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Preface

“I consider much less thinking has gone into the theory underlying diagnosis, or
possibly one should say less energy has gone into constructing the correct model of
diagnostic procedures, than into therapy or prevention where the concept of
‘altering the natural history of the disease’ has been generally accepted and a
theory has been evolved for testing hypotheses concerning this.”1

Although seeking an evidence base for medicine is as old as medicine
itself, in the past decade the concept of evidence-based medicine (EBM)
has strongly stimulated the application of the best available evidence from
clinical research into medical practice. At the same time, this process has
revealed the need for a more extensive and more valid evidence base as
input for EBM. Accordingly, investigators have been encouraged to
intensify the production and innovation of clinical knowledge, and clinical
research has become more successful in seeing its results implemented in
practice more completely in a shorter period.

In developing the evidence base of clinical management it has come
forward that, even 3 decades after Archie Cochrane wrote the words cited
above, the methodology of diagnostic research lags far behind that of
research into the effectiveness of treatment. This is the more challenging
because making an adequate diagnostic process is a prime requirement for
appropriate clinical decision making, including prognostic assessment and
the selection of the most effective treatment options.

In view of this apparent need for further methodological development of
the evidence base of clinical diagnosis, this book was initiated. The aim is
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to provide a comprehensive framework for (future) investigators who want
to do diagnostic research, and for clinicians, practitioners and students who
are interested to learn more about principles, and about relevant
methodological options and pitfalls. Clearly, not all topics relevant for
diagnostic research could be covered, nor could the selected subjects be
dealt with in all detail. For those who wish to know more, the references in
the chapters can be a useful guide. In preparing the work, the contributors
were able to profit from the experience and insights collected and reported
by many leading clinical researchers in the field.

First, a general outline of diagnostic research is presented. What are the
key objectives, the challenges, and the corresponding options for study
design? What should the architecture of diagnostic research look like to
provide us with an appropriate research strategy, yielding the clinical
information we are looking for, with a minimum burden for study patients
and an efficient use of resources? Second, important design features for
studying the accuracy and clinical impact of diagnostic tests and procedures
are dealt with in more detail, addressing the cross-sectional study, the
randomised trial, and the before–after study. In addition, it is shown that the
impact of diagnostic tests varies with different clinical settings and target
populations, and indications are given as how to ensure that estimates of
test accuracy will travel and be transferable to other settings. Also, for
clinical diagnostic studies, an overview of the most important data-analytic
issues is presented, from simple two by two tables to multiple logistic
regression analysis.

Nowadays, for both clinical investigators and readers of research articles,
it is not enough to understand the methodology of original clinical studies.
They must also know more about the techniques to summarise and
synthesise results from various clinical studies on a similar topic. Guidelines
for diagnostic systematic reviews and meta-analysis are therefore presented.

Learning from accumulated clinical experience and the application of
diagnostic knowledge in practice has much in common with retrieving and
selecting information from clinical databases. Accordingly, diagnostic
decision support using information and communication technology (ICT)
is addressed as an increasingly important domain for clinical practice,
research, and education. Furthermore, as clinical research results can only
be successfully incorporated into diagnostic decision making if the way
clinicians tend to solve medical problems is taken into account, an overview
of the domain of clinical problem solving is given. Eventually, we have to
recognise that improving test use in daily care needs more than clinical
research, and presenting guidelines and other supportive materials.
Therefore, the strategy of successful implementation – which has become a
field of study in itself – is also covered.

This book includes contributions from many authors. In order to allow
each chapter to keep a logical structure in itself, a number of topics have
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been dealt with more than once, albeit to a varying extent. Instead of seeing
this as a problem, we think that it may be informative for readers to see
important issues considered from different perspectives.

Parallel to the preparation of this book, an initiative to reach
international agreement of standards for reporting diagnostic accuracy
(STARD) was taken and elaborated.This development can be expected to
make a significant contribution to improving the quality of published
literature on the value of diagnostic tests.We are happy that members of the
group of initiators of STARD have contributed to this book as the authors
of chapters 4 and 6, and are looking forward to seeing these standards
having an impact.

The field of diagnostic research is developing strongly and an increasing
number of talented clinical investigators are working in (the methodology
of ) diagnostic research. In view of this dynamic field, we welcome
comments from readers and suggestions for possible improvements.

The contributors wish to thank Richard Smith from the BMJ, who has
so positively welcomed the initiative for this book, Trish Groves from the
BMJ who gave very useful feedback on the proposed outline and
stimulated us to work it out, and Mary Banks from BMJ Books, who has
provided support and encouragement from the beginning and monitored
the progress of the book until the work was done.

André Knottnerus

1 Cochrane AL. Effectiveness and efficiency. Random reflections on health services. The
Nuffield Provincial Hospitals Trusts, 1972. Reprinted: London, the Royal Society of
Medicine Press Limited, 1999.
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1

1 General introduction:
evaluation of diagnostic
procedures
J ANDRÉ KNOTTNERUS, CHRIS VAN WEEL

Summary box

● Whereas the development of diagnostic technologies has greatly
accelerated, the methodology of diagnostic research lags far behind
that of evaluation of treatment.

● Objectives of diagnostic testing are (1) detecting or excluding
disorders, (2) contributing to further diagnostic and therapeutic
management, (3) assessing prognosis, (4) monitoring clinical
course, and (5) measuring general health or fitness.

● Methodological challenges include dealing with complex relations,
the “gold standard” problem, spectrum and selection bias, “soft”
outcome measures, observer variability and bias, addressing clinical
relevance, appropriate sample size, and rapid progress of applicable
knowledge over time.

● Choosing the appropriate study design depends on the research
question; the most important designs are the cross-sectional study
(to determine the accuracy and added value of diagnostic
procedures) and the randomised controlled trial (to evaluate the
clinical impact of testing).

● In order to synthesise the results of various studies on the same topic,
diagnostic systematic reviews and meta-analyses are powerful tools.

● To make the step from research to practice, clinical decision
analysis, cost effectiveness studies, and quality of care research,
including implementation studies, are indispensible.
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Introduction

The development and introduction of new diagnostic technologies have
accelerated greatly over the past few decades. This is reflected in a
substantial expansion of research on diagnostic tests. For example, the
number of such publications we found in MEDLINE increased from about
2000 in the period 1966–1970 to about 17 000 in the period 1996–2000.
However, the evaluation of diagnostic techniques is far from being as
advanced as the evaluation of therapies.

