

Type 1 Diabetes Mellitus

(See also Harrison's Principles of Internal Medicine, 17th Edition, Chapter 338)

Definition

- Diabetes mellitus (DM) comprises a group of common metabolic disorders that share the phenotype of hyperglycemia.
 - Caused by a complex interaction of genetics, environmental factors, and lifestyle choices
 - Classified on the basis of a pathogenic process leading to hyperglycemia
 - Type 1 DM
 - Results from pancreatic beta-cell destruction, usually leading to absolute insulin deficiency
 - Type 1A DM results from autoimmune beta-cell destruction, which leads to insulin deficiency.
 - Type 1B DM lacks immunologic markers indicative of an autoimmune destructive process of beta cells, but like type IA DM, it is a ketosis-prone insulin deficiency that develops by unknown mechanisms.
- Type 2 DM
 - A heterogeneous group of disorders characterized by variable degrees of insulin resistance, impaired insulin secretion, and increased glucose production
 - See Type 2 Diabetes Mellitus.

Epidemiology

- DM
 - Worldwide prevalence: dramatic increase over past 2 decades and projected to increase further
 - Prevalence
 - By age (in 2000)
 - <20 years: 190 cases per 100,000 persons</p>
 - ≥20 years: 8,600 cases per 100,000 persons
 - >65 years: 20,100 cases per 100,000 persons
 - By sex
 - Most age ranges: equal in men and women
 - >60 years: slightly greater in men than women
 - By race (in the U.S. in 2000)
 - African Americans: 13,000 cases per 100,000 persons
 - Hispanic Americans: 10,200 cases per 100,000 persons
 - Native Americans (American Indians and Alaska natives): 15,500 cases per 100,000 persons
 - Non-Hispanic white persons: 7,800 cases per 100,000 persons

- Type 1 DM
 - Incidence varies by geography.
 - Believed to reflect the frequency of high-risk human leukocyte antigen (HLA) alleles among ethnic groups in different geographic locations
 - Scandinavia: highest incidence (e.g., Finland, 35 cases per 100,000 persons yearly)
 - Northern Europe and U.S.: intermediate rate (8–17 cases per 100,000 persons yearly)
 - Pacific Rim: much lower rate (Japan and China, 1–3 cases per 100,000 persons yearly)
 - o Age of onset
 - Can develop at any age, but often in childhood or early teens
 - Usually <30 years of age
 - Of persons who develop DM after 30 years of age, ~5–10% have type 1A DM.

Risk Factors

0

- Genetic susceptibility to type 1A DM involves multiple genes.
 - The major susceptibility gene is located in HLA region on chromosome 6.
 - Polymorphisms in the HLA complex account for 40–50% of genetic risk.
 - The HLA region contains genes that encode class II major histocompatibility complex molecules that are involved in initiating the immune response.
 - Most persons with type 1A DM have the HLA DR3 and/or DR4 haplotype.
 - Haplotypes most strongly associated
 - DQA1*0301
 - DQB1*0302
 - DQA1*501
 - DQB1*0201
 - These haplotypes are present in 40% of children with type 1A DM versus 2% of the normal U.S. population.
 - At least 17 additional genetic loci contribute to susceptibility.
 - Polymorphisms in the promoter region of the insulin gene account for 10% of the predisposition to type 1A DM.
 - Genes that confer protection against development of type 1A DM
 - Haplotypes
 - DQA1*0102
 - DQB1*0602
 - Present in 20% of U.S. population
 - Extremely rare in type 1A DM (<1%)
 - Risk of type 1A DM is increased 10-fold in relatives of persons with the disease.
 - Most persons with predisposing haplotypes do not develop diabetes.
 - Most persons with type 1A DM do not have an affected first-degree relative.
 - Concordance in identical twins is 30–70%.

Etiology

- Type 1A DM
 - Results from synergistic effects of genetic, environmental, and immunologic factors that ultimately destroy pancreatic beta cells
 - Genetic susceptibility (see Risk Factors)

- Environmental triggers
 - Putative triggers: viruses (especially coxsackie and rubella), bovine milk proteins, nitrosourea compounds
 - Event may precede onset of DM by several years.
- Immunologic factors
 - Abnormalities in the humoral and cellular arms of the immune system that have been identified include:
 - Islet-cell autoantibodies
 - Activated lymphocytes in the islets, peripancreatic lymph nodes, and systemic circulation
 - T lymphocytes that proliferate when stimulated with islet proteins
 - Release of cytokines within the islets
 - Precise mechanisms of beta-cell death are not known but may involve formation of nitric oxide metabolites, apoptosis, and direct CD8+ T-cell cytotoxicity.
- Temporal development of type 1A DM
 - Persons with genetic susceptibility have normal beta-cell mass at birth but begin to lose beta cells through autoimmune destruction over months to years.
 - This autoimmune process is thought to be triggered by infectious or environmental stimulus and sustained by beta-cell-specific antigens.
 - Beta-cell mass begins to decrease, and insulin secretion becomes progressively impaired.
 - The rate of decrease in beta-cell mass varies widely, with some patients progressing rapidly to clinical diabetes and others evolving more slowly.
 - Features of diabetes become evident once the majority (~80%) of beta cells are destroyed.
 - Transition from glucose intolerance to frank diabetes is triggered by events associated with increased insulin requirements (e.g., infections or puberty).
- Type 1B DM
 - Etiology unknown

Associated Conditions

- Celiac sprue
 - Autoimmune disorders
 - o Autoimmune thyroid disease
 - Adrenal insufficiency
 - Pernicious anemia
 - o Vitiligo
- Genetic syndromes sometimes associated with DM
 - Down's syndrome
 - o Klinefelter's syndrome
 - Turner's syndrome
 - Wolfram syndrome
 - Friedreich's ataxia
 - o Huntington's chorea
 - o Laurence-Moon-Biedl syndrome
 - o Myotonic dystrophy
 - o Porphyria
 - Prader-Willi syndrome
- Periodontal disease

- Psychiatric conditions (occur more frequently in DM than the general population)
 - o Depression
 - Eating disorders
 - Binge-eating disorders
 - Bulimia
 - Anorexia nervosa

Symptoms & Signs

- DM and its complications produce a wide range of symptoms and signs.
 - Symptoms secondary to acute hyperglycemia
 - May occur at any stage of the disease
 - Symptoms related to chronic complications
 - Begin to appear during second decade of hyperglycemia
 - The most common presentation in nonobese young persons is acute hyperglycemia.
 - Older persons may present with more insidious onset of symptoms, or rarely, may be identified by laboratory testing.

