information
on the current state of the application. When the application is launched
and when a search is complete, the status will display the "Ready!"
message. We will place the status bar below the text area.

cancer Biomedical Informatics Grid 261

When the application is initially launched, all the command buttons will
be disabled; the command buttons will become available after a valid gene
or an agent is entered into the appropriate fields. Only the appropriate
command buttons corresponding to the entries will be activated. An entry
in the Gene field, for example, will activate the "Run a Gene Search" and
"Run a Gene/Pathway Search" buttons while an entry in the Agent field
will activate the "Run an Agent Search" button. The Clear button will be
activated only after a search has been run and there are results to display.

JcaBIO Classes and Application Structure

The structure of the JcaBio application is shown in Fig. 6.2.

jcabio

src

org
.jfb

jcabio

CaBIOReportEngine

CaBIOSearchEngine

SearchException

StatusObject

SwingCaBIO

Fig. 6.2. Structure of JcaBIO

A description of the various classes and the corresponding code is as
follows:

SwingCaBIO: This is the main Swing application interface that enables
users to send queries and display reports about genes or agents using the
caCORE API.

262

SearchException: This class handles exceptions when a search fails.

statusObject: This class stores information on the state of the
CaBIOSearchEngine or the CaBIORepor tEngine , which respectively

handle the search and the report processes. Using a statusObject instead
of a String object affords a more generic way of passing the required
information. As a result, we have the freedom to modify the statusObject
class without having to change the signature of the method that uses this
object. We would need to modify only the content of the code as
appropriate.

CaBIOReportEngine: This is the class that generates the Gene or Agent
reports.

CaBIOSearchEngine: This class provides the functionality that enable
users to perform gene or agent searches.

The application at start up showing the various Swing components is
shown in Fig. 6.3.

Ill Ti l '
Nll lI l l lHI ••! I f S l l l l v

hliiil AlI'Mlt

KiMilVJ

Fig. 6.3. The JcaBIO application at start up

cancer Biomedical Informatics Grid 263

Coding the SwingCaBIO Application

SwingCaBio defines the application interface that the user interacts with
to send and retrieve queries using the caCORE API. swingCaBio is based
on the same Swing elements and concepts that were described in Chapter
1. SwingCaBio extends JFrame in order to generate a basic container for
the application. SwingCaBio also extends DocumentListener to listen to the
JTextField objects in order to enable or disable the corresponding buttons
that run the report. The constructor swingCaBio() calls the super
constructor and adds the observer to the Agent search and the report
engine. At that point, the application consists of a frame and nothing else
built inside. We then call the i n i t () function explained below that will
build our form for the Gene and Agent searches.

As described earlier, we need three command (search) buttons for
running the three custom reports and a text area to display the search
results. We use what are called factory methods to create the different
pieces that are assembled in the i n i t () method. Factory methods refer to
the Factory Design Pattern, which specifies a way to create objects
without having to know how they are created or assembled. This design
allows the developer to change the way the buttons and other Swing
components are displayed without interfering with the rest of the Swing
components that make the application. The swingCaBio() method is
described below:

public SwingCaBI0() throws HeadlessException {
super();
AGENT_SEARCH.addObserver(observer);
REP0RT_ENGINE.addObserver(observer);

}

private void init() {
setTitle("SwingCaBio");
final Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
JPanel formPanel = createForm();
JPanel reportPanel = createReportPane();
statusBar = new JLabel(STATUS_READy);
statusBar.setBorder(BorderFactory.createEmptyBorder(5, 5,
5, 5));
contentPane.add(formPanel, BorderLayout.NORTH);
contentPane.add(reportPanel, BorderLayout.CENTER);
contentPane.add(statusBar, BorderLayout.SOUTH);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack() ;
setSize(DIMENSION);

264

final Dimension screenSize = Toolkit.getDefaultToolkit()
getScreenSize();
setLocation(new Point((screenSize.width - SW_WIDTH) / 2,
(screenSize.height - SW_HEIGHT) / 2));
show();

The getNumberOfobjectsForResult() method handles the total
number of results to return for a search. As indicated earlier, we will place
a default value of 10 for this.

private static final StatusObject STATUS_REPORT_GENERATED =
new StatusObject("Report generated!", 10);
final int len =
getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for '" + genePattern + "' (" +

len + " gene(s) found);\n\n");
for (int i = 0; i < len; i++) {
Gene gene = genes[i];
REPORT_ENGINE.printFullGeneReport(gene, sb, i + 1);

}

We use the showReport() method to set the text area with the current
StringBuffer object containing the report generated. Anytime a Swing
object is modified, we need to make sure that the method runs in the event-
dispatching thread (also called the AWT thread) to avoid painting
problems. The method checks if we are already in the event-dispatching
thread before calling the runnable object.

private void showReport(final StringBuffer sb) {
Runnable runnable = new Runnable() {

public void run() {
jTextArea.setText(sb.toString());

}
};
if (SwingUtilities.isEventDispatchThread())

runnable.run();
else

SwingUtilities.invokeLater(runnable);
}

The methods inse r tUpda te () , changeUpdate() and removeUpdate()
are methods from the DocumentListener interface. We will use these
methods to update the buttons according to the values found in the gene
and the agent fields.

public void insertUpdate(DocumentEvent event) {

cancer Biomedical Informatics Grid 265

updateButtons();
}

private void updateButtons() {
boolean enabled = gene.getText().trim().length() > 0;
runGenePathwayReport.setEnabled(enabled);
runFullGeneReport.setEnabled(enabled);
runTargetAgentReport.setEnabled(agent.getText().triin().
length() > 0);

}

The three update methods are delegating the treatment of the event to
the updateButtons () method. The updateButtons () method enables or
disables buttons according to the status of the search and the corresponding
report that is generated. We add a utility method called errorOumpo to
create an error message and update the status bar to alert user about any
problems encountered:

p r i v a t e void errorDuinp(StringBuffer sb , SearchException e)
{

sb.delete(0, sb.Iength());
sb.append("An error occured!\n\n" +
e.getEmbedded().getMessage());

updateStatus(new StatusObject("An error occured!", 5));
}

We include a method to update the status of the search and reporting
using the updateStatus () method. updateStatus () sets the text in the
status bar with information on the state of the search. We need to invoke
and display the update right away to ensure that the user is alerted as soon
as an issue arises. For this reason we have implemented the
invokeAndWait() instead of the invokeLater() method.

