

Common Viral Respiratory Infections

(See also Harrison's Principles of Internal Medicine, 17th Edition, Chapter 31)

Definition

- Acute viral respiratory illnesses are among the most common of human diseases.
 - Account for one-half or more of all acute illnesses
 - Most common manifestation: the "common cold"
 - May also manifest as pharyngitis, croup, tracheitis, bronchiolitis, bronchitis, and pneumonia
- Common infectious agents include:
 - o Rhinovirus
 - o **Coronavirus**
 - See SARS (Severe Acute Respiratory Syndrome).
 - Respiratory syncytial virus (RSV)
 - Human metapneumovirus (HMPV)
 - o Parainfluenza virus
 - o Adenovirus
 - o Influenza virus
 - See Influenza.
 - Herpes simplex virus
 - see Herpes Simplex Virus Infections.
 - o Enterovirus
 - See Coxsackievirus and Echovirus Infections.

Epidemiology

Acute viral respiratory illnesses

- Incidence in the U.S.
 - o **Overall**
 - 3–5.6 cases per person per year
 - o Age
 - Rates highest among children <1 year of age (6.1–8.3 cases per year)
 - Rates remain high until the age of 6 years and then decrease.
 - In adults: 3–4 cases per person per year

Specific viral infections

Rhinovirus

- Prevalence
 - A major cause of the common cold
 - Isolated from 15–40% of adults with common cold–like illnesses

- Distribution: worldwide
- Age
 - Rates of infection are higher among infants and young children and decrease with increasing age.
 - Often introduced into families by preschool or grade-school children <6 years of age
 - 25–70% of initial illnesses in family settings lead to secondary cases.
 - \circ $\;$ Highest attack rates among the youngest siblings at home $\;$
 - Attack rates increase with family size.
- Seasonality
 - Infections occur throughout the year.
 - o Seasonal peaks in early fall and spring in temperate climates

Coronavirus

- Prevalence
 - Accounts for 10–35% of common colds, depending on the season
- Distribution: worldwide
- Age
 - Serum antibodies are acquired early in life and increase in prevalence with advancing age.
- Seasonality
 - Particularly prevalent in late fall, winter, and early spring (in contrast to rhinovirus)

RSV

- Prevalence/distribution
 - Annual epidemics worldwide
 - Last up to 5 months
 - Nearly 100% attack rates among susceptible infants and children in such settings as day-care centers
- Age
 - RSV is the major respiratory pathogen of young children and the foremost cause of lower respiratory disease in infants.
 - Illness rates highest among infants 1–6 months of age
 - Peaks between 2 and 3 months of age
 - Virtually all children infected by 2 years of age
 - Young infants and children
 - RSV accounts for:
 - 20–25% of hospital admissions for pneumonia
 - Up to 75% of cases of bronchiolitis
 - Half of infants at risk become infected during an epidemic.
 - Older children and adults
 - Reinfection with RSV is common.
 - Disease is milder than in infancy.
 - A common cold–like syndrome is frequent in adults.
 - Severe lower respiratory tract disease with pneumonitis may occur in elderly (often institutionalized) adults and immunocompromised patients.
- Seasonality
 - Late fall, winter, or spring
 - Rarely encountered during the summer

- Important nosocomial pathogen
 - Patients and up to 25–50% of staff members on pediatric wards are affected during outbreaks.

HMPV

- Prevalence
 - Serum antibodies present in nearly all children by the age of 5 years.
 - Accounts for 4% of respiratory tract illnesses requiring hospitalization of children and for a higher percentage of lower respiratory tract infections in nonhospitalized children
 - Accounts for 2–4% of acute respiratory illnesses in ambulatory adults and elderly patients
 - o Detected in a few cases of SARS, but role (if any) not established
 - Assessment of the overall significance of HMPV infections awaits large-scale epidemiologic studies.
 - Distribution: worldwide
- Age
 - Infections occur early in life.
 - Have been reported in a wide variety of age groups
- Seasonality
 - \circ $\;$ Most frequent during the winter $\;$