At present, unlike the situation with regard to drugs, there are no formal
requirements that a diagnostic test must meet in order to be accepted or
retained as a routine part of health care.This is related to another point: in
spite of useful early initiatives1,2 the methodology for evaluation of
diagnostics is not much crystallised, in contrast to the deeply rooted
consensus regarding the principles of the randomised controlled trial on
therapeutic effectiveness1,3 and the broad agreement on aetiologic study
designs.4,5 It is not surprising, then, that serious methodological flaws are
often found in published diagnostic studies.6–8 A further point of concern
is that the funding of diagnostic evaluation studies is poorly organised,
especially if the research is not focused on particular body systems or
categories of disorders well covered by research foundations. Rather than
being limited to a particular body system, diagnostic evaluation studies
frequently start from a complaint, a clinical problem, or certain tests.

The first crucial medical intervention in an episode of illness is
diagnostic, labelling symptoms and complaints as illness, and indicating
possible disease and its prognosis. Effective and efficient therapy –
including reassurance, “watchful waiting” and supporting patient self-
efficacy – depends to a large extent on an accurate interpretation of (early)
symptoms and the outcome of the diagnostic process. Therefore, because
the quality of diagnostic procedures is indicative for the quality of 
health care as a whole, it is vital to overcome the shortfall in standards,
methodology, and funding. Accurate evaluation of diagnostic performance
will contribute to the prevention of unjustified treatment, lack of treatment
or mistreatment, as well as unnecessary costs.

This introductory chapter presents an overview of the objectives of
diagnostic testing and evaluation research, important methodological
challenges, and research design options.

Objectives 

Diagnostic testing can be seen as the collection of additional information
with the intention of (further) clarifying the character and prognosis of the
patient’s condition, and can include patients’ characteristics, symptoms
and signs, history and physical examination items, or additional tests using
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laboratory or other technical facilities. Not only a “test” must be considered,
but also the specific question the test is supposed to answer.Therefore, the
performance of tests must be evaluated in accordance with their intended
objectives. Objectives may include:

● Detecting or excluding disorders, by increasing diagnostic certainty as to their
presence or absence. This can only be achieved if the test has sufficient
discrimination. Table 1.1 shows the most common measures of
discrimination. Most of these can be simply derived from a 2 � 2 table
comparing the test result with the diagnostic standard, as demonstrated
by the example of ankle trauma. A more elaborate and comprehensive
explanation of how to calculate these and other measures from collected
data is presented in Chapter 7. Examples of tests for which such
measures have been assessed are given in Table 1.2. Such a
representation allows various tests for the same purpose to be compared.
This can show, for example, that less invasive tests (such as
ultrasonography) may be as good as or even better diagnostically than
more invasive or hazardous ones (for example angiography). Also, it can
be shown that history data (for example change in bowel habit) may be
at least as valuable as laboratory data. What is important is not just the
discrimination per se, but rather what a test may add to what cheaper
and less invasive diagnostics already provide to the diagnostic process.
This is relevant, for instance, in assessing the added value of liver
function tests to history taking and physical examination in ill-defined,
non-specific complaints.

● Contributing to the decision making process with regard to further diagnostic
and therapeutic management, including the indications for therapy (for
example by determining the localisation and shape of a lesion) and
choosing the preferred therapeutic approach

● Assessing prognosis on the basis of the nature and severity of diagnostic
findings. This is a starting point for planning the clinical follow up and
for informing and – if justified – reassuring the patient

● Monitoring the clinical course of a disorder or a state of health such as
pregnancy, or the clinical course of an illness during or after treatment

● Measuring physical fitness in relation to requirements, for example for
sports or employment.

The evaluation of a diagnostic test concentrates on its added value for the
intended application, taking into consideration the burden for the patient
and any possible complications resulting from the test (such as intestinal
perforation in endoscopy). This requires a comparison between the
situations with and without the use of the test, or a comparison with the use
of other tests.

Prior to evaluation, one must decide whether to focus on maximising the
health perspectives of the individual patient (which is usually the

EVALUATION OF DIAGNOSTIC PROCEDURES
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Table 1.1 Commonly used measures of the discrimination of a diagnostic test T
for disease D, illustrated with physical examination for detecting a fracture in ankle
trauma, using x ray film as the reference standard.

D: result of x ray

T: conclusion of physical examination Fracture No fracture Total

Fracture 190 80 270
No fracture 10 720 730
Total 200 800 1000

The SENSITIVITY of T is the probability of a positive test result in people with
D: P(T�|D�) � 190/200 � 0.95.
The SPECIFICITY of T is the probability of a negative test result in people without
D: P(T�|D�) � 720/800 � 0.90.

Note: sensitivity and specificity together determine the discrimination of a test.

The LIKELIHOOD RATIO (LR) of test result TX is the probability of test result TX in people
with D, divided by the probability of TX in people without D.

The general formula for LRX is:
P(TX|D�)

P(TX|D�)

For a positive result, LR� is: P(T�|D�) 

P(T�|D�)

which is equivalent to: Sensitivity
�

190/200
� 9.5

1�specificity  1�720/800 

For a negative result, LR� is: P(T�|D�)  

P(T�|D�)

which is equivalent to: 1�sensitivity
�

1�190/200
� 0.06

Specificity  720/800

Note: LR is an overall measure of the discrimination of test result TX. The test is useless if
LR � 1.The test is better the more LR differs from 1, that is, greater than 1 for LR� and lower
than 1 for LR�.

For tests with multiple outcome categories, LRX can be calculated for every separate
category x as the ratio of the probability of outcome category x among diseased and the
probability of outcome category x among non-diseased.

The PREDICTIVE VALUE of a test result TX is:
for a positive result, the probability of D in persons with a positive test result:
P(D�|T�) � 190/270 � 0.70.
for a negative result, the probability of absence of D in persons with a negative result:
P(D�|T�) � 720/730 � 0.99.

Note: the predictive value (posterior or post-test probability) must be compared with the
estimated probability of D before T is carried out (the prior or pretest probability). For a good
discrimination, the difference between the post-test and the pretest probability should be large.

The ODDS RATIO (OR), or the cross-product ratio, represents the overall discrimination 
of a dichotomous test T, and is equivalent to the ratio of LR� and LR�.
OR�(190�270)/(80�10)�171

Note: If OR � 1, T is useless. T is better the more OR differs from 1.
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physician’s aim) or on the best possible cost effectiveness (as economists
are likely to do).The latter can be expressed in the amount of money to be
invested per number of life years gained, whether or not adjusted for quality
of life. Between these two approaches, which do not necessarily yield the
same outcome, there is the tension between strictly individual and
collective interests. This becomes especially obvious when policy makers
have to decide which options would be accepted as the most efficient in a
macroeconomic perspective.