These methods force the JVM to invoke the run () method of the
Runnable object passed as an argument, inside the event-dispatching
thread.

p r i v a t e void u p d a t e S t a t u s (f i n a l Sta tusObject
Sta tusObject) {

Runnable runnable = new Runnable() {
publ ic void run() {

s t a t u s B a r . s e t T e x t (S t a t u s O b j e c t . g e t S t a t u s T e x t ()) ;
i f (Sta tusObject .hasTimer()) {

new Thread(new Runnable() {
publ ic void run() {

t r y {
synchronized (t h i s) {

266

this.wait(statusObject.getTimer() * 1000);
}
updateStatusToReady();

} catch (interruptedException
e) {

e.printStackTrace();
}

}
}).start();

}
}

};
if (SwingUtilities.isEventDispatchThread()) {

runnable.run();
} else {

try {
SwingUtilities.invokeAndWait(runnable);

} catch (InterruptedException e) {
e.printStackTrace();

} catch (InvocationTargetException e) {
e.printStackTrace();

}
}

}

The main() method starts the creation of the SwingCaBio in the event-
dispatching thread. This avoids having paint methods that freeze the
application i.e., the application does not respond to any mouse clicks or
keyboard interactions or the application is just gray with no components
created in the main frame.

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingCaBio swingCaBIO = new SwingCaBIO();
swingCaBIO.init();

}
}) ;

}

The complete code for the SwingCaBio class is provided in Listing 6.1.

Listing 6.1. Class SwingCaBIO

package o r g . j f b . j c a b i o ;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.Gene;

cancer Biomedical Informatics Grid 267

import javax.swing.*;
import j avax.swing.event.DocumentEvent;
import j avax.swing.event.DocumentListener;
import j ava.awt.*;
import j ava.awt.event.ActionEvent;
import Java.awt.event.ActionListener;
import Java.lang.reflect.InvocationTargetException;
import java.util.Observable,•
import java.util.Observer;

public class SwingCaBIO extends JFrame implements
DocumentListener {

private static final int SW_WIDTH = 700;
private static final int SW_HEIGHT = 600;
private static final Dimension DIMENSION = new

Dimension(SW_WIDTH, SW_HEIGHT);
private static final Dimension DIM_FIELD = new

Dimension(85, 18);
private final static String CABIO_HTTP_SERVER_URL =

"http://cabio.nci.nih.gov/cacore30/server/HTTPServer";
private final static ApplicationService APP_SERVICE =
ApplicationService.getRemotelnstance(CABIO_HTTP_SERVER

_URL);
private static final CaBIOSearchEngine AGENT_SEARCH =

new CaBIOSearchEngine(APP_SERVICE);
private static final CaBIOReportEngine REPORT_ENGINE =

new CaBIOReportEngine(APP_SERVICE);
private static final String STATUS_READY = "Ready!";
private static final StatusObject

STATUS_REPORT_GENERATED = new StatusObject("Report
generated!", 10);

private JTextArea jTextArea;
private JTextField gene;
private JButton runFullGeneReport;
private JButton runTargetAgentReport;
private JButton runGenePathwayReport;
private JButton clear;

private JLabel statusBar;
private JTextField result;
private JTextField agent;

public SwingCaBIO() throws HeadlessException {
superO;
AGENT_SEARCH.addObserver(observer);
REPORT_ENGINE.addObserver(observer);

}

private void init() {
setTitle("SwingCaBIO");

268

final Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
JPanel formPanel = createForm();
JPanel reportPanel = createReportPane();
statusBar = new JLabel(STATUS_READY);

statusBar.setBorder(BorderFactory.createEinptyBorder(5, 5, 5,
5));

contentPane.add(formPanel, BorderLayout.NORTH);
contentPane.add(reportPanel, BorderLayout.CENTER);
contentPane.add(StatusBar, BorderLayout.SOUTH);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();
setSize(DIMENSION);
final Dimension screenSize =

Toolkit. getDefaultToolkit().getScreenSize();
setLocation(new Point((screenSize.width - SW_WIDTH)

/ 2, (screenSize.height - SW_HEIGHT) / 2));
show();

}

private JPanel createReportPane() {
jTextArea = new JTextArea();
jTextArea.setText("No Report.");
JTextArea.setEditable(false) ;
JTextArea.setWrapStyleWord(true);
JTextArea.setLineWrap(true);
final Font sf = jTextArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getsize());
JTextArea.setFont(f);
JTextArea.getDocument().addDocumentListener(new

DocumentListener() {
public void insertUpdate(DocumentEvent event) {

clear.setEnabled(JTextArea.getText().trim().length() != 0);
}

public void removeUpdate(DocumentEvent event) {

clear.setEnabled(jTextArea.getText().trim().length() != 0);
}

public void changedUpdate(DocumentEvent event)
{

clear.setEnabled(JTextArea.getText().trim().length() != 0);
}

});
JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
final JScrollPane jScrollPane = new

JScrollPane(JTextArea);

cancer Biomedical Informatics Grid 269

jPanel.add(jScrollPane, BorderLayout.CENTER);
jPanel.setBorder(BorderFactory.createEmptyBorder(0,

5, 5, 5));

return jPanel,•

}

private JPanel createForin() {
final JPanel genePanel = new JPanel();
genePanel.setLayout(new BoxLayout(genePanel,

BoxLayout.LINE_AXIS));
gene = new JTextField(10);
this.gene.setMaximumSize(DIM_FIELD);
gene.getDocument().addDocumentListener(this);
final JLabel geneLabel = new JLabel("Gene");
geneLabel.setPreferredSize(DIM_FIELD);
genePanel.add(Box.createRigidArea(new Dimension(5,

0))) ;

0)));

genePanel.add(geneLabel);
genePanel.add(Box.createRigidArea(new Diinension(5,

genePanel.add(gene);
genePanel.add(Box.createHorizontalGlue());
final JPanel agentPanel = new JPanel();
agentPanel.setLayout(new BoxLayout(agentPanel,

BoxLayout.LINE_AXIS));
agent = new JTextField(10);
agent.setMaximumSize(DIM_FIELD);
agent.getDocument().addDocumentListener(this);
final JLabel agentLabel = new JLabel("Drug Agent");
agentLabel.setPreferredSize(DIM_FIELD);
agentPanel.add(Box.createRigidArea(new Dimension(5,