Parainfluenza virus

- Prevalence
 - Accounts for <10% of respiratory illnesses in adults
 - Important cause of respiratory illness in young children
 - Ranks second only to RSV as a cause of lower respiratory tract illness
 - Accounts for 4–22% of respiratory illnesses in children
 - Type 1: most common cause of croup (laryngotracheobronchitis) in children
 - Type 2: causes similar but generally less severe disease
 - Type 3: an important cause of bronchiolitis and pneumonia in infants
 - Type 4: associated illnesses generally mild
 - Unlike types 1 and 2, type 3 frequently causes illness during the first month of life, when passively acquired maternal antibody is still present.
 - Type 4 (subtypes 4A and 4B): reported less widely, probably because more difficult to culture
- Distribution: worldwide
- Age
 - o Infection acquired in early childhood
 - Most children have antibodies to serotypes 1, 2, and 3 by the age of 5 years.
- Seasonality
 - Types 1 and 2 cause epidemics during the fall, often in an alternate-year pattern.
 - Type 3 is detected during all seasons, with annual epidemics in the spring.

Adenovirus

- Prevalence
 - $_{\odot}$ $\,$ Accounts for ~10% of acute respiratory infections in children
 - Accounts for <2% of respiratory illnesses in civilian adults
 - Nearly 100% of adults have serum antibody to multiple serotypes.

- Types 1, 2, 3, and 5 are the most common isolates from children.
- Types 4 and 7 (also 3, 14, and 21) are associated with outbreaks of acute respiratory disease among military recruits in winter and spring.
- Age
 - Most frequently affects infants and children
- Seasonality
 - Infections occur throughout the year.
 - Most common from fall to spring

Risk Factors

- Rhinovirus infections
 - o Direct contact with infected secretions, usually respiratory droplets
 - Residence in a home with children <6 years of age who are in day care or school
 - Psychologically defined "stress" may contribute to development of symptoms.
 - Factors not associated with illness in volunteers include:
 - Cold exposure
 - Fatigue
 - Sleep deprivation
 - Severe RSV infection in children
 - o Prematurity
 - Congenital cardiac disease
 - o Bronchopulmonary dysplasia
 - Nephrotic syndrome
 - o Immunosuppression
 - Genetic factors (e.g., *CCR5* polymorphisms)
 - Co-infection with HMPV
 - Adenovirus infections
 - o Military recruits

Etiology

Rhinovirus

- Major cause of the common cold
- Virology
 - Picornaviridae family
 - Small (15- to 30-nm) nonenveloped viruses
 - Single-strand RNA genome
 - 102 distinct serotypes
- Transmission
 - o Spread through direct contact with infected secretions, usually respiratory droplets
 - Hand-to-hand contact with subsequent self-inoculation of conjunctival or nasal mucosa
 - Large- or small-particle aerosol
 - Environmental surfaces probably contribute to transmission.
- Infection
 - Attachment to specific cellular receptor
 - Most serotypes attach to intercellular adhesion molecule 1.
 - A few serotypes use the low-density lipoprotein receptor.

- o Mediators linked to development of signs and symptoms
 - Bradykinin
 - Lysylbradykinin
 - Prostaglandins
 - Histamine
 - Interleukins 1, 6, and 8
- Incubation period: generally 1–2 days
- Virus shedding
 - o Usually coincides with the onset of illness
 - \circ May begin shortly before symptoms develop
- Immunity
 - Mechanisms of immunity are not well worked out.
 - In some studies, the presence of homotypic antibody has been associated with significantly reduced rates of subsequent infection and illness.
 - Data conflict regarding the relative importance of serum and local antibodies in protection from infection.