Another prior decision is whether one would be satisfied with a qualitative
understanding of the diagnostic decision making process, or is also aiming at
a detailed quantitative analysis.13 In the first case one would chart the stages

EVALUATION OF DIAGNOSTIC PROCEDURES
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Table 1.2 Discrimination of some diagnostic tests for various target disorders,
expressed in sensitivity, specificity, likelihood ratios, and odds ratio (estimates based
on several sources).

Likelihood ratio
Sensi- Speci-

Target tivity ficity Positive Negative Odds
Test Disorder (%) (%) result result ratio

Exercise ECG*9 Coronary stenosis 65 89 5.9 0.39 15.0
Stress thallium Coronary stenosis 85 85 5.7 0.18 32.1

scintigraphy9

Ultrasonography9 Pancreatic cancer 70 85 4.7 0.35 13.2
CT scan9 Pancreatic cancer 85 90 8.5 0.17 51.0
Angiography9 Pancreatic cancer 75 80 3.8 0.31 12.0

ESR �28 mm/1 h**10 Malignancy 78 94 13.0 0.23 56.0
ESR �28 mm/1 h**10 Inflammatory disease 46 95 9.2 0.57 16.2

Intermittent Peripheral arterial 31 93 4.4 0.74 5.6
claudication**11 occlusive disease

Posterior tibial/dorsalis Peripheral arterial 73 92 9.1 0.29 30.4
pedis artery pulse**11 occlusive disease

Change in bowel Colorectal cancer 88 72 3.1 0.17 18.4
habit**12

Weight loss**12 Colorectal cancer 44 85 2.9 0.66 4.6
ESR �30 mm/1 h**12 Colorectal cancer 40 96 10.0 0.42 14.0
White blood cell Colorectal cancer 75 90 7.5 0.28 26.3

count �109**12

Occult blood test �1 Colorectal cancer 50 82 2.7 0.61 4.6
positive out of 3**12

*Cut-off point: ST depression �1 mm.
**In a general practice setting.

The RECEIVER OPERATING CHARACTERISTIC (ROC) curve represents the relation
between sensitivity and specificity for tests with a variable cut-off point, on an ordinal scale
(for example, in case of 5 degrees of suspicion of ankle fracture; or cervical smear) or interval
scale (for example, if degree of suspicion of ankle fracture is expressed in a percentage; or ST
changes in exercise ECG testing). If the AUC (area under the curve) � 0.5, the test is useless.
For a perfect test the AUC � 1.0 (see Chapter 7).
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and structure of the decision making process, in relation to the test to be
evaluated. This may already provide sufficient insight, for instance if it
becomes clear beforehand that the result will not influence the decision to be
taken. Examples of useless testing are (1) the value of the routine
electrocardiogram in acute chest pain, exploring the likelihood of a suspected
myocardial infarction, with the consequent decision whether or not to admit
the patient to hospital; and (2) the value of “routine blood tests” in general
practice for the decision as to whether or not to refer a patient with acute
abdominal pain to a surgeon. In addition to qualitatively mapping the
structure of the decision making process, quantitative analysis attempts to
assess test discrimination and the ultimate clinical outcome, taking the risks
(and the costs) of the test procedure into account.The choice of a qualitative
or a quantitative approach depends on the question to be answered and the
data available.

If a test has not yet been introduced, the prospects for a good evaluation
are better than if it is already in general use. It is then, for example, still
possible to define an appropriate control group to whom the test is not
applied, so that its influence on the prognosis can be investigated. In
addition, at such an early stage the conclusion of the analysis can still be
used in the decision regarding introduction. Furthermore, it is possible to
plan a procedure for monitoring and evaluation after introduction. All of
this emphasises the importance of developing an evaluation programme
before a test is introduced.

A common misunderstanding is that only expensive, advanced
diagnostic technology cause unacceptable increases in healthcare costs; in
fact, cheap but very frequently used (routine) tests account for a major part
of direct costs. Moreover, these tests greatly influence other costs, as they
often preselect patients for more expensive procedures.Yet the performance
of such low-threshold diagnostics has often not been adequately evaluated.
Examples include many applications of haematological, clinicochemical,
and urine tests.14–16

Methodological challenges

In the evaluation of diagnostic procedures a number of methodological
challenges have to be considered.

Complex relations

Most diagnostics have more than one indication or are relevant for more
than one nosological outcome. In addition, tests are often not applied in
isolation but in combinations, for instance in the context of protocols.
Ideally, diagnostic research should reflect the healthcare context,17 but it is
generally impossible to investigate all aspects in one study. Therefore,

THE EVIDENCE BASE OF CLINICAL DIAGNOSIS
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choices must be made as to which issues are the most important.
Multivariable statistical techniques are available to allow for the (added)
value of various diagnostic data, both separately and in combination, and
also in the form of diagnostic prediction rules.18,19 Such techniques were
originally developed for the purpose of analysing aetiologic data, generally
focusing on the overall aetiologic impact of a factor adjusted for covariables.
Diagnostic analysis aims to specify test performance in clinical subgroups or
to identify the set of variables that yield the best individual diagnostic
prediction, which is a completely different perspective. Much work remains
to be done to improve the methodology of diagnostic data analysis.20

Diagnostic data analysis will be discussed further in Chapter 7.

The “gold” standard problem

To evaluate the discriminatory power of a test, its results must be
compared with an independently established standard diagnosis. However,
a “gold” standard, providing full certainty on the health status, rarely exists.
Even x rays, CT scans and pathological preparations may produce false
positive and false negative results. The aim must then be to define an
adequate reference standard that approximates the “gold” standard as
closely as possible.

Sometimes one is faced with the question whether any appropriate
reference standard procedure exists at all. For example, in determining the
discrimination of liver tests for diagnosing liver pathology, neither imaging
techniques nor biopsies can detect all abnormalities. In addition, as a liver
biopsy is an invasive procedure it is unsuitable for use as a standard in an
evaluation study. A useful independent standard diagnosis may not even
exist conceptually, for example when determining the predictive value of
symptoms that are themselves part of the disease definition, as in migraine,
or when the symptoms and functionality are more important for
management decisions than the anatomical status, as in prostatism. Also, in
studying the diagnostic value of clinical examination to detect severe
pathology in non-acute abdominal complaints, a comprehensive invasive
standard diagnostic screening, if at all possible or ethically allowed, would
yield many irrelevant findings and not all relevant pathology would be
immediately found. An option, then, is diagnostic assessment after a follow
up period by an independent panel of experts, representing a “delayed
type” cross-sectional study.21 This may not be perfect, but can be the most
acceptable solution.1

A further issue is the dominance of prevailing reference standards. For
example, as long as classic angiography is considered the standard when
validating new vascular imaging techniques, the latter will always seem less
valid because perfect agreement is never attainable. However, as soon as the
new method comes to be regarded as sufficiently valid to be accepted as the
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standard, the difference will from then on be explained in favour of this
new method. In addition, when comparing advanced ultrasound
measurements in blood vessels with angiography, one must accept that the
two methods actually measure different concepts: the first measures blood
flow, relevant to explain the symptoms clinically, whereas the second
reflects the anatomical situation, which is important for the surgeon.
Furthermore, the progress of clinicopathological insights is of great
importance. For example, although clinical pattern X may first be the
standard to evaluate the significance of microbiological findings, it will
become of secondary diagnostic importance once the infectious agent
causing X has been identified. The agent will then be the diagnostic
standard, as illustrated by the history of the diagnosis of tuberculosis.