0))) ;

0)));

agentPanel.add(agentLabel);
agentPanel.add(Box.createRigidArea(new Dimension(5,

agentPanel.add(this.agent);
agentPanel.add(Box.createHorizontalGlue());

JPanel jPanel = new JPanel();
jPanel.setLayout(new BoxLayout(jPanel,

BoxLayout.PAGE_AXIS));
jPanel.add(Box.createRigidArea(new Dimension(0,

5))) ;

5)));

5)));

jPanel.add(genePanel);
jPanel.add(Box.createRigidArea(new Dimension(0,

jPanel.add(agentPanel) ;
jPanel.add(Box.createRigidArea(new Dimension(0,

final JPanel resultPanel = new JPanel();
resultPanel.setLayout(new BoxLayout(resultPanel,

BoxLayout.LINE_AXIS));

270

result = new JTextField("10", 10);
result .setMaxiinuinSize(DIM_FIELD);
final JLabel resultLabel = new JLabel("Number of

results: ") ;
resultPanel.add(Box.createRigidArea(new

Diinension(5, 0))) ;
resultPanel.add(resultLabel);
resultPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
resultPanel.add(result);

JPanel jPanelResult = new JPanel();
jPanelResult.setLayout(new BoxLayout(jPanelResult,

BoxLayout.LINE_AXIS));
JPanelResult.add(jPanel);
resultPanel.add(Box.createRigidArea(new

Dimension(20, 0)));
JPanelResult.add(resultPanel);
resultPanel.add(Box.createHorizontalGlue());

runFullGeneReport = new JButton("Run a Gene
Search");

runFullGeneReport.setToolTipText("Please provide a
gene to search for.");

runFullGeneReport.setEnabled(false);
runFullGeneReport.addActionListener(new

ActionListener() {
public void actionPerformed(ActionEvent event)

{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {

public void run() {
final String genePattern =

gene.getText();
showReport(new

StringBuffer("Searching with gene '" + genePattern +

try {
final Gene[] genes =

AGENT_SEARCH.searchGenesWithGenePattern(genePattern);
final int len =

getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for

'" + genePattern + "' (" + len + " gene(s) found):\n\n");
for (int i = 0; i < len; i++) {

Gene gene = genes[i];

REPORT_ENGINE.printFullGeneReport(gene, sb, i + 1);
showReport(new

StringBuffer(jTextArea.getText()).append("\n")
.append("Generated

report for gene '" + gene.getFullName() +));

cancer Biomedical Informatics Grid 271

if (i + 1 < len)
sb.append("\n\n");

}

updateStatUS(STATUS_REPORT_GENERATED);
} catch (SearchException se) {

errorDump(sb, se);
}
showReport(sb);

}
};
new Thread(runnable).start();

}
});
runGenePathwayReport = new JButton("Run a

Gene/Pathway Search");
runGenePathwayReport.setToolTipText("Please provide

a Gene to search for.");
runGenePathwayReport.setEnabled(false);
runGenePathwayReport.addActionListener(new

ActionListener() {
public void actionPerformed(ActionEvent event)

{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {

public void run() {
final String genePattern

gene.getText();
showReport(new

StringBuffer("Searching with gene '" + genePattern +
'"•••"));

try {
final Gene[] genes =

AGENTSEARCH.searchGenesWithGenePattern(genePattern);
int len =

getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for

'" + genePattern + "' (" + len + " gene(s) found);\n\n");
Gene gene;
for (int i = 0; i < len; i++) {

gene = genes[i];

REPORT_ENGINE.printGenePathwayReport(gene, sb, i + 1);
showReport(new

StringBuffer(jTextArea.getText()).append("\n")
.append("Generated

report for gene '" + gene. getFullNaine() +));
if (i + 1 < len)

sb.append("\n\n");
}

updateStatus(STATUS_REPORT_GENERATED);
} catch (SearchException se) {

272

errorDump(sb, se);
}
showReport(sb);

}
};
new Thread(runnable).start();

}
});
runTargetAgentReport = new JButton("Run an Agent

Search");
runTargetAgentReport.setToolTipText{"Please provide

an agent to search for.");
runTargetAgentReport.setEnabled(false);
runTargetAgentReport.addActionListener(new

ActionListener() {
public void actionPerforined(ActionEvent event)

{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {

public void run() {
final String agentPattern =

agent.getText();
showReport(new

StringBuffer("Searching with agent '" + agentPattern
+ "'..."));

try {
final Agent[] agents =

AGENT_SEARCH.searchAgentsWithAgentPattern{agentPattern);
final int len =

getNumberOfObj ectsForResult(agents.length);
sb.append("Search Results for

' " + agentPattern +
(" + len +

agent(s) found):\n\n");
Agent agent;
for (int i = 0; i < len; i++) {

agent = agents[i];

REPORT_ENGINE.printGeneAgentCliTriReport(agent, sb, i + 1);
showReport(new

StringBuffer(jTextArea.getText()).append("\n")
.append("Generated

report for agent '" + agent.getName() + "'"));
if (i + 1 < len)

sb.append("\n\n");
}

updateStatus(STATUS_REPORT_GENERATED);
} catch (SearchException se) {

errorDump(sb, se);
}
showReport(sb);

}

cancer Biomedical Informatics Grid 273

} ;
new Thread(runnable).start();

}
});
c l e a r = new JButton("Clear Repor t ") ;
c lear .addAct ionLis tener(new Act ionLis tener () {

publ ic void actionPerforined(ActionEvent event)
{

jTextArea.setText("");
}

});
clear.setEnabled(false);

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.LINE_AXIS)) ;
buttonPanel.add(runFullGeneReport);
buttonPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
buttonPanel.add(runGenePathwayReport);
buttonPanel.add(Box.createRigidArea(new

Diinension(5, 0))) ;
buttonPanel.add(runTargetAgentReport);
buttonPanel.add(Box.createRigidArea(new

Dimension!5, 0)));
buttonPanel.add(clear);

JPanel formPanel = new JPanel();
formPanel.setLayout(new BorderLayout());
formPanel.add(jPanelResult, BorderLayout.NORTH);
formPanel.add(buttonPanel, BorderLayout.CENTER);
return formPanel;

}

private int getNumberOfObjectsForResult(int len) {
String numOfRes = result.getText();
if (numOfRes != null && numOfRes.trim().length() >

return Math.min(Integer.parselnt(numOfRes),
0) {

len) ;
}
return len;