Hyperglycemia

- Symptoms
 - o **Polyuria**
 - Polydipsia
 - Weight loss
 - o Fatigue
 - o Weakness
 - o Blurry vision
 - Results from changes in water content of lens
 - Resolves as hyperglycemia is controlled
- Signs
 - Frequent superficial infections (vaginitis, fungal skin infections)
 - Slow healing of skin lesions after minor trauma

Historical features to assess

- In persons with newly diagnosed DM
 - Complete medical history, with emphasis on DM-relevant aspects
 - Weight
 - Family history of DM and its complications
 - Risk factors for cardiovascular disease
 - Exercise
 - Smoking
 - Ethanol use
 - Assess for symptoms or signs of acute hyperglycemia.
 - Screen for:
 - Chronic complications and conditions associated with DM
 - DM-related comorbid conditions (cardiovascular disease, hypertension, dyslipidemia)
- In persons with previously diagnosed DM
 - o All of the above **plus**

- Assessment of prior diabetes care (in established DM)
 - Type of therapy
 - Prior hemoglobin A_{1C} levels
 - Results of self-monitoring of blood glucose (SMBG)
 - Frequency of hypoglycemia
 - Presence of DM-specific complications
 - Assessment of patient's knowledge about diabetes

Complete physical examination

- Pay particular attention to:
 - Weight or body mass index
 - Funduscopic examination
 - Blood pressure determination, including orthostatic measurement when indicated
 Blood pressure >130/80 mmHg considered hypertension in DM
 - Careful examination of lower extremities to seek evidence of:
 - Sites of potential skin ulceration
 - Peripheral neuropathy
 - Vibratory sensation (128-MHz tuning fork at base of great toe)
 - Ability to sense touch with monofilament (5.07, 10-g monofilament)
 - Calluses
 - Superficial fungal infections
 - Nail disease
 - Foot deformities (e.g., hammer or claw toes and Charcot foot)
 - Peripheral pulses
 - Insulin injection sites
 - Teeth and gums
 - Periodontal disease is more frequent in DM.

Differential Diagnosis

Type 2 DM

- Common characteristics
 - o Development of DM after 30 years of age
 - Obese (80%)
 - Elderly persons may be lean.
 - May not require insulin initially
 - May have associated conditions (e.g., hypertension, cardiovascular disease, dyslipidemia, or polycystic ovary syndrome)
 - o Insulin resistance often associated with central obesity and hypertriglyceridemia

Patients who may be difficult to categorize unequivocally

- Some persons with phenotypic type 2 DM can present with diabetic ketoacidosis but lack autoimmune markers.
 - May require insulin initially, but can be transitioned to oral glucose-lowering agents after improving glycemic control
 - About 5–10% of patients with phenotypic appearance of type 2 DM:
 - Do not have absolute insulin deficiency at presentation
 - Have autoimmune markers (islet-cell or glutamic acid decarboxylase [GAD] autoantibodies) suggestive of type 1A DM

- Are much more likely to require insulin treatment within 5 years
- This condition is termed *autoimmune diabetes not requiring insulin at diagnosis* or *latent autoimmune diabetes of the adult.*

Other specific types of diabetes

- Maturity-onset diabetes of the young (MODY) and genetic defects of beta-cell function

 Characterized by mutations in:
 - Hepatocyte nuclear transcription factor (HNF) 4a (MODY 1)
 - Glucokinase (MODY 2)
 - HNF-1a (MODY 3)
 - Insulin promoter factor 1 (MODY 4)
 - HNF-1β (MODY 5)
 - NeuroD1 (MODY 6)
 - Mitochondrial DNA
 - Proinsulin or insulin conversion
 - Genetic defects in insulin action
 - Type A insulin resistance
 - Leprechaunism
 - Rabson-Mendenhall syndrome
 - Lipodystrophy syndromes
- Uncommon forms of immune-mediated diabetes
 - "Stiff-man" syndrome
 - Anti-insulin receptor antibodies
 - Diseases of the exocrine pancreas
 - Pancreatitis, pancreatectomy, neoplasia, cystic fibrosis, hemochromatosis, fibrocalculous pancreatopathy
- Endocrinopathies
 - Acromegaly, Cushing's syndrome, glucagonoma, pheochromocytoma, hyperthyroidism, somatostatinoma, aldosteronoma
- Drug- or chemical-induced
 - Vacor, pentamidine, nicotinic acid, glucocorticoids, thyroid hormone, diazoxide, β-adrenergic agonists, thiazides, phenytoin, interferon a, protease inhibitors, clozapine, beta blockers
- Infections
 - Congenital rubella, cytomegalovirus, coxsackievirus
- Gestational diabetes mellitus
- Other genetic syndromes sometimes associated with diabetes (see Associated Conditions)
 - Down's syndrome, Klinefelter's syndrome, Turner's syndrome, Wolfram syndrome, Friedreich's ataxia, Huntington's chorea, Laurence-Moon-Biedl syndrome, myotonic dystrophy, porphyria, Prader–Willi syndrome

Diagnostic Approach

National Diabetes Data Group and World Health Organization criteria for DM

- Based on the following premises:
 - Fasting plasma glucose (FPG) and response to oral glucose load vary among normal persons.