In Chapters 3 and 6 more will be said about reference standard problems.

Spectrum and selection bias

The evaluation of diagnostics may be flawed by many types of bias.1,22,23

The most important of these are spectrum bias and selection bias.
Spectrum bias may occur when the discrimination of the diagnostic is

assessed in a study population with a different clinical spectrum (for
instance in more advanced cases) than will be found among those in whom
the test is to be applied in practice. This may, for example, happen with
tests calibrated in a hospital setting but applied in general practice. Also,
sensitivity may be determined in seriously diseased subjects, whereas
specificity is tested in clearly healthy subjects. Both will then be grossly
overestimated relative to the practical situation, where testing is really
necessary because it is clinically impossible to distinguish in advance who
is healthy and who is diseased.

Selection bias is to be expected if there is a relation between the test result
and the probability of being included in the study population in which
the test is calibrated. For example, subjects with an abnormal exercise
electrocardiogram are relatively likely to be preselected for coronary
angiography. Consequently, if this exercise test is calibrated among
preselected subjects, a higher sensitivity and a lower specificity will be found
than if this preselection had not occurred.24 Similarly, on the basis of referral
patterns alone it is to be expected that the sensitivity of many tests is higher
in the clinic than in general practice, and the specificity lower.

Although spectrum and selection biases are often related, in the first the
clinical picture is the primary point of concern, whereas in the latter the
mechanism of selection is the principal issue.These types of bias may affect
not only sensitivity and specificity, but also all other measures of
discrimination listed in Table 1.1.25

Chapters 2 and 6 will further address the issue of dealing with spectrum
and selection biases.
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“Soft” measures

Subjective factors such as pain, feeling unwell and the need for reassurance
are of great importance in diagnostic management. Most decisions for a
watchful waiting strategy in the early phase of an episode of illness are based
on the valuation of “soft” measures.These often determine the indication for
diagnostic examinations, and may themselves be part of the diagnostics (for
example a symptom or complaint) to be evaluated. Also, such factors are
generally indispensable in the assessment of the overall clinical outcome.
Evaluation studies should, on the one hand, aim as much as possible to
objectify these subjective factors in a reproducible way. On the other hand,
interindividual and even intraindividual differences will always play a part26

and should be acknowledged in the clinical decision making process.

Observer variability and observer bias

Variability between different observers, as well as for the same observer
in reading and interpreting diagnostic data, should not only be
acknowledged for “soft” diagnostics such as history taking and physical
examination, but also for “harder” ones like x rays, CT scans and
pathological slides. Even tests not involving any human factors show inter-
and intrainstrument variability. Such variability should be limited if the
diagnostic is to produce useful information.

At the same time, evaluation studies should beware of systematic
observer bias as a result of prior knowledge about the subjects examined.
Clearly, if one wishes to evaluate whether a doctor can accurately diagnose
an ankle fracture based on history and clinical examination, it must be
certain that he is not aware of an available x ray result; and a pathologist
making an independent final diagnosis should not be informed about the
most likely clinical diagnosis.27 In such situations “blinding” is required. A
different form of observer bias could occur if the diagnosticians are
prejudiced in favour of one of the methods to be compared, as they may
unconsciously put greater effort into that technique. A further challenge is
that the experience and skill required should be equal for the methods
compared, if these are to have a fair chance in the assessment. In this
respect, new methods are at risk of being disadvantaged, especially shortly
after being introduced.

Discrimination does not mean usefulness

For various reasons, a test with very good discrimination does not
necessarily influence management.

To begin with, a test may add too little to what is already known clinically
to alter management. Furthermore, the physician may take insufficient
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account of the information provided by the test.This is a complex problem.
For instance, studies of the consequences of routine blood testing have
shown that in some cases an unaltered diagnosis still led to changes in the
considered policy.14 In a study on the therapeutic impact of upper
gastrointestinal endoscopy, a number of changes (23%) in management
were made in the absence of a change in diagnosis, whereas in many
patients (30%) in whom the diagnosis was changed management was not
altered.28 Also, a test may detect a disorder for which no effective treatment
is available. For example, the MRI scan provides refined diagnostic
information with regard to various brain conditions for which no therapy is
yet in prospect. Finally, as discussed in the previous section, supplementary
test results may not be relevant for treatment decisions.

For this reason we strongly recommend that evaluation studies investigate
both the discrimination of a test and its influence on management.

Indication area and prior probability

Whether a test can effectively detect or exclude a particular disorder is
influenced by the prior probability of that disorder. A test is generally not
useful if the prior probability is either very low or very high: not only will
the result rarely influence patient management, but the risk of, respectively,
a false positive or a false negative result is relatively high. In other words,
there is an “indication area” for the test between these extremes of prior
probability.9,10 Evaluation of diagnostics should therefore address the issue
of whether the test could be particularly useful for certain categories of
prior probability. For example, tests with a moderate specificity are not
useful for screening in an asymptomatic population (with a low prior
probability) because of the high risk of false positive results.

Small steps and large numbers

Compared with therapeutic effectiveness studies, evaluation studies of
diagnostic procedures have often neglected the question of whether the
sample size is adequate to provide the desired information with a sufficient
degree of certainty. A problem is that progress in diagnostic decision
making often takes the form of a series of small steps so as to gain in
certainty, rather than one big breakthrough. Evaluating the importance of
a small step, however, requires a relatively large study population.