}

private void showReport(final StringBuffer sb) {
Runnable runnable = new Runnable() {

public void run() {
JTextArea.setText(sb.toString());

}
};
if (SwingUtilities.isEventDispatchThread())

runnable.run();
else

SwingUtilities.invokeLater(runnable);

274

0;

}

public void insertUpdate(DocuinentEvent event) {
updateButtons();

}

private void updateButtons() {
boolean enabled = gene.getText().trim().length() >

runGenePathwayReport.setEnabled(enabled);
runFullGeneReport.setEnabled(enabled);

runTargetAgentReport.setEnabled(agent.getText().trim().length
() > 0);

}

private void errorDump(StringBuffer sb, SearchException
e) {

sb.delete(0, sb.Iength());
sb.append("An error occured!\n\n" +

e.getEmbedded().getMessage()) ;
updateStatus(new StatusObject("An error occured!",

5));
}

private Observer observer = new Observer() {
public void update(Observable observable, Object o)

{
updateStatus((StatusObject) o);

}
};

private void updateStatusToReady() {
updateStatus(StatusObj ect.STATUS_READY);

}

private void updateStatus(final StatusObject
StatusObject) {

Runnable runnable = new Runnable() {
public void run() {

statusBar.setText(StatusObject.getStatusText());
if (StatusObject.hasTimer()) {

new Thread(new Runnable() {
public void run() {

try {
synchronized (this) {

this.wait(StatusObject.getTimer() * 1000);
}
updateStatusToReady();

} catch (interruptedException
e) {

cancer Biomedical Informatics Grid 275

e.printStackTrace();
}

}
}).start();

}
}

};
if (SwingUtilities.isEventDispatchThread()) {

runnable.run();
} else {

try {
SwingUtilities.invokeAndWait(runnable);

} catch (InterruptedException e) {
e.printStackTrace();

} catch (InvocationTargetException e) {
e.printStackTrace();

}
}

}

public void removeUpdate(DocuinentEvent event) {
updateButtons();

}

public void changedUpdate(DocumentEvent event) {
}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {
final SwingCaBIO swingCaBIO =

SwingCaBIO() ;
swingCaBIO.init();

}
});

}
}

Coding JcaBIO: The CaBIOReportEngine Class

In order to provide information on what the report engine is doing while
it is generating the report, the CaBIOReportEngine class extends
Java.util.Observable to send notification to all observers about the
status of the generation of the report.

public class CaBIOReportEngine extends Observable { }

The constructor for the class takes a
g o v . n i h . n c i . s y s t e m . a p p l i c a t i o n s e r v i c e . A p p l i c a t i o n S e r v i c e

276

object that retrieves further information during report generation as
needed.

CaBiOReportEngine contains a number of print methods in order to
generate the reports. These methods print specific information about the
gene or agent (that the user supplied) into the str ingBuf f er object. The
printGene () method takes two parameters to generate the report - the
gene object and the s t r ingBuffer object which will contain the
information to be included in the report:

public void printGene(Gene gene, StringBuffer sb) { }

Within the printGene () method, we implement methods provided by
the caBIO API such as getFullNaine(), getSymbol() and
g e t c i u s t e r i d () to access the relevant information about the input gene.

The pr intPathways() method takes the same two parameters to
generate the pathways report:

publ ic void printPathways(Gene gene, Str ingBuffer sb) {
}

Information on pathways is obtained as a collection of pathway objects
using the method search () from the application service object
appService. The search () method requires two parameters - the type of
the object we want in the collection result and the gene we need the
pathways for as shown below:

f i n a l Co l l ec t ion tmp
appServ ice . sea rch(Pa thway .c lass , gene) ;

Similarly, we use print methods to retrieve information on gene aliases
(pr in tGeneAliases()) , clinical trials (p r i n t C l i n i c a l T r i a l s ()) , Agent
(printAgent ()) etc. The complete code for CaBiOReportEngine is
provided in Listing 6.2.

Listing 6.2. Class CaBiOReportEngine

package o r g . j f b . j c a b i o ;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.ClinicalTrialProtocol;
import gov.nih.nci.cabio.domain.Gene;
import gov.nih.nci.cabio.domain.GeneAlias;

cancer Biomedical Informatics Grid 277

import gov.nih.nci.cabio.domain.GeneOntology;
import gov.nih.nci.cabio.domain.HomologousAssociation;
import gov.nih.nci.cabio.domain.Pathway;
import gov.nih.nci.cabio.domain.Protein;
import gov.nih.nci.cabio.domain.Target;

import j ava.text.SimpleDateFormat;
import Java.util.Collection;
import java.util.Iterator;
import Java.util.Observable;

public class CaBIOReportEngine extends Observable {
private static final SimpleDateFormat DATE_FORMATTER =

new SimpleDateFormat("yyyy.MM.dd G 'at' HH:min:ss z");
private static final StatusObject STATUS_REPORT_DONE =

new StatusObject("Report done!");

private ApplicationService appService;

public CaBIOReportEngine(ApplicationService appService)
{

this.appService = appService;
}

public void printGene(Gene gene, StringBuffer sb) {
sb.append("Name: " + gene.getFullName());
sb.append("\n-Symbol: " + gene.getSymbol());
sb.append("\n-Unigene Cluster Id: " +

gene.getclusterld()) ;
}

public void printPathways(Gene gene, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the

pathway report for gene '" + gene.getFullName() + "'..."));
try {

final Collection tmp =
appService.search(Pathway.class, gene);

final int size = tmp.size();
if (size == 0) {

sb.append("Gene not found in any
pathways.");

}

notifyObservers(STATUS_REPORT_DONE);
return;

sb.append(size + " pathway(s) found: \n");
Pathway[] pathways = new Pathway[size];
tmp.toArray(pathways);
for (int i = 0; i < pathways.length; i++) {

Pathway pathway = pathways[i];
sb.append("\t-Pathway name:

pathway.getName());
sb.append("\n\t-Description:

pathway.getDisplayValue());

278

sb.append("\n\t-Pathway Map:
http://www.biocarta.com/pathfiles/" + pathway.getName() +
".asp");

if (i + 1 < pathways.length) {
sb.append("\n");