Coronavirus

- Virology
 - Pleomorphic, single-strand RNA viruses
 - Diameter: 100–150 nm
 - Named for crownlike appearance caused by club-shaped projections that stud the viral envelope
 - 3 antigenic groups represented by prototypes:
 - HCoV-229E
 - HCoV-OC43
 - Coronavirus associated with SARS (SARS-CoV)
 - Strains HCoV-229E and HCoV-OC43 cause the common cold.
 - Mean incubation period: 3 days
- Viruses infect ciliated nasopharyngeal epithelial cells.
- Viral replication damages ciliated cells and leads to induction of chemokines and interleukins, resulting in symptoms.

RSV

•

- Virology
 - Paramyxoviridae family (genus *Pneumovirus*)
 - Enveloped virus, ~150–300 nm in diameter
 - Single-strand RNA genome
 - Helical nucleocapsid
 - So named because viral replication leads to fusion of neighboring cells into large multinucleated syncytia
- Transmission
 - Close contact with contaminated fingers or fomites and self-inoculation of conjunctiva or anterior nares
 - \circ Also spread by coarse aerosols produced by coughing or sneezing
 - Inefficiently spread by fine-particle aerosols

- Infection
 - The lipid envelope bears 2 glycoproteins.
 - G protein, by which the virus attaches to cells
 - F (fusion) protein, which facilitates cell entry by fusing host and viral membranes
- Incubation period: ~4–6 days
- Virus shedding
 - Lasts ≥2 weeks in children
 - Lasts for shorter periods in adults
 - o Prolonged for weeks in immunosuppressed patients
- Immunity
 - Incompletely understood
 - In volunteers, nasal immunoglobulin (Ig) A neutralizing antibody correlates more closely with protection than does serum antibody.
 - However, maternally acquired antibody seems to provide some protection from lower respiratory tract disease in infants.
 - Cell-mediated immunity appears to be an important mechanism of host defense against RSV.

HMPV

- Newly described viral respiratory pathogen
- Virology
 - Paramyxoviridae family (genus *Metapneumovirus*)
 - HMPV particles:
 - May be spherical, filamentous, or pleomorphic
 - Measure 60–280 nm in diameter
 - 2 genetic subgroups or genotypes

Parainfluenza virus

- Virology
 - Paramyxoviridae family (genera *Respirovirus* and *Rubulavirus*)
 - Diameter: 150–200 nm
 - Enveloped, single-strand RNA genome
 - Helical nucleocapsid
 - 4 distinct serotypes
 - Share certain antigens with other Paramyxoviridae, including mumps and Newcastle disease viruses
- Transmission
 - Spread through infected respiratory secretions
 - Primarily by person-to-person contact and/or by large droplets
- Incubation period
 - Varies from 3–6 days in experimental infections
 - o May be somewhat shorter for naturally occurring disease in children
- Immunity
 - Incompletely understood
 - Evidence suggests that immunity to infections with serotypes 1 and 2 is mediated by local IgA antibodies in the respiratory tract.
 - Passively acquired serum neutralizing antibodies also confer some protection against infection.
 - T cell-mediated immunity may also be important.

Adenovirus

- Virology
 - Complex linear double-strand DNA virus
 - Diameter: 70-80 nm
 - o Icosahedral shell composed of 20 equilateral triangular faces and 12 vertices
 - 6 subgenera (A through F)
 - 51 serotypes
- Transmission
 - o Inhalation of aerosolized virus
 - Inoculation of virus into conjunctival sacs
 - Probably spread by the fecal-oral route as well
- Immunity
 - Type-specific antibody generally develops after infection.
 - Antibody is associated with protection—albeit incomplete—against infection with the same serotype.