Changes over time and the mosaic of evidence

Innovations in diagnostic technology may proceed at such a speed that a
thorough evaluation may take longer than the development of even more
advanced techniques. For example, the results of evaluation studies on the
cost effectiveness of the CT scan had not yet crystallised when the MRI
and PET scans appeared on the scene. So, the results of evaluation studies
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may already be lagging behind when they appear.Therefore, there is a need
for general models (scenarios) for the evaluation of particular (types of)
tests and test procedures, whose overall framework is relatively stable and
into which information on new tests can be entered by substituting the
relevant piece in the whole mosaic. This allows, for instance, a quick
evaluation of the impact of new mammographic or DNA techniques with
better discrimination on the cost effectiveness of breast cancer screening, if
other pieces of the mosaic (such as treatment efficacy) have not changed.
As discrimination itself can often be relatively rapidly assessed by means of
a cross-sectional study, this may avoid new prospective studies. The same
can be said for the influence of changes in relevant costs, such as fees for
medical treatment or the price of drugs.

Research designs

There are various methodological approaches for evaluating diagnostic
technologies, including original clinical research on the one hand, and
systematically synthesising the findings of already performed empirical
studies and clinical expertise on the other.

For empirical clinical studies, a range of design options is available.The
appropriate study design depends on the research question to be answered
(Table 1.3). In diagnostic accuracy studies the relationship between test
result and reference standard has to be assessed cross-sectionally. This 
can be achieved by a cross-sectional survey, but especially in early
validation studies other approaches (case–referent or test result-based
sampling) can be most efficient. Design options for studying the impact 
of diagnostic testing on clinical decision making and patient prognosis 
are the “diagnostic randomised controlled trial” (RCT), which is
methodologically the strongest approach, and the before–after study. Also,
cohort and case–control designs have been shown to have a place in this
context. In Chapter 2, the most important strategic considerations in
choosing the appropriate design in diagnostic research will be specifically
addressed.

Current knowledge can be synthesised by systematic reviews, meta-
analyses, clinical decision analysis, cost effectiveness studies and consensus
methods, with the ultimate aim of integrating and translating research
findings for implementation in practice.

In the following, issues of special relevance to diagnostic evaluation
studies will be briefly outlined.

Clinical studies

A common type of research is the cross-sectional study, assessing the
relationship between diagnostic test results and the presence of particular

Andre_Chap01.qxd  11/6/01  2:54 PM  Page 11



THE EVIDENCE BASE OF CLINICAL DIAGNOSIS

12

disorders. This relationship is usually expressed in the measures of
discrimination included in Table 1.1. Design options are: (1) a survey in an
“indicated population”, representing subjects in whom the studied test
would be considered in practice; (2) sampling groups with (cases) and
without disease (referents) to compare their test distributions; or (3)
sampling groups with different test results, between which the occurrence
of a disease is compared. It is advisable to include in the evaluation already
adopted tests, as this is a direct way to obtain an estimate of the added
value of the new test. The cross-sectional study will be dealt with in more
detail in Chapter 3.

In an RCT the experimental group undergoes the test to be evaluated,
while a control group undergoes a different (for example the usual) or no
test.This allows the assessment of not only differences in the percentage of
correct diagnoses, but also the influence of the evaluated test on
management and prognosis. A variant is to apply the diagnostic test to all
patients but to disclose its results to the caregivers for a random half of the
patients, if ethically justified. This constitutes an ideal placebo procedure
for the patient. Although diagnostic RCTs are not easy to carry out and
often not feasible, several have been already carried out some time 

Table 1.3 Methodological options in diagnostic research in relation to study
objectives.

Study objective Methodological options

Clinical studies
Diagnostic accuracy Cross-sectional study

survey
case–referent sampling
test result-based sampling

Impact of diagnostic testing on prognosis Randomised controlled trial
or management Cohort study

Case–control study
Before–after study

Synthesising findings and expertise
Synthesising results of multiple studies Systematic review

Meta-analysis
Evaluation of most effective or cost Clinical decision analysis

effective diagnostic strategy Cost effectiveness analysis
Translating findings for practice Integrating results of the 

above mentioned approaches
Expert consensus methods
Developing guidelines

Integrating information in clinical practice
ICT support studies
Studying diagnostic problem solving
Evaluation of implementation 
in practice
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ago.29–34 Among the best known are the early trials on the effectiveness of
breast cancer screening, which have often linked a standardised
management protocol to the screening result.35,36 The randomised
controlled trial in diagnostic research is further discussed in Chapter 4.

If the prognostic value of a test is to be assessed and an RCT is not feasible,
its principles can serve as the paradigm in applying other methods, one such
being the cohort study. The difference from the RCT is that the diagnostic
information is not randomly assigned, but a comparison is made between two
previously established groups.37 It has the methodological problem that one
can never be sure, especially regarding unknown or unmeasurable
covariables, whether the compared groups have similar disease or prognostic
spectra to begin with. A method providing relatively rapid results regarding
the clinical impact of a test is the case–control study.This is often carried out
retrospectively, that is, after the course and the final status of the patients are
known, in subjects who at the time have been eligible for the diagnostic test
to be evaluated. It can be studied whether “indicated subjects” showing an
adverse outcome (cases) underwent the diagnostic test more or less
frequently than indicated subjects without such outcome (controls).
A basic requirement is that the diagnostic must have been available to all
involved at the time. Well known examples are case–control studies on the
relationship between mortality from breast cancer and participation in breast
cancer screening programmes.38,39 This is an efficient approach, although
potential bias because of lack of prior comparability of tested and non-tested
subjects must once again be borne in mind.

The influence of a diagnostic examination on the physician’s management
can be also investigated by comparing the intended management policies
before and after test results are available. Such before–after comparisons
(diagnostic impact studies) have their own applications, limitations and
precautionary measures, as reviewed by Guyatt et al.40 The method has, for
example, been applied in determining the added value of the CT scan and
in studying the diagnostic impact of haematological tests in general
practice.41,42 The before–after study design will be outlined in Chapter 5.

Although using appropriate inclusion and exclusion criteria for study
subjects is as important as in therapeutic research, in diagnostic research
defining such criteria is less well developed. However, appropriate criteria
are indispensible in order to focus on the clinical question at issue, the
relevant spectrum of clinical severity, the disorders to be evaluated and the
desired degree of selection of the study population (for example primary
care or referred population).43

Synthesising research findings and clinical expertise

Often the problem is not so much a lack of research findings but the 
lack of a good summary and systematic processing of those findings.
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A diagnostic systematic review, and meta-analysis of the pooled data of a
number of diagnostic studies, can synthesise the results of those studies.
This provides an overall assessment of the value of diagnostic
procedures,44,45 and can also help to identify differences in test accuracy
between clinical subgroups. In this way, an overview of the current state of
knowledge is obtained within a relatively short time. At present, this
method is very much under development. One is aiming at bridging a
methodological backlog, compared to the more established therapeutic
systematic review and meta-analysis. The methodology of systematically
reviewing studies on the accuracy of diagnostic tests is elaborated in
Chapter 8.