}
}

} finally {
notifyObservers(new StatusObject("Pathway

report done for gene '" + gene.getFullName() + "'!"));
}

}

public void printGeneAliases(Gene gene, StringBuffer
sb) {

notifyObservers(new StatusObject("Printing the gene
alias report for gene '" + gene.getFullNaine() + "'..."));

try {
final Collection tmp =

appService.search(GeneAlias.class, gene);
final int size = tmp.size();
if (size == 0) {

sb.append("No gene aliases found.");
notifyObservers(STATUS_REPORTDONE);
return;

}
sb.append(size + " gene aliases found: ") ;
GeneAlias[] geneAliases = new GeneAlias[size];
tmp.toArray(geneAliases);
for (int i = 0; i < geneAliases.length; i++) {

GeneAlias geneAlias = geneAliases[i];
sb.append(geneAlias.getName());
if (i + 1 < geneAliases.length) {

sb.append(", ") ;
}

}
} finally {

notifyObservers(new StatusObject("Gene alias
report done for gene '" + gene.getFullName() + "'!"));

}
}

private void printAgent(Agent agt, StringBuffer sb) {
sb.append("Drug Agent Name: " + agt.getName());
final String source = agt.getSource();
sb.append("\n-Agent Source: " + (source 1= null ?

source : "Unknown"));
}

public void printGenes(Target target, StringBuffer sb)
{

notifyObservers(new StatusObject("Printing the gene
report for target '" + target.getName() + "'..."));

cancer Biomedical Informatics Grid 279

try {
final Collection tmp =

appService.search(Gene.class, target);
final int size = tmp.size();
if (size == 0) {

sb.append("No genes found.");
notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append(size + " gene(s) found: ") ;

Gene[] genes = new Gene[size],•
tmp.toArray(genes);
for (int i = 0; i < genes.length; i++) {

Gene agt = genes[i];
printGene(agt, sb);
if (i + 1 < genes.length) {

sb.append("\n");
}

}
} finally {

notifyObservers(new StatusObject("Gene report
done for gene '" + target.getName() + "'!"));

}
}

public void printClinicalTrials(Agent agt, StringBuffer
sb) {

notifyObservers(new StatusObject("Printing the
clinical trial report for agent '" + agt.getName() +
" • • • • ' •)) ;

try {
final Collection tmp =

appService.search(ClinicalTrialProtocol.class, agt);
final int size = tmp.size();
if (size == 0) {

sb.append("No clinical trials found for
agent. ") ;

notifyObservers(STATUS_REPORT_DONE);
return;

>
sb.append(size + " clinical trial(s) found: ") ;
ClinicalTrialProtocol[] clinicalTrials = new

ClinicalTrialProtocol[size];
tmp.toArray(clinicalTrials);
for (int i = 0; i < clinicalTrials.length; i++)

{
ClinicalTrialProtocol clinicalTrial =

clinicalTrials[i];
sb.append("\n\nTitle: " +

clinicalTrial.getTitle());
sb.append("\n-Status: " +

clinicalTrial.getCurrentStatus());

280

sb.append("\n-Date: " +
DATE_FORMATTER.format(clinicalTrial.getCurrentStatusDate()));

sb.append("\n-Lead Organization Name: " +
clinicalTrial.getLeadOrganizationName());

sb.append("\n-Phase: " +
clinicalTrial.getPhase());

sb.append("\n-Participation Type: " +
clinicalTrial.getParticipationType());

if (i + 1 < clinicalTrials.length) {
sb.append("\n");

}
}

} finally {
notifyObservers(new StatusObject("Clinical

trial report done for agent '" + agt.getName() + "'!"));
}

}

public void printGeneOntology(Gene gene, StringBuffer
sb) {

notifyObservers(new StatusObject("Printing the gene
ontology report for gene '" + gene.getFullName() + "'..."));

try {
final Collection tmp =

appService.search(GeneOntology.class, gene);
final int size = tmp.size();
if (size == 0) {

sb.append("No associated GO terms found.");
notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append(size + " GO Term(s) found: ") ;
GeneOntology[] geneOntologies = new

GeneOntology[size];
tmp.toArray(geneOntologies);
for (int i = 0; i < geneOntologies.length; i++)

{
GeneOntology geneOntology =

geneOntologies[i];
sb.append(geneOntology.getName());
if (i + 1 < geneOntologies.length) {

sb.append(", ") ;
}

}
} finally {

notifyObservers(new StatusObject("Gene ontology
report done for gene '" + gene.getFullName() + "'!"));

}
}

public void printProteins(Gene gene, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the

protein report for gene '" + gene.getFullName() + "'..."));

cancer Biomedical Informatics Grid 281

try {
final Collection tmp =

appService.search(Protein.class, gene);
final int size = tinp.size();
if (size == 0) {

sb.append("No proteins found for " +
gene.getFullName() + " . ") ;

notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append("Protein name: ") ;
for (Iterator iterator = tmp.iterator();

iterator.hasNext();) {
Protein protein = (Protein)

iterator.next();
sb.append(protein.getName());
if (iterator.hasNext()) {

sb.append(", ") ;
}

}
} finally {

notifyObservers(new StatusObject("Protein
report done for gene '" + gene.getFullName() + "'!"));

}
}

public void printGenes(Agent agent, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the gene

report for agent '" + agent.getName() + "'..."));
try {

final Collection tmp =
appService.search(Target.class, agent);

final int size = tmp.size();
if (size == 0) {

sb.append("No targets found for " +
agent.getName() + " . ") ;

notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append(size + " targets found: ") ;
Target[] targets = new Target[size];
tmp.toArray(targets);
for (int i = 0; i < targets.length; i++) {

Target target = targets[i];
printGenes(target, sb);
if (i + 1 < targets.length) {

sb.append("\n");
}

}
} finally {

notifyObservers(new StatusObject("Gene report
done for agent '" + agent.getName() + "'!"));

}

282

}

public void notifyObservers(Object o) {
setChanged();
super.notifyObservers(o);

}

public void printFullGeneReport(Gene geneFound, final
StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ") ;
printGene(geneFound, sb);
sb.append("\n-");
printGeneOntology(geneFound, sb);
sb.append("\n-");
printProteins(geneFound, sb);
sb.append("\n-");
printGeneAliases(geneFound, sb);

}

public void printGenePathwayReport(Gene geneFound,
final StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ") ;
printGene(geneFound, sb);
sb.append("\n-");
printPathways(geneFound, sb);