Symptoms & Signs

Rhinovirus infections

- Most frequent clinical manifestation: the common cold
 - o Symptoms
 - Rhinorrhea
 - Sneezing
 - Nasal congestion
 - Sore throat common
 - May be initial symptom
 - Systemic symptoms (malaise and headache) mild or absent
 - Fever unusual
 - Nasal mucosa
 - Edematous
 - Often hyperemic
 - Covered by a mucoid discharge during acute illness
 - Illness lasts 4–9 days.
 - Generally resolves spontaneously without sequelae, but may cause exacerbations of asthma and chronic pulmonary disease in adults
- Deeper respiratory tract disease (bronchitis, bronchiolitis, bronchopneumonia) reported in children, but not common
- Severe and even fatal pneumonia in immunosuppressed patients, particularly bone-marrow transplant (BMT) recipients

Coronavirus infections

- Common colds with clinical features similar to those of rhinovirus infections
 - Mean incubation period: 3 days (longer than rhinovirus infections)
 - Mean duration of illness: 6–7 days (shorter than rhinovirus infections)
 - Nasal discharge somewhat greater in colds induced by coronaviruses than in rhinovirus infection in some studies

- Other syndromes in which coronaviruses have been recovered
 - Pneumonia in infants
 - Lower respiratory tract disease in military recruits
 - Worsening chronic bronchitis

RSV infections

- Wide spectrum of respiratory illnesses
- Infants
 - o 25-40% of infections result in lower respiratory tract involvement.
 - Pneumonia
 - Bronchiolitis
 - Tracheobronchitis
 - Typical symptoms
 - Rhinorrhea
 - Low-grade fever
 - Mild systemic symptoms
 - Cough and wheezing common
 - Recovery gradual (over 1–2 weeks)
 - Severe illness
 - Tachypnea
 - Dyspnea
 - Frank hypoxia, cyanosis, and apnea can ensue.
 - Diffuse wheezing, rhonchi, and rales
- Adults
 - \circ $\;$ Most common symptoms: those of the common cold
 - Rhinorrhea
 - Sore throat
 - Cough
 - Occasional moderate systemic symptoms
 - Malaise
 - Headache
 - Fever
 - Pneumonia
 - May be severe in elderly persons, particularly nursing-home residents
 - Significant cause of morbidity and death in patients undergoing bone-marrow and solid-organ transplantation
 - o Other syndromes associated with RSV infection in adults
 - Sinusitis
 - Otitis media
 - Worsening of chronic obstructive and reactive airway disease

HMPV infections

0

- Spectrum of clinical illnesses similar to that in RSV infections
- Upper and lower respiratory tract illnesses
 - o Bronchiolitis
 - o Croup
 - o Pneumonia

Parainfluenza virus infections

- Young children
 - Initial infection with serotype 1, 2, or 3 usually associated with acute febrile illness (50–80% of cases)
 - Presentation
 - Coryza
 - Sore throat
 - Hoarseness
 - Cough (may or may not be croupy)
 - o Severe croup
 - Persistent fever
 - Worsening coryza and sore throat
 - Brassy or barking cough may progress to frank stridor.
 - Most children recover over 1–2 days.
 - Progressive airway obstruction and hypoxia occasionally ensue.
 - Bronchiolitis or pneumonia
 - Progressive cough
 - Wheezing, tachypnea, and intercostal retractions
 - Modest increase in sputum production
 - Nasopharyngeal discharge
 - Oropharyngeal injection
 - Rhonchi, wheezes, or coarse breath sounds
 - Older children and adults
 - Milder illness
 - o Common cold or hoarseness, with or without cough
 - Lower respiratory tract involvement uncommon
 - Tracheobronchitis in adults has been reported.
 - o Severe, prolonged, and even fatal parainfluenza infection
 - Reported in children and adults with severe immunosuppression (e.g., BMT and solid-organ transplant recipients)

Adenovirus infections

- Children
 - Acute upper respiratory tract infection
 - Most common clinical syndrome in children
 - Rhinitis prominent
 - Lower respiratory tract disease
 - Bronchiolitis
 - Pneumonia
 - o Pharyngoconjunctival fever
 - Caused particularly often by types 3 and 7
 - Characteristic acute febrile illness of children
 - Occurs in outbreaks, most often in summer camps
 - Bilateral conjunctivitis
 - Bulbar and palpebral conjunctivae have a granular appearance.
 - Low-grade fever is often present for the first 3–5 days.
 - Rhinitis, sore throat, and cervical adenopathy develop.
 - Illness generally lasts 1–2 weeks and resolves spontaneously.
 - Febrile pharyngitis without conjunctivitis