Another important approach is clinical decision analysis, systematically
comparing various diagnostic strategies as to their clinical outcome or cost
effectiveness, supported by probability and decision trees. If good
estimates of the discrimination and risks of testing, the occurrence and
prognosis of suspected disorders, and the “value” of various clinical
outcomes are available, a decision tree can be evaluated quantitatively in
order to identify the clinically optimal or most cost effective strategy. An
important element in the decision analytic approach is the combined
analysis of diagnostic and therapeutic effectivenes. In this context, a
qualitative analysis can be very useful. For example, non-invasive
techniques nowadays show a high level of discrimination in diagnosing
carotid stenoses, even in asymptomatic patients. This allows improved
patient selection for the invasive and more hazardous carotid angiography,
which is needed to make final decisions regarding surgical intervention.
But if surgery has not been proved to influence the prognosis of
asymptomatic patients favourably compared to non-surgical management,46

the decision tree is greatly simplified as it no longer would include either
angiography or surgery, and maybe not even non-invasive testing.

Decision analysis does not always provide an answer. The problem
may be too complex to be summarised in a tree, essential data may be
missing, and there is often a lack of agreement on key assumptions
regarding the value of outcomes. Therefore, consensus procedures are
often an indispensable step in the translational process from clinical
research to guidelines for practice. In these procedures, clinical experts
integrate the most recent state of knowledge with their experience to
reach agreement on clinical guidelines regarding the preferred diagnostic
approach of a particular medical problem, differentiated for relevant
subgroups.47,48

Integrating information in clinical practice

In order to help clinical investigators harvest essential diagnostic research
data from clinical databases and to support clinicians in making and
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improving diagnostic decisions, medical informatics and ICT (information
and communications technology) innovations are indispensible. However,
as described in Chapter 9, to use the potentials in this field optimally,
specific methodological and practical requirements must be met.

The information processing approaches outlined in the previous section
constitute links between research findings and clinical practice, and can be
applied in combination to support evidence-based medicine. How such
input can have optimal impact on the diagnostic decision making of
individual doctors is, however, far from simple or straightforward.
Therefore, given the growing cognitive requirements of diagnostic
techniques, studies to increase our insight in diagnostic problem solving by
clinicians is an increasingly important part of diagnostic research. This
topic is discussed in Chapter 10.

Information from good clinical studies, systematic reviews and guideline
construction is necessary but in many cases not sufficient for improving
routine practice. In view of this, during the last decade, implementation
research has been strongly developed to face this challenge and to facilitate
the steps from clinical science to patient care. Accordingly, Chapter 11 deals
with implementation of (cost-)effective test ordering in clinical practice.

Conclusion

Diagnostic technology assessment would be greatly stimulated if formal
standards for the evaluation of diagnostics were to be formulated, as a
requirement for market acceptance. Health authorities could take the
initiative in assembling panels of experts to promote and monitor the
evaluation of both new and traditional diagnostic facilities. Criteria for 
the acceptance and retention of diagnostics in clinical practice should 
be developed. Furthermore, professional organisations have a great
responsibility to set, implement, maintain, and improve clinical standards.
More effective international cooperation would be useful, as it has proved
to be in the approval and quality control of drugs. In this way, the
availability of resources for industrial, private, and governmental funding
for diagnostic technology assessment would also be stimulated.

As regards the feasibility of diagnostic evaluation studies, the required size
and duration must be considered in relation to the speed of technological
progress. This speed can be very great, for instance in areas where the
progress of molecular genetic knowledge and information and
communication technology play an important part. Especially in such areas,
updating of decision analyses, expert assessments and scenarios by inserting
new pieces of the “mosaic” of evidence may be more useful than fully
comprehensive, lengthy trials.This may, for example, be very relevant for the
evaluation of diagnostic areas where traditional tests will be replaced by
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DNA diagnostics in the years to come. Finally, successful integration of
“soft” health measures, quality of life aspects, and health economic
objectives into clinical evaluations will require much additional research,
and methodological and ethical consideration.49
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2 The architecture
of diagnostic research
DAVID L SACKETT, R BRIAN HAYNES

Summary box

● Because diagnostic testing aims to discriminate between clinically
“normal” and “abnormal”, the definition of “normal” and “the
normal range” is a basic issue in diagnostic research. Although the
“gaussian” definition is traditionally common, the “therapeutic
definition” of normal is the most clinically relevant.

● The diagnostic research question to be answered has to be carefully
formulated, and determines the appropriate research approach.
The four most relevant types of question are:

● Phase I questions: Do patients with the target disorder have
different test results from normal individuals? The answer
requires a comparison of the distribution of test results among
patients known to have the disease and people known not to have
the disease.

● Phase II questions: Are patients with certain test results
more likely to have the target disorder than patients with
other test results? This can be studied in the same dataset that
generated the Phase I answer, but now test characteristics such as
sensitivity and specificity are estimated.

● Only if Phase I and Phase II studies, performed in “ideal 
circumstances”, are sufficiently promising as to possible
discrimination between diseased and non-diseased subjects, it is
worth evaluating the test under “usual” circumstances. Phase III
and IV questions must then be answered.

● Phase III questions: Among patients in whom it is clinically
sensible to suspect the target disorder, does the test result

Andre_Chap02.qxd  11/6/01  2:57 PM  Page 19



Introduction

When making a diagnosis, clinicians seldom have access to reference or
“gold” standard tests for the target disorders they suspect, and often wish to
avoid the risks or costs of these reference standards, especially when they are
invasive, painful, or dangerous. No wonder, then, that clinical researchers
examine relationships between a wide range of more easily measured
phenomena and final diagnoses. These phenomena include elements of the
patient’s history, physical examination, images from all sorts of penetrating
waves, and the levels of myriad constituents of body fluids and tissues. Alas,
even the most promising phenomena, when nominated as diagnostic tests,
almost never exhibit a one-to-one relationship with their respective target
disorders, and several different diagnostic tests may compete for primacy in
diagnosing the same target disorder. As a result, considerable effort has been
expended at the interface between clinical medicine and scientific methods
in an effort to maximise the validity and usefulness of diagnostic tests.This
book describes the result of those efforts, and this chapter focuses on the
specific sorts of questions posed in diagnostic research and the study
architectures used to answer them.

At the time that this book was being written, considerable interest was
being directed to questions about the usefulness of the plasma
concentration of B-type natriuretic peptide in diagnosing left ventricular
dysfunction.1 These questions were justified on two grounds: first, left
ventricular dysfunction is difficult to diagnose on clinical examination; and
second, randomised trials have shown that treating it (with angiotensin
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distinguish those with and without the target disorder?To get 
the appropriate answer, a consecutive series of such patients should
be studied.