}

public void printGeneAgentCliTriReport(Agent agent,
final StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ") ;
printGenes(agent, sb);
sb.append("\n-");
printAgent(agent, sb);
sb.append("\n-");
printClinicalTrials(agent, sb);

Coding JcaBIO: The CaBIOSearchEngine Class

CaBiosearchEngine extends Observable to notify observers about what

the search engine is doing so we can keep the users of the application

informed about the status of the search. As described earlier, we provide

two search capabilities in the SwingCaBio application: one to create a Gene

report and one to create an Agent report. We will call the Gene search

method searchGenesWithGenePattern() and the agent search method

searchAgentsWithAgentPattern() respectively.

cancer Biomedical Informatics Grid 283

The constructor for the class takes a
g o v . n i h . n c i . s y s t e m . a p p l i c a t i o n s e r v i c e . A p p l i c a t i o n S e r v i c e
object that helps to run the initial search. Based on the caCORE API, we
create an object called GeneCriteria and set the gene name with the
pattern we're looking for. We run the AppiicationService and supply it
with the object we need to retrieve. We then collect all the genes that
match the input criteria and return the result in an array of Gene objects.

As with the searchGenesWithGenePattern() method,

searchAgentsWithAgentPattern() returns an array of Agent objects

found. The complete code for the CaBioSearchEngine c l a s s is provided

in Listing 6.3.

Listing 6.3. Class CaBIOSearchEngine

package o r g . j f b . j c a b i o ;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.Gene;
import gov.nih.nci.cabio.domain.GeneAlias;
import gov.nih.nci.cabio.domain.impl.AgentImp1;
import gov.nih.nci.cabio.domain.impl.GeneAliasImpl;
import

gov.nih.nci.system.applicationservice.AppiicationService;

import java.util.ArrayList;
import Java.util.Collection;
import java.util.List;
import java.util.Observable;
public class CaBIOSearchEngine extends Observable {

private static final StatusObject STATUS_SEARCH_DONE =
new StatusObject("Search done!");

private AppiicationService appService;

public CaBIOSearchEngine(AppiicationService appService)
{

this.appService = appService;
}

public Gene[] searchGenesWithGenePattern(String
geneNamePattern) throws SearchException {

try {
notifyObservers(new StatusObject("Starting

search with gene pattern '" + geneNamePattern + "'..."));
List resultList = appService.search(Gene.class, gene);

Gene[] genes = new Gene [resultList.size()];
resultList.toArray(genes);

284

notifyObservers(STATUS_SEARCH_DONE);
return genes;

} catch (Throwable e) {
notifyObservers(new StatusObject("An error

occured while searching for genes using gene pattern '"
+ geneNamePattern + "'!", 10));

throw new SearchException("", e);
}

}

public Agent[] searchAgentsWithAgentPattern(String
agentPattern)

throws SearchException {
try {

notifyObservers(new StatusObject("Starting
search with gene pattern '" + agentPattern + "'..."));

Agent agentCriteria = new Agentlmpl();
agentCriteria.setName(agentPattern);
List resultList = appService.search(Agent.class,

agentCriteria);
Agent[] agents = new Agent[resultList.size()];
resultList.toArray(agents);
notifyObservers(STATUS_SEARCH_DONE);
return agents;

} catch (Throwable e) {
notifyObservers(new StatusObject("An error

occured while searching for agents with gene pattern '"
+ agentPattern + "'..."));

throw new SearchException(" ", e);
}

}

public void notifyObservers(Object o) {
setChanged();
super.notifyObservers(o);

}
}

SearchException and StatusObject respectively provide mechanisms
to handle errors that occur during the search process and provide the user
with messages on the status of the search. The code for these two classes is
provided in Listing 6.4 and Listing 6.5 below.

Listing 6.4. Class SearchException

package org.jfb.jcabio;
public class SearchException extends Exception {

private Throwable embedded;

public SearchException(String s, Throwable throwable) {

cancer Biomedical Informatics Grid 285

super(s, throwable);
this.embedded = throwable;

}

public Throwable getEmbedded() {
return embedded;

}

Listing 6.5. Class StatusObject

package o r g . j f b . j c a b i o ;

public class StatusObject {
private static final int NO_TIMER = 0;
private static final String STATUS_TEXT = "Ready!";

public static StatusObject STATUS_READY = new
StatusObject(STATUS_TEXT, NO_TIMER);

private String statusText;
private int timer;

public StatusObject(String statusText, int timer) {
this.StatusText = statusText;
this.timer = timer;

}

public StatusObject(String statusText) {
this.StatusText = statusText;
timer=NO_TIMER;

}

public String getStatusText() {
return statusText;

}

public int getTimer() {
return timer;

}

public boolean hasTimer() {
return timer != NO_TIMER;

}

286

Running the JcaBIO Application

As described in Table 6.4, among the caBIO domain objects, the gene
object serves as central hub of the basic research objects and provides
access to object such as organs, diseases, chromosomes, pathways,
sequence data, etc. To begin with, therefore, we will create a Gene report
using the jcaBio application. Fig. 6.4 shows the results of a gene report
conducted to search for genes named "erb". Note that wild-cards (*) can
be used for retrieving information on genes. In this case, for example, we
have performed a search with erb* which as the report indicates has
identified genes called "v-erb-b2 erythroblastic leukemia viral oncogene
homolog 3 (avian)", with the approved Human Gene Nomenclature
Committe (HGNC) gene symbol ERBB3 and "v-erb-b2 erythroblastic
leukemia viral oncogene homolog 2, neur of glioblastoma derived oncogene
homolog (avian)" with the approved HGNC gene symbol ERBB2, both of
which are members of a family of growth factor receptor genes called
epidermal growth factor receptors (EGFR).