- Adenovirus has been isolated from cases of whooping cough with or without *Bordetella pertussis*.
 - Significance unknown
- Adults
 - Acute respiratory disease caused by types 4 and 7 in military recruits is the most commonly reported adenovirus syndrome in adults.
 - Prominent sore throat
 - Gradual onset of fever, which often reaches 39°C (102.2°F) on the second or third day of illness
 - Cough almost always present
 - Coryza and regional lymphadenopathy common
 - Pharyngeal edema, injection, and tonsillar enlargement with little or no exudate
 - Auscultation may indicate areas of patchy infiltration with pneumonia.
- Nonrespiratory tract diseases
 - Acute diarrheal illness caused by types 40 and 41 in young children
 - Hemorrhagic cystitis caused by types 11 and 21
 - Epidemic keratoconjunctivitis
 - Caused most frequently by types 8, 19, and 37
 - Associated with contaminated common sources, such as ophthalmic solutions and roller towels
 - Adenovirus nucleic acids have been detected in myocardial cells from patients with "idiopathic" myocardiopathies and have been suggested as causative agents in some cases.
 - Disseminated disease and pneumonia in immunosuppressed patients, including BMT or solid-organ transplant recipients
 - BMT recipients
 - Pneumonia
 - Hepatitis
 - Nephritis
 - Colitis
 - Encephalitis
 - Hemorrhagic cystitis
 - Solid-organ transplant recipients
 - Adenovirus infection may involve the transplanted organ.
 - Can disseminate to other organs as well
 - \circ $\;$ In patients with AIDS $\;$
 - Adenovirus serotypes have been isolated, usually in the setting of low CD4+ cell counts.
 - Frequently, isolation is not clearly linked to disease manifestations.

Differential Diagnosis

- The differential diagnosis primarily includes infections with other viral respiratory agents.
- Viral croup
 - Acute epiglottitis caused by Haemophilus influenzae type b
 - o Influenza A virus croup
- Adenovirus infection
 - Mycoplasma pneumoniae infection

Diagnostic Approach

- Signs, symptoms, and routine chemistry/hematology laboratory tests do not distinguish reliably among viral agents causing respiratory infections.
- Common cold
 - Diagnosis is made clinically.
 - The causative virus generally is not identified because of the benign, self-limited nature of the illness.
- Bronchiolitis or pneumonia
 - Diagnosis often suspected on the basis of epidemiologic setting, history, and physical examination findings
 - Identification of the specific viral pathogen is possible with respiratory secretion studies (viral culture, rapid antigen assays, or nucleic acid testing) or serologic testing.
 - Particularly important for patients with severe illness or immunocompromise
 - Also important for guiding infection-control measures in hospitalized patients
 - Diagnosis of a specific virus is not always necessary in other settings.

Laboratory Tests

Rhinovirus infections

- Virus can be isolated from nasal washes or secretions in tissue culture.
 - Detection of rhinovirus RNA by polymerase chain reaction (PCR)
 - More sensitive than detection by tissue culture
 - o Largely a research procedure
 - Serum antibody testing impractical, given the many serotypes
- Common laboratory tests (white cell count and sedimentation rate) not helpful

Coronavirus infections

- Virus difficult to cultivate
- Research procedures used to detect coronaviruses in unusual settings
 - Enzyme-linked immunosorbent assay (ELISA)
 - o Immunofluorescence assays
 - Reverse-transcriptase PCR (RT-PCR) for viral RNA
- SARS
 - See SARS (Severe Acute Respiratory Syndrome).