- DM is defined as the level of glycemia at which diabetes-specific complications occur rather than as deviations from the population-based mean.
 - For example, the prevalence of retinopathy in Native Americans (Pima Indian population) begins to increase at an FPG >6.4 mmol/L (116 mg/dL).
- Diagnostic criteria for diabetes
 - Symptoms of diabetes plus random blood glucose concentration >11.1 mmol/L (200 mg/dL)
 - Random: without regard to time since last meal
 - **Or** FPG level >7.0 mmol/L (126 mg/dL)
 - Fasting: no caloric intake for at least 8 hours
 - Or 2-hour plasma glucose level >11.1 mmol/L (200 mg/dL) during oral glucose tolerance test
 - Test should be performed by using a glucose load containing the equivalent of 75 g of anhydrous glucose dissolved in water.
 - Not recommended for routine clinical use
 - In the absence of unequivocal hyperglycemia and acute metabolic decompensation, criteria should be confirmed by repeated testing on a different day.
- IFG
 - Glucose level >5.6 mmol/ L (100 mg/dL) but <7.0 mmol/L (126 mg/dL)
- IGT
 - Glucose level 7.8–11.1 mmol/L (140–200 mg/dL) 2 hours after a 75-g oral glucose load

Laboratory and additional assessments

- Assess diagnostic criteria for DM.
- Assess degree of glycemic control by measuring hemoglobin A_{1C}.
- Screen for DM-associated conditions (e.g., microalbuminuria, dyslipidemia, thyroid dysfunction).
- Perform cardiac stress testing to screen for asymptomatic coronary artery disease if the patient is at high risk for cardiovascular disease.

Laboratory Tests

Plasma glucose

- FPG
 - Reliable and convenient for diagnosing DM in asymptomatic persons
 - The FPG level will usually range between 300 and 500 mg/dL in acute presentations of type 1 DM.
- Classification of glucose tolerance
 - Normal: FPG level <5.6 mmol/L (100 mg/dL)
 - IFG: FPG level >5.6 mmol/L (100 mg/dL) but <7.0 mmol/L (126 mg/dL)
 - Comparable to IGT (plasma glucose level 7.8–11.1 mmol/L (140–200 mg/dL)
 2 h after a 75-g oral glucose load)
 - Diagnosis of DM: FPG level >7.0 mmol/L (126 mg/dL)
 - In the absence of unequivocal hyperglycemia and acute metabolic decompensation, criteria should be confirmed by repeated testing on a different day.
- A random plasma glucose level >11.1 mmol/L (200 mg/dL) accompanied by classic symptoms of DM is sufficient for diagnosis of DM.

Hemoglobin A_{1C}

- Standard method for assessing long-term glycemic control
- Should be measured in all persons with DM during the initial evaluation and as part of comprehensive diabetes care
- Notes on use
 - \circ Hemoglobin A_{1C} measurement is not currently recommended for diagnosis.
 - $_{\rm O}$ In standardized assays, the hemoglobin $A_{\rm 1C}$ value approximates the following mean plasma glucose values.
 - 6%: 7.5 mmol/L (135 mg/dL)
 - 7%: 9.5 mmol/L (170 mg/dL)
 - 8%: 11.5 mmol/L (205 mg/dL)
 - A 1% increase in the hemoglobin A_{1C} level translates into a 2.0-mmol/L (35-mg/dL) increase in the mean glucose level.
 - Significant interassay variations exist.
 - Assay methods must be similar in order to compare with prior measurements.
 - $_{\rm O}$ Hemoglobinopathies, anemias, and uremia may interfere with hemoglobin $A_{\rm 1C}$ results.

Immunologic markers

- Primarily used in initial evaluation for possible type 1 DM
- Islet-cell autoantibodies
 - Composite of several different antibodies directed at pancreatic islet molecules (e.g., GAD, insulin, IA-2/ICA-512, and an islet ganglioside)
 - \circ $\,$ Marker of autoimmune process of type 1A DM $\,$
 - Present in:
 - >75% of patients with new-onset type 1A DM
 - 3–4% of first-degree relatives of persons with type 1A DM
 - Presence predicts risk for type 1A DM.
 - Persons with impaired insulin secretion after intravenous glucose tolerance testing: >50% 5-year risk
 - Without impaired insulin secretion: <25% 5-year risk
- Assays for autoantibodies to GAD-65 are commercially available and can be helpful in confirming a diagnosis of type 1A DM.

Other laboratory tests

- C-peptide measurement
 - Low level confirms need for insulin.
 - May help distinguish type 1 DM from type 2 DM in some circumstances

Screening laboratory tests for DM-associated conditions

- Microalbuminuria
 - Spot urine microalbumin/creatinine ratio (beginning 5 years after onset of type 1 DM)
 - Microalbuminuria is defined by a microalbumin/creatinine ratio >30 mg/g creatinine.
- Dyslipidemia
 - Fasting lipid profile (annual)
- Thyroid dysfunction
 - Serum thyroid-stimulating hormone

Imaging

• Not indicated

Diagnostic Procedures

• Not indicated

Treatment Approach

Goals of therapy

- Eliminate symptoms related to hyperglycemia.
- Achieve sustained euglycemia.
- Avoid hypoglycemia.
- Reduce or eliminate long-term microvascular and macrovascular complications.
- Allow the patient to maintain as normal a lifestyle as possible.