● The validity of Phase III studies is threatened when cases where the
reference standard or diagnostic test is lost, not performed, or
indeterminate, are frequent or inappropriately dealt with.

● Because of a varying patient mix, test characteristics such as
sensitivity, specificity and likelihood ratios may vary between
different healthcare settings.

● Phase IV questions: Do patients who undergo the diagnostic
test fare better (in their ultimate health outcomes) than
similar patients who do not? These questions have to be
answered by randomising patients to undergo the test of interest or
some other (or no) test.
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converting enzyme inhibitors) reduces its morbidity and mortality. Because
real examples are far better than hypothetical ones in illustrating not just
the overall strategies but also the down-to-earth tactics of clinical research,
we will employ this one in the following paragraphs. To save space and
tongue twisting we will refer to the diagnostic test, B-type natriuretic
peptide, as BNP and the target disorder it is intended to diagnose, left
ventricular dysfunction, as LVD.The starting point in evaluating this or any
other promising diagnostic test is to decide how we will define its normal
range.

What do you mean by “normal” and
“the normal range”?

This chapter deals with the strategies (a lot) and tactics (a little) of
research that attempts to distinguish patients who are “normal” from those
who have a specific target disorder. Before we begin, however, we need to
acknowledge that several different definitions of normal are used in clinical
medicine, and we confuse them at our (and patients’) peril.We know six of
them2 and credit Tony Murphy for pointing out five.3 A common “gaussian”
definition (fortunately falling into disuse) assumes that the diagnostic test
results for BNP (or some arithmetic manipulation of them) for everyone,
or for a group of presumably normal people, or for a carefully characterised
“reference” population, will fit a specific theoretical distribution known 
as the normal or gaussian distribution. Because the mean of a gaussian
distribution plus or minus 2 standard deviations encloses 95% of its contents,
it became a tempting way to define the normal several years ago, and came
into general use. It is unfortunate that it did, for three logical consequences
of its use have led to enormous confusion and the creation of a new field of
medicine: the diagnosis of non-disease. First, diagnostic test results simply
do not fit the gaussian distribution (actually, we should be grateful that they
do not; the gaussian distribution extends to infinity in both directions,
necessitating occasional patients with impossibly high BNP results and
others on the minus side of zero!). Second, if the highest and lowest 2.5%
of diagnostic test results are called abnormal, then all the diseases they
represent have exactly the same frequency, a conclusion that is also
clinically nonsensical.

The third harmful consequence of the use of the gaussian definition of
normal is shared by its more recent replacement, the percentile. Recognising
the failure of diagnostic test results to fit a theoretical distribution such as
the gaussian, some laboratorians have suggested that we ignore the shape
of the distribution and simply refer (for example) to the lower (or upper) 95%
of BNP or other test results as normal. Although this percentile definition
does avoid the problems of infinite and negative test values, it still suggests
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that the underlying prevalence of all diseases is similar – about 5% – which
is silly, and still contributes to the “upper-limit syndrome” of non-disease
because its use means that the only “normal” patients are the ones who 
are not yet sufficiently worked up. This inevitable consequence arises as
follows: if the normal range for a given diagnostic test is defined as including
the lower 95% of its results, then the probability that a given patient will
be called “normal” when subjected to this test is 95%, or 0.95. If this
same patient undergoes two independent diagnostic tests (independent in
the sense that they are probing totally different organs or functions), the
likelihood of this patient being called normal is now (0.95) � (0.95) � 0.90.
So, the likelihood of any patient being called normal is 0.95 raised to the
power of the number of independent diagnostic tests performed on them.
Thus, a patient who undergoes 20 tests has only 0.95 to the 20th power, or
about one chance in three, of being called normal; a patient undergoing 100
such tests has only about six chances in 1000 of being called normal at the
end of the work up.*

Other definitions of normal, in avoiding the foregoing pitfalls, present
other problems. The risk factor definition is based on studies of precursors
or statistical predictors of subsequent clinical events; by this definition, the
normal range for BNP or serum cholesterol or blood pressure consists 
of those levels that carry no additional risk of morbidity or mortality.
Unfortunately, however, many of these risk factors exhibit steady increases
in risk throughout their range of values; indeed, some hold that the “normal”
total serum cholesterol (defined by cardiovascular risk) might lie well below
3.9 mmol/L (150 mg%), whereas our local laboratories employ an upper
limit of normal of 5.2 mmol/L (200 mg%), and other institutions employ
still other definitions.

Another shortcoming of this risk factor definition becomes apparent when
we examine the health consequences of acting upon a test result that lies
beyond the normal range: will altering BNP or any other risk factor really
change risk? For example, although obesity is a risk factor for hypertension,
controversy continues over whether weight reduction improves mild
hypertension. One of us led a randomised trial in which we peeled 4.1 kg (on
average) from obese, mildly hypertensive women with a behaviourally
oriented weight reduction programme the (control women lost less than
1 kg).4 Despite both their and our efforts (the cost of the experimental
group’s behaviourally oriented weight reduction programme came to US$60
per kilo), there was no accompanying decline in blood pressure.

A related approach defines the normal as that which is culturally desirable,
providing an opportunity for what HL Mencken called “the corruption of
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*This consequence of such definitions helps explain the results of a randomised trial of
hospital admission multitest screening that found no patient benefits, but increased healthcare
costs, when such screening was carried out.20
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medicine by morality” through the “confusion of the theory of the healthy
with the theory of the virtuous”.5 Although this definition does not fit our
BNP example, one sees such definitions in their mostly benign form at the
fringes of the current lifestyle movement (for example, “It is better to be slim
than fat,”† and “Exercise and fitness are better than sedentary living and lack
of fitness”), and in its malignant form in the healthcare system of the Third
Reich. Such a definition has the potential for considerable harm, and may
also serve to subvert the role of medicine in society.

Two final definitions are highly relevant and useful to the clinician
because they focus directly on the clinical acts of diagnosis and therapy.
The diagnostic definition identifies a range of BNP (or other diagnostic test)
results beyond which LVD (or another specific target disorder) is (with
known probability) present. It is this definition that we focus on in this
book. The “known probability” with which a target disorder is present is
known formally as the positive predictive value, and depends on where we
set the limits for the normal range of diagnostic test results.This definition
has real clinical value and is a distinct improvement over the definitions
described above. It does, however, require that clinicians keep track of
diagnostic ranges and cut-offs.