RSV infections

- Virus can be isolated from respiratory secretions (sputum, throat swabs, nasopharyngeal washes) in tissue culture.
- Rapid viral diagnosis from secretions (immunofluorescence, ELISA, other techniques)
 - Nasopharyngeal washes/aspirates better than nasopharyngeal swabs
 - Sensitivities and specificities of 80–95% with specimens from children
 - o Less sensitive with specimens from adults
- Serologic diagnosis
 - Made by comparison of acute- and convalescent-phase serum specimens using:
 - ELISA

- Neutralization tests
- Complement fixation tests
- May be useful in older children and adults
- Less sensitive in children <4 months of age

HMPV infections

- Can be detected in nasal aspirates and respiratory secretions by:
 - o PCR
 - Growth in rhesus monkey kidney (LLC-MK2) tissue cultures
- Serologic diagnosis
 - ELISA: uses HMPV-infected tissue culture lysates as sources of antigens

Parainfluenza virus infections

- Virus can be detected in:
 - Respiratory tract secretions
 - Throat swabs
 - Nasopharyngeal washings
- Viral growth in tissue culture
- Rapid viral diagnosis
 - Identification of parainfluenza antigens in exfoliated cells from the respiratory tract by immunofluorescence or ELISA
 - These techniques are less sensitive than tissue culture.
 - Highly specific and sensitive PCR assays have also been described.
- Serologic diagnosis
 - Hemagglutination inhibition tests
 - Complement fixation tests
 - Neutralization tests of acute- and convalescent-phase specimens
 - The serotype causing illness often cannot be distinguished from other serotypes by serologic techniques alone.

Adenovirus infections

- Detection of virus in tissue culture (as evidenced by cytopathic changes)
- Specific identification by immunofluorescence and other immunologic techniques
- Rapid viral diagnosis
 - o Immunofluorescence or ELISA
 - Nasopharyngeal aspirates
 - Conjunctival or respiratory secretions
 - Urine
 - Stool
 - Highly sensitive and specific PCR assays
 - Nucleic acid hybridization
- Adenovirus types 40 and 41
 - Require special tissue-culture cells for isolation
 - \circ Most commonly detected by direct ELISA of stool
- Serum antibody rises can be demonstrated by:
 - Complement fixation or neutralization tests
 - o ELISA
 - o Radioimmunoassay
 - HI tests (for adenoviruses that hemagglutinate red cells)

Imaging

- Chest radiography
 - Severe RSV infections
 - Hyperexpansion
 - Peribronchial thickening
 - Variable infiltrates ranging from diffuse interstitial to segmental or lobar consolidation
 - Parainfluenza virus infections (mainly in children)
 - Air trapping
 - Occasionally interstitial infiltrates
 - Adenovirus infections
 - May show areas of patchy infiltration

Diagnostic Procedures

- Bronchoalveolar lavage or lung tissue sampling may be required to:
 - Obtain diagnostic material from immunocompromised and/or severely ill patients
 - Exclude other diagnoses

Treatment Approach

- Treatment of viral illness with antibacterial agents is a major source of inappropriate drug use.
- Symptom-based therapy and supportive care are the mainstays of treatment.
- The only specific antiviral agent indicated is ribavirin, which is used to treat selected patients with RSV infection.
- Antibiotics are used to treat bacterial infections that may complicate viral respiratory infections.

Specific Treatments

Rhinovirus infections

- Generally mild and self-limited
- Treatment usually not necessary
- Symptom-based therapy
 - First-generation antihistamines
 - o NSAIDs
 - o Oral decongestants for troublesome nasal obstruction
 - o Rest
 - o Fluids
- Antibacterial agents only for complications (e.g., otitis media or sinusitis)
- Alternative remedies (zinc, vitamin C, echinacea): no clear benefit noted in studies of variable quality

Coronavirus infections

- Common colds treated similarly to rhinovirus infections
- SARS
 - No specific therapy of established efficacy

- Ribavirin has been used but has:
 - Little, if any, activity against SARS-CoV in vitro
 - No demonstrated beneficial effect on the course of illness
- Glucocorticoids have also been widely used.
 - Their benefit, if any, is likewise unestablished.
- Supportive care to maintain pulmonary and other organ-system functions is the mainstay of therapy.
- See SARS (Severe Acute Respiratory Syndrome) for details.