Factors to consider in developing goals of therapy

- Age
- Ability to understand and implement complex treatment regimen
- Presence and severity of complications
- Ability to recognize hypoglycemic symptoms
- Presence of other medical conditions or treatments that might alter response to therapy
- Lifestyle and occupation (e.g., possible consequences of experiencing hypoglycemia on the job)
- Level of support available from family and friends
- Life expectancy at time of diagnosis
- Presence of microvascular complications

Steps needed to reach goals

- Identify target level of glycemic control for each patient.
 - Ideal goals for glycemic control
 - Preprandial plasma glucose level: 5.0–7.2 mmol/L (90–130 mg/dL)
 - Peak postprandial plasma glucose level: <10 mmol/L (<180 mg/dL)
 - Hemoglobin A_{1C} level: <7.0%
- Provide patient with educational and pharmacologic resources necessary to reach goal.
- Monitor/treat DM-related complications.

Comprehensive care

- Best accomplished by a multidisciplinary team approach
 - Primary care provider and/or endocrinologist or diabetologist
 - Certified diabetes educator
 - o **Nutritionist**
 - Subspecialists with experience in treating DM-related complications
 - Neurologist
 - Nephrologist
 - Vascular surgeon

- Cardiologist
- Ophthalmologist
- Podiatrist

Patient education

- Diabetes educator
 - A health care professional (nurse, dietician, or pharmacist) with specialized patient education skills
 - Certified in diabetes education (e.g., American Association of Diabetes Educators)
- Topics important for optimal care
 - Nutrition
 - o SMBG
 - o Urine ketone monitoring
 - o Insulin administration
 - o Guidelines for diabetes management during illnesses
 - Management of hypoglycemia
 - Foot and skin care
 - o Diabetes management before, during, and after exercise
 - Risk factor-modifying activities

Other steps

- Insulin replacement
- Treatment of cardiovascular risk factors

Specific Treatments

Medical nutrition therapy

- Nutritional recommendations for all persons with DM (see Table 1)
 - o **Protein**
 - ~15–20% of kcal/d
 - ~10% in patients with nephropathy

Table 1: Nutritional Recommendations for All Persons with Diabetes

-Protein to provide \sim 15–20% of kcal/d (\sim 10% for those with nephropathy)

-Saturated fat to provide <10% of kcal/d (<7% for those with elevated LDL)

-Polyunsaturated fat to provide ~10% of kcal; avoid trans-unsaturated fatty acids

-60–70% of calories to be divided between carbohydrate and monounsaturated fat, based on medical needs and personal tolerance; glycemic index of food not as important

-Use of caloric sweeteners, including sucrose, is acceptable.

-Fiber (20–35 g/d) and sodium (\leq 3000 mg/d) levels as recommended for the general healthy population

-Cholesterol intake \leq 300 mg/d

-The same precautions regarding alcohol use in the general population also apply to individuals with diabetes.

Note : LDL, low-density lipoprotein.

Adapted from R Farkas-Hirsch, *Intensive Diabetes Management*, Alexandria, VA, American Diabetes Association, 1998; and American Diabetes Association: Diabetes Care 25:S1, 2002.

- Saturated fat
 - <10% of kcal/d</p>
 - <7% in patients with elevated low-density lipoprotein cholesterol level
- Polyunsaturated fat
 - ~10% of kcal/d
 - Avoid trans-unsaturated fatty acids.
- \circ 60–70% of calories divided between carbohydrate and monounsaturated fat
 - Based on medical needs and personal tolerance
 - Glycemic index of food is not as important.
- Use of caloric sweeteners, including sucrose, is acceptable.
- Fiber : 20-35 g/d
- Sodium: ≤3,000 mg/d
- Cholesterol: $\leq 300 \text{ mg/d}$
- o Alcohol
 - Same precautions as in general population
 - May increase risk for hypoglycemia and should be taken with food

Exercise

- Avoid exercise-related hyper- or hypoglycemia.
 - Monitor blood glucose before, during, and after exercise.
 - Delay exercise if blood glucose level is >14 mmol/L (250 mg/dL) or <5.5 mmol/L (100 mg/dL), or if ketones are present.
 - Monitor glucose level during exercise and ingest carbohydrate to prevent hypoglycemia.
 - Decrease insulin doses (based on previous experience) before exercise and inject insulin into nonexercising area.
 - Learn individual glucose responses to different types of exercise and increase food intake for up to 24 hours after exercise, depending on intensity and duration of exercise.
- Relative contraindication: untreated proliferative retinopathy
- May lead to vitreous hemorrhage or retinal detachment
- Consider formal exercise tolerance testing for:
 - Age >35 years
 - DM duration >15 years
 - Microvascular complications
 - Peripheral arterial disease
 - o Other risk factors for coronary artery disease
 - Autonomic neuropathy

Insulin preparations

- Current insulin preparations
 - Generated by recombinant DNA technology
 - Amino-acid sequence of human insulin or variations
 - Beef or pork insulins are no longer used.
 - All insulin in the U.S.: U-100 (100 U/mL)
- Short-acting
 - o Lispro
 - Onset: <0.25 hour
 - Peak: 0.5–1.5 hours
 - Effective duration: 3–4 hours

- Insulin aspart
 - Onset: <0.25 hour
 - Peak: 0.5–1.5 hours
 - Effective duration: 3–4 hours
- o Regular
 - Onset: 0.5–1 hour
 - Peak: 2–3 hours
 - Effective duration: 3–6 hours
- Intermediate-acting
 - o NPH
 - Onset: 2–4 hours
 - Peak: 6–10 hours
 - Effective duration: 10–16 hours
 - o Lente
 - Onset: 3–4 hours
 - Peak: 6–12 hours
 - Effective duration: 12–18 hours
- Long-acting
 - o **Ultralente**
 - Onset: 6–10 hours
 - Peak: 10–16 hours
 - Effective duration: 18–20 hours
 - o Glargine
 - Onset: 4 hours
 - Peak: minimal
 - Effective duration: 24 hours
- Combinations
 - 75/25 (75% protamine lispro, 25% lispro)
 - Onset: 0.5–1 hour
 - Peak: dual
 - Effective duration: 10–14 hours
 - o 70/30 (70% NPH, 30% regular)
 - Onset: 0.5–1 hour
 - Peak: dual
 - Effective duration: 10–16 hours
 - 50/50 (50% NPH, 50% regular)
 - Onset: 0.5–1 hour
 - Peak: dual
 - Effective duration: 10–16 hours