Fig. 6.5 displays the results of a pathway search for the keyword erb *.
The search identifies three genes that match the input keyword erb*:
ERBB2, ERBB3 and ERBB4, the corresponding pathways the three genes
are involved in and a link to the graphical representation of the pathways
on the BioCarta website for each (as shown in Fig. 6.6 for ERBB2).

cancer Biomedical Informatics Grid 287

Gene

\iTUfi AyRiit

Run a Gerii7 oc

acch Hesulti

Niiriibei uriesults:

ii a uene.Patltway Searcli

•' (3 gene(sl f Dundl:

logene hoMoiocr 3 . Hame: Y-etb-bZ e r y t h r o b l a s t i c leuJiemia v i r a l i
SYmboi: EfiBB3
Uaigene Cl-ustec Id: 118681
12 GO Term(sJ found: p c o t e i n kinaae a c t i w i t y , proEeiji-tYi^osiiie k inase a c t i v i t Y , transmembre

recepcoE p c o t e i n t y r o s i n e k inase ac t iv i ty , - receptoE a c t i v i t y ^ epidermal grosTtli f a c t o r recspi
. c t i v i t f , ATP b ind ing , i n t e g r a l to plasma membrane, p r o t e i n amino ac id phosphory la t ion ,
.rsnsnieahrane r ecep to r protein CYrnsine k inase s i g n a l i o g pai±i¥aY, membrane, i n t e g r a l to mewt
r ans f e r a se a c t i v i t y
Pcote in iia»e: Receptor t -Ycosine-ptgtein Jiir.ase e3;̂ ljE-3 precuEsoc

~2 gene a l i a s e s fotind: e r h M , EKBE3

^ame: 7-erti-b2 e r y t h r o b l a s t i c leuteemia v i r a l oncogene homoiog 2, neuEo/gl ioblas toma de r i i
loncogene homolog (avian]

Syiflhol: EPEB2
-Unigene Clus te r Id : 44S3S2

GO Termfs) found: p r o t e i n t m a s e a c t i v i t y , p r o t e i n s e r i n e / t h r e o n i n e k inase a c t i v i t y ,
•ptotein-tYEDsine k inase a c t i v i t y , transmeabrane recep to r p c o t e i n ty ros ine k inase a c t i v i t y j
jion-meiibrane spanning p r o t e i n t y r o s i n e k inase a c t i v i t y , r ecep to r s i g n a l i n g p r o t e i n t y r o s i n e
^ m a s e a c t i v i t y , r ecep to r a c t i v i t y , epidermal growth f a c t o r recep tor a c t i v i t y , e l e c t r o n

anspor te r a c t i v i t Y , i r o n ion b ind ing , ATP b ind ing , e x t r a c e l l u l a r r eg ion , e l e c t r o n t ranspoi
p r o t e i n amino ac id phosphory la t ion , ensyme l inked recep to r p r o t e i n s i g n a l i n g pathiaay,
transmembrane recep to r p r o t e i n t y r o s i n e k inase s i g n a l i n g pathway, c e l l p r o l i f e r a t i o n , meiabri
i n t e g r a l to membrane, k inase a c t i v i t y , t r a n s f e r a s e a c t i v i t y , ErbB-3 c l a s s r ecep to r b ind ing

P ro t e in name: Receptor t y r o s i n e - p r o t e i n k inase erbB-S p recur so r
2 gene a l i a s e s Ecrund: e rbb2, EKEB2

Fig. 6.4. Gene report for erb*

tJL'riL' LTJ*

D iuy Ayur i l

I l l l t l <] Gunu SL'dILN

- i _ I F - - il 1 .

Niinitiei ot ifMiltm

H U M d Ot.-iii'1'uthii''idvSL<iiiL~li

^1

Nimt- ' I-LL L „ i-tyfhi L l i ^ t i c leukemia v i r a l oncogene homolog 3 (avian]
Till 1 EFPE

Tll4-=n_ "IIUTH-L I J - llnh-,1
J. irhrijy ci frijiiJ-

-larhfri^ Hike h_ErLE3Path'May
Iie:'-rit.i"i n IFi-ircLegulln receptor degredat ion p r o t e i n - 1 Controls ErbE3 receptor rec^

-Eiit-liTrj^ Haj. h t t p 'www.biocarta. com/pathfile3/h_EEbE3Path¥aY- s.sp
F:ii'hiri_t niait- h_h*'LL;Pathway

"••^r^-Litri in PI r f EREB2 in Signal Transduction and Oncology
Tjrh!rn.Y Hup hrrp- •iTWTj.blocarta.com/pathfiles/h_her2PathTjay.a3p

N:im'' V Pib L„ tiryt-hmblaTtic Isufcemia v i r a l oncogene homolog 2, neuro/g l ioblas toma derives
1 4i-'ij.ti h j m j l y d 1 i i i

Tulul EPBB-
Tiiypn "luTi-L I J" 44ri''^i.

Pdihrcij.f I J-LimJ
I i hnd^ iiiuii^ h_hp-LJPa.th"waY
"Ve-rriprT m Fi ±r if ERSB2 in Signal Trsnsduction and Oncology
Tatliirij, HJ]. hr rp- •wTjiir.blocarta.com/pathflle3/h_her2Pathtpiay.asp
EithiTijt ninp h_i-LCPatlii!;aY
V- Lipt-i n Tiut i - i l Factors I n i t i a t e Ilueosal H&aling

1 liui 1 ' I I l i r I • ! , - i ," ." : . i . , i : : - 1. , . in ••? i . l - : . ' i 11 . .'•.. I ' : " " i .••n IV. . : r

Fig. 6.5. Pathway report for erb*

288

^''•-:M^^'-:^^^
• • • • < - * . - ^ " • • • . • - - • • ' " J

• , , . . • ^ • ' . - . : v i i i lJ iU-
"J™". • • -

;/••* • . . • ; • « « H i « ; - ; 4

«.. .„,- , •

:f" -5̂ ;.
^JiSl: ! l»««w™.«:^^

L J in ;

:̂ 3|i.5ip:*-̂ ^ -̂

•• ' '• • • • • . . .

i .

j . , . ; •

/

Fig. 6.6. Graphical representation of an ERBB2 pathway in BioCarta

Next we will perform a therapeutic agent search for a well-known anti­
cancer agent called Taxol. Fig. 6.7 displays the results of a wild-card search
performed with the term TAX*. As expected, the search resulted in reports
on Taxol, a compound present in the bark of the Pacific yew tree {Taxus
brevifolia), which was later found to possess anti-cancer properties and
approved for the treatment of ovarian, breast and non-small cell lung
cancer. The report also presents detailed information on the many clinical
trials that are being conducted using Taxol providing such details as the
name of the study, its status, the organization conducting the study. Phase
of the clinical trials and so on.

cancer Biomedical Informatics Grid 289

Gene
Number of rcsulTs: 0

Riin an Agent Search Clear Reiiort

iSearch Results tor 'TAX''' (2 agent[s) found):