RSV infections

- Upper respiratory tract infections with RSV are treated similarly to rhinovirus infections.
 - Lower respiratory tract infections
 - Respiratory therapy
 - Hydration
 - Suctioning of secretions
 - Humidified oxygen
 - Antibronchospastic agents
 - Intubation and ventilatory assistance for severe hypoxia
- Aerosolized ribavirin
 - o Nucleoside analogue active in vitro against RSV
 - Has had a beneficial effect on the resolution of lower respiratory tract illness in infants
 - Recommended for infants who are severely ill or at high risk for complications of RSV infection
 - o Efficacy in older children and adults not established
- Immunoglobulins have not been found to be beneficial against RSV pneumonia.
- Combined therapy with aerosolized ribavirin and palivizumab (chimeric mouse-human monoclonal IgG against RSV) is being evaluated in immunosuppressed patients with RSV pneumonia.

Parainfluenza virus infections

- Upper respiratory tract illness is treated similarly to rhinovirus infections.
- Mild cases of croup
 - Bed rest
 - Moist air generated by vaporizers
- Severe croup
 - Hospitalization and close observation for respiratory distress
 - Humidified oxygen
 - Intermittent racemic epinephrine
 - o Aerosolized or systemically administered glucocorticoids beneficial
- No specific antiviral therapy
- Ribavirin
 - o Active against parainfluenza viruses in vitro
 - Anecdotal reports describe clinical use, particularly in immunosuppressed patients.

Adenovirus infections

- Symptom-based treatment
- No clinically useful antiviral compounds have been identified.

- Ribavirin and cidofovir
 - Active in vitro against adenoviruses
 - Anecdotes describe use in disseminated infections.

Monitoring

- Usually, no specific monitoring is indicated.
- Patients who are immunocompromised, have coexisting lung disease, or are severely ill may require hospital monitoring.

Complications

- Overall respiratory virus morbidity
 - Acute respiratory illness accounts for:
 - 30–50% of time lost from work by adults
 - 60–80% of time lost from school by children
- Bacterial infections related to obstruction of the eustachian tubes or sinus ostia
 - o Otitis media
 - Acute sinusitis
- Severe and even fatal pneumonia in immunosuppressed patients, particularly BMT recipients

Prognosis

- In general, the prognosis for upper respiratory infections is excellent, as is the prognosis for lower respiratory infections among immunocompetent older children and adults.
- RSV infections
 - o Mortality rate: 37% for infants with RSV pneumonia and congenital cardiac disease
 - RSV pneumonia in BMT and solid-organ transplant recipients
 - Significant cause of morbidity and death
 - Case-fatality rates: 20–80%
- Adenovirus
 - Disseminated infections in immunocompromised patients are associated with significant mortality.

Prevention

Rhinovirus infections

- Intranasal interferon sprays
 - Effective in the prophylaxis of rhinovirus infection
 - Associated with local irritation of the nasal mucosa
- Use of antibodies to intercellular adhesion molecule 1 or soluble purified receptors has yielded disappointing results.
- Experimental vaccines
 - Have been generated for certain serotypes
 - Usefulness questionable because of myriad serotypes and uncertainty about mechanisms of immunity
- Behaviors to reduce transmission
 - Thorough hand washing

- o Environmental decontamination
- Protection against autoinoculation

Coronavirus infections

- Vaccines developed against several animal coronaviruses
- None against known human coronaviruses
- Infection control practices used to contain SARS epidemic
 - Case definitions established
 - Travel advisories proposed
 - Quarantines imposed in certain locales
- Emergence of SARS emphasized the importance of vaccine development.