Insulin regimens

General

- Goal: insulin regimens that mimic physiologic insulin secretion (basal requirements and postprandial spikes)
 - o Basal requirements: intermediate- or long-acting insulins
 - Prandial insulin: short-acting
 - Lispro and insulin aspart: Inject just before or just after a meal.
 - Regular insulin: Inject 30–45 minutes before a meal.
- The most physiologic regimens entail:
 - More frequent insulin injections

- Greater reliance on short-acting insulin
- More frequent capillary plasma glucose measurements
- Daily insulin requirements
 - Patients with type 1 DM require 0.5–1.0 U/kg per day of insulin, divided into multiple doses.
 - \circ ~40–50% should be given as basal insulin.
 - Initial insulin-dosing regimens should be conservative.

Multiple-component insulin regimens (multiple daily injections)

- Combination of basal insulin, preprandial short-acting insulin, and changes in short-acting insulin doses to accommodate results of frequent SMBG, anticipated food intake, and physical activity
- Numerous variations of these regimens exist that can be optimized for individual patients.
 SMBG 4–8 times per day is absolutely essential for this type of regimen.
 - Numerous variations exist; optimize for individual patients.
- Example 1
 - Basal insulin using glargine at bedtime
 - Preprandial lispro or insulin aspart
 - Preprandial dose based on individualized algorithms that integrate preprandial glucose level and anticipated carbohydrate intake
- Example 2
 - Basal insulin using 2 equal doses of ultralente (breakfast and evening; 10–12 hours apart)
 - Preprandial lispro or insulin aspart
- Example 3
 - Basal insulin using intermediate insulin at bedtime, a small dose of intermediate insulin at breakfast (20–30% of bedtime dose)
 - Preprandial short-acting insulin

Intermediate-acting insulin mixed with short-acting insulin

- Twice-daily injections of intermediate-acting insulin (NPH or lente) mixed with a short-acting insulin before morning and evening meal
 - o Two-thirds of total daily insulin dose in morning
 - About two-thirds given as intermediate-acting insulin
 - One-third as short-acting
 - One-third before evening meal
 - About one-half as intermediate-acting insulin
 - One-half as short-acting
 - Moving intermediate insulin from before the evening meal to bedtime may:
 - Avoid nocturnal hypoglycemia
 - Provide more insulin as glucose levels increase in early morning (dawn phenomenon)
 - Adjust insulin dose on the basis of SMBG results, with the following assumptions.
 - FPG level is primarily determined by the prior evening intermediate-acting insulin dose.
 - Pre-lunch glucose level is a function of the morning short-acting insulin dose.
 - Pre-supper glucose level is a function of the morning intermediate-acting insulin dose.
 - Bedtime glucose level is a function of the pre-supper short-acting insulin dose.

Continuous subcutaneous insulin infusion (CSII)

- Also referred to as insulin pump
- Sophisticated insulin infusion devices that can accurately deliver small doses of insulin (microliters per hour)
 - Lispro or insulin aspart is most often used in CSII.
- Multiple basal infusion rates can be programmed to:
 - o Accommodate nocturnal versus daytime basal insulin requirement
 - Alter infusion rate during exercise
 - Select different waveforms of insulin infusion
- Preprandial insulin ("bolus") is delivered on the basis of instructions from the patient, who follows individualized algorithms that account for the preprandial plasma glucose level and anticipated carbohydrate intake.
 - Requires a health professional with considerable experience with insulin infusion devices and frequent patient interactions with diabetes management team
- Unique complications of CSII
 - Infection at infusion site
 - o Unexplained hyperglycemia due to obstruction of infusion set
 - o Diabetic ketoacidosis if pump becomes disconnected

Intensive management

- Requires multiple resources, including:
 - Thorough and continuing patient education
 - Comprehensive recording of plasma glucose measurements and nutrition intake by the patient
 - Variable insulin regimen that matches glucose intake and insulin dose
 - Insulin regimens usually include multiple-component insulin regimens, multiple daily injections, or insulin infusion devices
- Goal: achieve euglycemia or near-normal glycemia
- Indications
 - Otherwise healthy adults with type 1 DM (selected adolescents and older children)
 - Purposeful, therapeutic attempt to avoid or lessen microvascular complications
 - All pregnant women with DM
 - All women with DM who are planning pregnancy
 - Management of labile DM
 - o Availability of health care professionals with appropriate expertise
 - o Patients who have had kidney transplantation for diabetic nephropathy
 - \circ $\,$ Strongly encouraged in patients with newly diagnosed type 1 DM $\,$
- Benefits
 - Reduction in microvascular complications
 - Possible delay or reduction in macrovascular complications
 - The patient experiences greater control over his or her diabetes.
 - Improved sense of well-being, greater flexibility in timing and content of meals, and capability to alter insulin dosing with exercise
 - In pregnancy, reduces risk of fetal malformations and morbidity
 - Not associated with greater degree of side effects, such as hypoglycemia or weight gain
- Complications
 - Increased economic costs
 - Greater demands on patient