1. Ho caiigets found for TAXOL (OLD HSC) .
-E'Eug Agent Name: TAXOL [OLD NSC)
-Agent Source: Unknoiim
-100 c l in ica l tLial(3) found:

iTitle: Phase I study of 90Y-CC'49 Monoclonal Antibody Therapy in pat ients witli Advanced Mon-Sima i
iCell Lung Cancet
-Status: Complete
-Date: 2001.06.05 AD a t 00:00:00 EDT
-Lead OEganisation Name: UniveEsity of Alabama at EiEmingham
-Phase: I
-Part icipat ion Type: Cancer Center

T i t l e : A randomised Phase I I I t r i a l of sequential chemotherapy using doxorubicin, pac l i taxe l , an
Icyclophosphamide or concurrent doxorubicin and cyclophosphamide followed by pacl i taxel at 14 or
!2l da'/ intecvals in women with node posit ive

Status: Complete
Date: 2003.06.30 AD at 00:33:45 EDT
Lead Organisation Name: Cancer and Leukemia Group B
Phase: I I I
Participation Type: Intergroup

Fig. 6.7. Therapeutic agent report for Taxol

Summary

The NCI caBIG ™ initiative is ushering a new era in cancer research by
providing scientists with standardized tools to access and share
information with one another overcoming cultural, geographical and
technological barriers in ways not conceivable just a few years earlier.

In this chapter, we learnt about the rationale behind the creation of
caBIG™ and the technologies that are being created or developed under
the initiative to enhance the pace of cancer research. We created a very
basic application to demonstrate a few of the many ways in which NCI's
caCORE and caBIO domain objects can be used to retrieve information on
biomedical objects in a way that bridges basic and clinical research.
Needless to say, caCORE offers many more capabilities than what we
have attempted to demonstrate and we encourage readers to take these
small examples as a springboard to gain a better understanding of the
power of the technology and build more complex queries as dictated by
their individual research needs.

290

The power of the caBIG ™ concept is uniting cancer researchers across
the world. A similar initiative was launched by the UK National Health
Service (NHS) for the development of cancer research informatics in that
country through a strategic partnership with the NCICB on the caBIG''"
effort. Both the initiatives will work together to build a truly global
infrastructure for cancer research. These are indeed very exciting times for
biomedical and clinical research and it is hoped that the joint efforts of
people across the world will eventually lead to the demise of the scourge
that we are battling.

As a living testimony of the work being done in this area, the NCI was
recently awarded the 2006 Computerworld Honors 21st Century
Achievement Award for Science for their accomplishment under caBIC^"^
Program. The Computerworld Honors Program was established to honor
people or institutions who apply Information Technology for the benefit of
society. Further information on the award is available at
http://www.cwhonors.org/archives/2006/index.htm and
https://cabig.nci.nih.gov/News_Folder/NCI_award.

Questions and Exercises

1. The NCICB has launched the Open Development Initiative (ODI,
http://ncicb.nci.nih.gov/NCICB/infrastructure/open_dev_initiative) as
an opportunity for biomedical researchers and bioinformaticians to
contribute to on-going development efforts in the cancer domain.
Explore the caBIO, caCORE and other GDI's of interest to you and
think of ways you can participate in this effort.

2. The observation that, "Gene and/or protein X is significantly
overexpressed in a specific cell population, tissue and/or in a
laboratory model of disease Y" is that fundamental first indication of
evidence that feeds hypothesis driven research into the biology and
treatment of disease.

a. What caBIO objects would you need to establish a causative
link between biomolecules expressed in specific tissues (for
example, cerebral cortex) and disease (for example,
Alzheimer's disease)?

cancer Biomedical Informatics Grid 291

b. How would you extend the query to identify pathways that the
biomolecules participate in and discover known chemical
agents that selectively inhibit or modify events along the
pathways?

c. Which caCORE data stores would you mine for such
information?

d. Given that the ultimate aim of caBIG™ is to make biomedical
and clinical data accessible via the grid, how would you
design an application to take the information obtained above
to locate appropriate tissue samples, patient cohorts and on­
going clinical trials for further analysis and validation studies?
What technical and non-technical issues would you need to
address to build such an application?

e. Create an application expanding available caBIG™
technologies and data stores that will allow users to run such
queries.

Additionaf Resources

Select NIH/NCI resources

• caBIO - http://ncicb.nci.nih.gov/core/caBIO

• caCORE - http://ncicb.nci.nih.gov/NCICB/infrastructure

• CaDSR - http://ncicb.nci.nih.gov/core/caDSR

• CaMOD - http://cancermodels.nci.nih.gov

• CMAP - http://cmap.nci.nih.gov

• CTEP - http://ctep.cancer.gov/

• CGAP - http://cgap.nci.nih.gov/

• CGAP GAI - http://gai.nci.nih.gov/

• EVS - http://ncicb.nci.nih.gov/core/EVS

• GEDP - http://gedp.nci.nih.gov

292

MMHCC - http://mouse.ncifcrf.gov/

NCI metathesaurus - http://ncimeta.nci.nih.gov/

NCI thesaurus - http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do

UniSTS - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unists

Other biomedical repositories and resources

BioCarta pathways - http://www.biocarta.com/

Gene Ontology Project - http://www.geneontology.org/

IMAGE Consortium - http://image.llnl.gov/

Standards and protocols

ISO/IEC - http://www.standardsinfo.net/isoiec/index.html

ISO/IEC 11179 standard - http://metadata-standards.0rg/l 1179/

SOAP - http://www.w3.org/TR/soap/

ETL tools

Kettle - http://www.kettle.be/

Octopus - http://www.enhydra.org/tech/octopus/index.html

Selected Reading

The caCORE Software Development Kit: streamlining construction of
interoperable biomedical information services. Phillips J, Chilukuri R,
Fragoso G, Warzel D, Covitz PA. BMC Med Inform Decis Mak. 2006 Jan
6;6:2.

cancer Biomedical Informatics Grid 293

Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH. caCORE: a common infrastructure for cancer
informatics. Bioinformatics. 2003;19:2404-2412.

Database resources of the National Center for Biotechnology Information.
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvemin V,
Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W,
Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott
DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST,
Sirotkin K, Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova
TA, Wagner L, Yaschenko E. Nucleic Acids Res. 2006 Jan 1 ;34(Database
issue):D173-80.