RSV infections

- Cumulative effect of multiple reinfections tempers subsequent disease and provides some temporary measure of protection.
- Maternally acquired serum antibody
 - Provides some protection from lower respiratory tract disease in infants, but illness can be severe even in infants with moderate antibody levels.
- Monthly administration of RSVIg (currently not available) or palivizumab, which is approved as prophylaxis for children <2 years of age who:
 - Have bronchopulmonary dysplasia or
 - Are born prematurely
- Vaccines
 - o Inactivated whole-virus vaccines ineffective
 - Other experimental approaches
 - Immunization with purified F and G surface glycoproteins of RSV
 - Generation of stable, live, attenuated virus vaccines
- Barrier methods
 - Protection of hands and conjunctivae can be useful in reducing virus spread.
 - Important in settings where transmission rates are high, such as pediatric wards

Parainfluenza virus infections

• Effective vaccines have not been developed.

Adenovirus infections

- Live vaccine
 - Developed against adenovirus types 4 and 7
 - Unattenuated virus administered in enteric-coated capsules
 - Used to control illness in military recruits
 - Not produced since 1999
- Vaccines from purified subunits of adenovirus are being investigated.

ICD-9-CM

• 465.9 Acute upper respiratory infections of unspecified site (includes viral, unspecified)

See Also

- Community-Acquired Pneumonia
- Coxsackievirus and Echovirus Infections
- Herpes Simplex Virus Infections
- Influenza
- Pharyngitis
- SARS (Severe Acute Respiratory Syndrome)

Internet Sites

- Professionals
 - o Adenovirus
 - U.S. Centers for Disease Control and Prevention
 - o Human Parainfluenza Viruses
 - U.S. Centers for Disease Control and Prevention
 - o Respiratory Syncytial Virus
 - U.S. Centers for Disease Control and Prevention
- Patients
 - o Common Cold
 - MedlinePlus
 - The Common Cold
 - U.S. National Institute of Allergy and Infectious Diseases
 - Respiratory Syncytial Virus Infections MedlinePlus

General Bibliography

- American Academy of Pediatrics Committee on Infectious Diseases: Use of ribavirin in the treatment of respiratory syncytial virus infection. *Pediatrics* 92:501, 1993 [PMID:8361820]
- Falsey AR et al: Respiratory syncytial virus infection in elderly and high-risk adults. *N Engl J Med* 352:1749, 2005 [PMID:15858184]
- Hierholzer JC: Adenoviruses in the immunocompromised host. *Clin Microbiol Rev* 5:262, 1992 [PMID:1323383]
- Holmes KH: Coronaviruses, in *Virology*, 4th ed, DN Knipe, PM Howley (eds). Philadelphia, Lippincott Williams & Wilkins, 2001, pp 1187–1204
- Meissner HC, Long SS, American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn: Revised indications for the use of palivizumab and respiratory syncytial virus immune globulin intravenous for the prevention of respiratory syncytial virus infections. *Pediatrics* 112:1447, 2003 [PMID:14654628]
- Musher DM: How contagious are common respiratory tract infections? *N Engl J Med* 348:1256, 2003 [PMID:12660390]
- Neuzil KM et al: Winter respiratory viruses and health care use: a population-based study in the northwest United States. *Clin Infect Dis* 37:201, 2003 [PMID:12856212]
- Thompson WW et al: Mortality associated with influenza and respiratory syncytial virus in the United States. *JAMA* 289:179, 2003 [PMID:12517228]
- Walsh EE, Peterson DR, Falsey AR: Risk factors for severe respiratory syncytial virus infection in elderly persons. *J Infect Dis* 189:233, 2004 [PMID:14722887]
- Williams JV et al: Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. *N Engl J Med* 350:443, 2004 [PMID:14749452]

• Wright PF: Parainfluenza viruses, in *Viral Infections of the Respiratory Tract*, R Dolin, PF Wright (eds). New York, Marcel Dekker, 1999

PEARLS

- Consider adenovirus infection in military recruits with respiratory syndromes.
- No strong evidence supports a benefit from "alternative" remedies for the common cold, such as zinc, vitamin C, and echinacea.
- Aggressive diagnostic efforts should be made when an immunocompromised host has a respiratory viral syndrome, so as to determine the utility of specific treatment (particularly for RSV) and to implement appropriate infection-control measures promptly.
- HMPV is being recognized increasingly as an important cause of respiratory infections in the community.