Amylin analogue therapy

- Amylin is a 37-amino-acid peptide that is expressed almost exclusively within pancreatic beta cells and is co-secreted with insulin in response to a glucose load.
- Patients with type 1 DM have an absolute deficiency of amylin (and insulin).
- Amylin has the following effects on glucose homeostasis.
 - Complements the actions of insulin in postprandial glucose homeostasis via suppression of postprandial glucagon secretion and inhibition of gastric emptying
 - Mitigates the influx of endogenous (liver-derived) and exogenous (meal-derived) glucose into the circulation
- Pramlintide
 - A human amylin analogue that may be used as an adjunct to insulin in type 1 DM
 - Primary benefit may be improved control of postprandial glucose excursions.
 - $_{\odot}$ Dosing: Initiate at 15 μg SC, then increase in 15- μg increments to a maintenance dose of 30–60 μg SC before meals, separate from insulin.
 - $\circ~$ Efficacy: ~0.6 % reduction in hemoglobin A_{1C}
 - o Side effects: transient mild to moderate nausea and anorexia
 - o Contraindications: gastroparesis or inability to monitor for hypoglycemia

Emerging therapies

- Whole-pancreas transplantation
 - Conventionally performed concomitantly with renal transplantation
 - May normalize glucose tolerance in type 1 DM
 - ~80% of simultaneous pancreas and kidney transplants remain functioning at 1 year.
 - Major disadvantage is immunosuppression.
- Pancreatic islet beta-cell transplantation
 - Less invasive alternative to whole-pancreas transplantation
 - Rates of long-term insulin independence has improved in some centers recently.
 - Current barriers to more widespread use of this approach include poor islet beta-cell yield and tissue availability.
- Inhaled insulin and additional insulin analogues are in advanced stages of clinical trials.
- Aminoguanidine, an inhibitor of formation of advanced glycosylation end products, and inhibitors of protein kinase C may reduce DM complications.
- Closed-loop pumps that infuse appropriate amount of insulin in response to changing glucose levels are potentially feasible.

The hospitalized patient

Goals of diabetes management during hospitalization

- Avoid hypoglycemia.
- Optimize glycemic control.
- Maintain near-normal glucose levels with insulin.
- Transition the patient back to outpatient diabetes treatment regimen.
- Optimal glycemic control in hospitalized patient
 - Preprandial glucose level: <6.1 mmol/L (100 mg/dL)
 - Postprandial glucose level: <10 mmol/L (180 mg/dL)

Perioperative management

- Assessment
 - $_{\odot}$ Measure hemoglobin A_{1C} , to assess glycemic control; optimize before surgery, if possible.
 - Monitor electrolytes, renal function, and intravascular volume.
 - Consider preoperative cardiovascular evaluation, even in asymptomatic persons.
- Treatment regimens
 - o Insulin infusion
 - Preferred method for managing type 1 DM in the perioperative period, especially if patient is receiving nil by mouth
 - Initial infusion rate: 0.5–5 U/h; dependent on degree of insulin resistance and clinical situation
 - Adjustment of infusion rate by staff, based on algorithm or in consultation with physician
 - Rate adjusted to maintain plasma glucose within optimal range; based on hourly capillary glucose measurements
 - Can be temporarily discontinued if hypoglycemic; can resume at lower infusion rate once plasma glucose level exceeds 5.6 mmol/L (100 mg/dL)
 - Subcutaneous insulin regimens
 - Reduced dose of subcutaneous, long-acting insulin may suffice if:
 - Brief diagnostic or surgical procedure
 - Local or regional anesthesia
 - Dose of long-acting insulin should be reduced by 30–40%.
 - Short-acting insulin is either held or reduced by 30–40%.
 - Glucose may be infused to prevent hypoglycemia.

Total parenteral nutrition (TPN)

- Greatly increases insulin requirements
 - Intravenous insulin infusion (rather than subcutaneous) is the preferred mode of insulin administration.
 - Use separate insulin infusion for rapid titration to required dose.
 - After determination of the total insulin dose, continue to administer insulin as a separate infusion (preferred) or add insulin directly to TPN solution.
 - Subcutaneous insulin regimens
 - Doses must be adjusted because TPN or enteral nutrition is most often given continuously.

Monitoring

Guidelines for ongoing medical care

- Monitor the level of glycemic control with:
 - SMBG (individualized frequency)
 - Hemoglobin A_{1C} testing (2–4 times yearly)
- Patient education in diabetes management (annual)
- Medical nutrition therapy and education (annual)
- Surveillance for complications
 - o Retinopathy
 - Eye examination (annual)

- The American Diabetes Association (ADA) recommends the following ophthalmologic examination schedule.
 - Onset of DM at ≤29 years: initial examination within 3–5 years of diagnosis
 - Onset of DM at ≥30 years: initial examination at time of diabetes diagnosis
 - Women with DM contemplating pregnancy: examination before conception and during first trimester
- o Neuropathy
 - Foot examination (1–2 times yearly by physician; daily by patient)
 - The ADA advises visual foot inspection for potential problems at each outpatient visit.
- Nephropathy (annually)
 - If no protein on routine urinalysis: Measure microalbuminuria with microalbumin/creatinine ratio in spot urine.
 - If proteinuria on urinalysis: Quantify amount of protein by standard urine protein measurements.
 - Screening should commence 5 years after onset of type 1 DM.
- Blood pressure measurement (quarterly)
- Lipid profile (annually)
- Influenza vaccine (annually)
- Pneumococcal and tetanus immunizations (at recommended intervals)
- Surveillance for comorbid conditions
- Periodic screening for thyroid disease, depression, and sexual dysfunction
- Consider antiplatelet therapy (aspirin, 75–162 mg/d) for the following.
 - Secondary prevention of macrovascular disease in patients with diabetes with a history of myocardial infarction, vascular bypass, cerebrovascular disease, peripheral vascular disease, claudication, or angina
 - Primary prevention of macrovascular disease in patients with diabetes and an additional cardiovascular risk factor (age >40 years, smoking, hypertension, obesity, hyperlipidemia, albuminuria, or family history of coronary artery disease)
- Screening cardiac stress test should be performed in the following situations.
 - o Symptoms of cardiac disease
 - History of peripheral or cerebrovascular disease
 - Sedentary lifestyle
 - Age >35 years
 - Plans to begin a vigorous exercise program
 - Abnormal resting electrocardiogram

SMBG

- The standard of care in diabetes management
- Provides an assessment of short-term glycemic control
- Performed by measurement of fingerstick capillary plasma glucose
 - Frequency of SMBG measurements should be individualized and adapted to the goals of diabetes care.
 - Standard: 4–8 times per day, to estimate and select mealtime boluses of short-acting insulin and to modify long-acting insulin doses
- Data obtained from SMBG is used for the following purposes.
 - To estimate appropriate doses of preprandial insulin, based on current level of glycemia
 - To identify glycemic patterns to adjust daily insulin regimen
 - To identify or prevent hypoglycemia

- Continuous blood glucose monitoring
 - 2 recently approved by the U.S. Food and Drug Administration
 - Glucowatch: uses iontophoresis to assess glucose in interstitial fluid
 - Minimed continuous glucose monitoring system: an indwelling subcutaneous catheter used to monitor interstitial fluid glucose
 - Not yet routinely used
- Ketones
 - Indicator of early diabetic ketoacidosis
 - Patients should measure urine ketones at home in the following situations.
 - Plasma glucose level consistently >16.7 mmol/L (300 mg/dL)
 - During a concurrent illness
 - Such symptoms as nausea, vomiting, or abdominal pain
 - $\circ~$ Blood measurement of β -hydroxybutyrate is preferred over urine testing in the clinical setting.

Assessment of long-term glycemic control

- Measurement of glycosylated hemoglobin (hemoglobin A_{1C})
 - Standard method for assessing long-term glycemic control
 - Reflects glycemic history over previous 2–3 months
 - Measure during initial evaluation and as part of comprehensive diabetes care.
- The ADA recommends measurement of hemoglobin A_{1C}:
 - Every 3 months in most patients (i.e., those whose therapy has changed, or who are not meeting glycemic goals)
 - Twice per year in patients who are meeting treatment goals and have stable glycemic control
- Alternative indicator of glycemic control
 - Fructosamine assay: degree of glycation of albumin
 - Used when hemoglobin A_{1C} measurement is inaccurate (hemolytic anemia, hemoglobinopathies)
 - Reflects glycemic status over prior 2 weeks
 - Current consensus statements do not favor use.
 - Not known whether accurately predicts complications of DM

Complications

Acute complications

- Diabetic ketoacidosis
 - See Diabetic Ketoacidosis for details.
 - Hyperglycemic hyperosmolar state
 - Primarily seen in patients with type 2 DM
 - See Hyperosmolar Hyperglycemic State for details.

Chronic complications

- Responsible for majority of morbidity and mortality associated with DM
- Leading cause of adult blindness, nontraumatic lower-extremity amputation, and end-stage renal disease in the U.S.
- Risk increases with duration of hyperglycemia.
 - Usually becomes apparent in second decade of hyperglycemia

Microvascular

- Eye disease
 - Retinopathy (nonproliferative or proliferative)
 - See Diabetic Retinopathy for details.
 - o Macular edema
 - Other nonvascular eye disease (cataracts, glaucoma)
- Neuropathy
 - Sensory and motor (mononeuropathy and polyneuropathy)
 - o Autonomic
 - See Diabetic Neuropathy for details.
- Nephropathy
 - See Diabetic Nephropathy for details.

Macrovascular

- See Cardiovascular Complications of Diabetes Mellitus for details.
- Coronary artery disease
- Peripheral vascular disease
- Cerebrovascular disease

GI

- Gastroparesis
- Diarrhea
- See Diabetic Neuropathy for details.

Genitourinary

• See Diabetic Neuropathy for details.

Lower extremity

- Amputation
 - DM is the leading cause of nontraumatic lower-extremity amputation in the U.S.
- Foot ulcers and infections
 - The interaction of several pathogenic factors promote development.
 - Neuropathy
 - Disordered proprioception
 - Abnormal foot biomechanics
 - Peripheral arterial disease
 - Poor wound healing
 - \circ Approximately 15% of patients with DM develop a foot ulcer.
 - A significant subset undergo amputation; risk is 14–24% with that ulcer or subsequent ulcers.
- Risk factors for foot ulcers or amputations
 - Male sex
 - DM >10 years
 - o Peripheral neuropathy
 - Abnormal structure of foot (bony abnormalities, callus, thickened nails)
 - Peripheral arterial disease

- o Smoking
- History of previous ulcer or amputation
- Poor glycemic control

Infectious

- Persons with diabetes have a greater frequency and severity of infection.
 - o Osteomyelitis
 - o Pneumonia
 - Urinary tract infections
 - Skin and soft-tissue infections
 - Several rare infections occur almost exclusively in DM.
 - Rhinocerebral mucormycosis
 - Emphysematous infections of gall bladder and urinary tract
 - "Malignant" or invasive otitis externa
 - Fournier's syndrome, a necrotizing fasciitis most commonly confined to the groin

Dermatologic

- Common features
 - Protracted wound healing
 - Skin ulcerations
 - Xerosis and pruritus
- Diabetic dermopathy (pigmented pretibial papules or "diabetic skin spots")
- Bullous diseases (shallow pretibial ulcerations or erosions)
- Necrobiosis lipoidica diabeticorum
 - Rare disorder that predominantly affects young women with type 1 DM, neuropathy, and retinopathy
 - Begins in the pretibial region as an erythematous plaque or papules that gradually enlarge, darken, and develop irregular margins, with atrophic centers and central ulceration
 - May be painful
- Granuloma annulare
- Scleredema
- Lipoatrophy and lipohypertrophy
 - Can occur at insulin injection sites
 - Unusual with human insulin

Prognosis

- Prognosis is variable.
 - Overall, the risk for death among diabetic persons is ~2 times that of people without diabetes.
 - Heart disease: leading cause of death (see Cardiovascular Complications of Diabetes Mellitus)
 - Death rates due to heart disease are 2–4 times higher in adults with diabetes than adults without diabetes.
 - Prognosis if coronary artery disease or myocardial infarction is present is worse than for nondiabetic persons.
 - Coronary artery disease is more likely to involve multiple vessels.

- After controlling for all known cardiovascular risk factors, type 2 DM increases the cardiovascular death rate 2-fold in men and 4-fold in women.
- o Stroke
 - Risk of stroke is 2–4 times higher in adults with diabetes than adults without diabetes.
- Approximately 65% of deaths in diabetic persons are due to heart disease and stroke (macrovascular complications).
- Diabetic persons are 25 times more likely to become legally blind than are persons without DM (see Diabetic Retinopathy).
- Diabetic nephropathy is the leading cause of DM-related morbidity and mortality.
 - Proteinuria/nephropathy in DM is associated with:
 - Markedly reduced survival
 - Increased risk of cardiovascular disease
 - Atherosclerosis is the leading cause of death in diabetic patients receiving dialysis.
- Intensive diabetes management and improved glycemic control (Diabetes Control and Complications Trial) can improve prognosis by:
 - Reducing microvascular complications
 - Possibly reducing or delaying macrovascular complications

Prevention

- No known prevention of type 1A DM in humans
 - Diabetes Prevention Trial—Type 1 concluded that administering insulin to high-risk persons did not prevent type 1A DM.
- Screening
 - A number of immunologic markers for type 1 DM are becoming available.
 - Their routine use is discouraged pending identification of clinically beneficial interventions for persons at high risk for type 1 DM.

ICD-9-CM

- 250._1 Diabetes mellitus, (specific complication specified by fourth digit), type I [juvenile type], not stated as uncontrolled
- 250._3 Diabetes mellitus, (specific complication specified by fourth digit), type I [juvenile type], uncontrolled
- 250.01 Diabetes mellitus without mention of complication, type I [juvenile type], not stated as uncontrolled
- 250.03 Diabetes mellitus without mention of complication, type I [juvenile type], uncontrolled

See Also

- Cardiovascular Complications of Diabetes Mellitus
- Carpal Tunnel Syndrome and Other Entrapment Neuropathies
- Diabetic Ketoacidosis
- Diabetic Nephropathy
- Diabetic Neuropathy
- Diabetic Retinopathy
- Metabolic Syndrome

- Polyglandular Failure Syndromes
- Type 2 Diabetes Mellitus

Internet Sites

- Professionals
 - o Clinical Practice Recommendations
 - American Diabetes Association
- Patients
 - Diabetes Type 1
 - MedlinePlus
 - Homepage American Diabetes Association

General Bibliography

- American Diabetes Association: Standards of medical care in diabetes. *Diabetes Care* 28 Suppl 1:S4, 2005 [PMID:15618112]
- American Diabetes Association: Standards of medical care in diabetes--2006. *Diabetes Care* 29 Suppl 1:S4, 2006 [PMID:16373931]
- Clement S et al: Management of diabetes and hyperglycemia in hospitals. *Diabetes Care* 27:553, 2004 [PMID:14747243]
- DeWitt DE, Hirsch IB: Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. *JAMA* 289:2254, 2003 [PMID:12734137]
- Fajans SS, Bell GI, Polonsky KS: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. *N Engl J Med* 345:971, 2001 [PMID:11575290]
- Franz MJ et al: Nutrition principles and recommendations in diabetes. *Diabetes Care* 27 Suppl 1:S36, 2004 [PMID:14693924]
- Garg SK, Hoff HK, Chase HP: The role of continuous glucose sensors in diabetes care. *Endocrinol Metab Clin North Am* 33:163, 2004 [PMID:15053901]
- Hirsch IB: Insulin analogues. N Engl J Med 352:174, 2005 [PMID:15647580]
- Langouche L et al: Intensive insulin therapy protects the endothelium of critically ill patients. *J Clin Invest* 115:2277, 2005 [PMID:16075063]
- Mackenbach JP: Income inequality and population health. BMJ 324:1, 2002 [PMID:11777781]
- Moghissi ES, Hirsch IB: Hospital management of diabetes. *Endocrinol Metab Clin North Am* 34:99, 2005 [PMID:15752924]
- Pugliese A: Genetics of type 1 diabetes. *Endocrinol Metab Clin North Am* 33:1, 2004 [PMID:15053891]
- Ruggles JA, Kelemen D, Baron A: Emerging therapies: controlling glucose homeostasis, immunotherapy, islet transplantation, gene therapy, and islet cell neogenesis and regeneration. *Endocrinol Metab Clin North Am* 33:239, 2004 [PMID:15053905]
- Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. *Nature* 414:799, 2001 [PMID:11742412]
- Whitehouse F et al: A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. *Diabetes Care* 25:724, 2002 [PMID:11919132]
- Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group: Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. *JAMA* 287:2563, 2002 [PMID:12020338]

PEARLS

- Type 1 DM is most common in children, but approximately 10% of patients with type 1 DM are diagnosed after 30 years of age.
- Discrepancies between SMBG results and hemoglobin A_{1C} values may be due to glycemic excursions at unmonitored times of the day.
- Falsely decreased hemoglobin A_{1C} values may be observed in hemoglobinopathies, hemolytic anemias, and pregnancy.
- Falsely elevated hemoglobin A_{1C} values may be observed in uremia, alcohol abuse, or iron deficiency.
- A low C-peptide level measured 1 year after the onset of diabetes likely indicates type 1 DM.
- Intensive management of DM, combined with optimal risk factor reduction, can greatly reduce the risk of diabetic complications.
- Comparable levels of glycemic control are achievable with CSII devices or multiple daily injections of insulin.
- MODY should be considered in young nonobese patients (<25 years) who present with mild hyperglycemia and autosomal dominant inheritance pattern of DM.