The final definition of normal sets its limits at the level of BNP beyond
which specific treatments for LVD (such as ACE inhibitors) have been
shown conclusively to do more good than harm. This therapeutic definition
is attractive because of its link with action.The therapeutic definition of the
normal range of blood pressure, for example, avoids the hazards of labelling
patients as diseased unless they are going to be treated. Thus, in the early
1960s the only levels of blood pressure conclusively shown to benefit from
antihypertensive drugs were diastolic pressures in excess of 130 mmHg
(phase V). Then, in 1967, the first of a series of randomised trials
demonstrated the clear advantages of initiating drugs at 115 mmHg, and
the upper limit of normal blood pressure, under the therapeutic definition,
fell to that level. In 1970 it was lowered further to 105 mmHg with a second
convincing trial, and current guidelines about which patients have
abnormal blood pressures that require treatment add an element of the risk
factor definition and recommend treatment based on the combination of
blood pressure with age, sex, cholesterol level, blood sugar, and smoking
habit. These days one can even obtain evidence for blood pressure
treatment levels based on the presence of a second disease: for example, in
type 2 diabetes the “tight control” of blood pressure reduces the risk of
major complications in a cost effective way. Obviously, the use of this
therapeutic definition requires that clinicians (and guideline developers)
keep abreast of advances in therapeutics, and that is as it should be.

†But the tragic consequences of anorexia nervosa teach us that even this definition can
do harm.
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In summary, then, before you start any diagnostic study you need to
define what you mean by normal, and be confident that you have done so
in a sensible and clinically useful fashion.

The question is everything

As in other forms of clinical research, there are several different ways in
which one could carry out a study into the potential or real diagnostic
usefulness of a physical sign or laboratory test, and each of them is
appropriate to one sort of question and inappropriate for others. Among
the questions one might pose about the relation between a putative
diagnostic test (say, BNP) and a target disorder (say, LVD), four are most
relevant:

● Phase I questions: Do patients with the target disorder have different
test results from normal individuals? (Do patients with LVD have higher
BNP than normal individuals?)

● Phase II questions: Are patients with certain test results more likely to
have the target disorder than patients with other test results? (Are
patients with higher BNP more likely to have LVD than patients with
lower BNP?)

● Phase III questions: Among patients in whom it is clinically sensible to
suspect the target disorder, does the level of the test result distinguish
those with and without the target disorder? (Among patients in whom it
is clinically sensible to suspect LVD, does the level of BNP distinguish
those with and without LVD?)

● Phase IV questions: Do patients who undergo this diagnostic test fare
better (in their ultimate health outcomes) than similar patients who do
not? (Of greatest interest in evaluating early diagnosis through screening
tests, this might be phrased: Do patients screened with BNP (in the hope
of achieving the early diagnosis of LVD) have better health outcomes
(mortality, function, quality of life) than those who do not undergo
screening?).

At first glance the first three questions may appear indistinguishable or
even identical.They are not, because the strategies and tactics employed in
answering them are crucially different, and so are the conclusions that can
be drawn from their answers.The first two differ in the “direction” in which
their results are analysed and interpreted, and the third differs from the first
two as well in the fashion in which study patients are assembled.The fourth
question gets at what we and our patients would most like to know: are they
better off for having undergone it? The conclusions that can (and, more
importantly, cannot) be drawn from the answers to these questions are
crucially different, and there are plenty of examples of the price paid by
patients and providers when the answers to Phase I or II questions are
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interpreted as if they were answering a Phase III (or even a Phase IV)
question.

These questions also nicely describe an orderly and efficient progression
of research into the potential usefulness of a clinical sign, symptom, or
laboratory result, and we will use the BNP story to show this sequence.

Phase I questions: Do patients with the target disorder
have different test results from normal individuals?

Question 1 often can be answered with a minimum of effort, time, and
expense, and its architecture is displayed in Table 2.1.

For example, a group of investigators at a British university hospital
measured BNP precursor in convenience samples of “normal controls” and
in patients who had various combinations of hypertension, ventricular
hypertrophy, and LVD.6 They found statistically significant differences in
median BNP precursors between patients with and normal individuals
without LVD, and no overlap in their range of BNP precursor results. It
was not surprising, therefore, that they concluded that BNP was “a useful
diagnostic aid for LVD”.

Note, however, that the direction of interpretation here is from known
diagnosis back to diagnostic test. Answers to Phase I questions cannot be
applied directly to patients because they are presented as overall (usually
average) test results.They are not analysed in terms of the diagnostic test’s
sensitivity, specificity, or likelihood ratios. Moreover, Phase I studies are
typically conducted among patients known to have the disease and people
known not to have the disease (rather than among patients who are
suspected of having, but not known to have, the disease). As a result, this
phase of diagnostic test evaluation cannot be translated into diagnostic
action.

Why, then, ask Phase I questions at all? There are two reasons. First, such
studies add to our biologic insights about the mechanisms of disease, and
may serve later research into therapy as well as diagnosis. Second, such
studies are quick and relatively cheap, and a negative answer to their
question removes the need to ask the tougher, more time-consuming, and
costlier questions of Phases II–IV. Thus, if a convenience (or “grab”)
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Table 2.1 Answering a Phase I question: Do patients with LVD have higher BNP
than normal individuals?

Patients known to have the 
target disorder (LVD) Normal controls

Average diagnostic test (BNP 493.5 (range from 129.4 (range from
precursor) result (and its range) 248.9 to 909) 53.6 to 159.7)
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sample of patients with LVD already known to the investigators displays the
same average levels and distribution of BNP as apparently healthy
laboratory technicians or captive medical students, it is time to abandon it
as a diagnostic test and devote scarce resources to some other lead.

Phase II questions: Are patients with certain test
results more likely to have the target disorder than
patients with other test results?

Following a positive answer to a Phase I question, it is logical to ask
a Phase II question, this time changing the direction of interpretation so
that it runs from diagnostic test result forward to diagnosis. Although the
Phase II questions often can be asked in the same dataset that generated
the Phase I answer, the architecture of asking and answering them differs.
For example, a second group of investigators at a Belgian university
hospital measured BNP in “normal subjects” and 3 groups of patients with
coronary artery disease and varying degrees of LVD.7 Among the analyses
they performed (including the creation of ROC curves; see Chapter 7) was
a simple plot of individual BNP results, generating the results shown in
Table 2.2 by picking the cut-off that best distinguished their patients with
severe LVD from their normal controls.

As you can see, the results in Table 2.2 are extremely encouraging.
Whether it is used to “rule out” LVD on the basis of its high sensitivity
(SnNout)8 or to “rule in” LVD with its high specificity (SpPin),9 BNP
looks useful, so it is no wonder that the authors concluded: “BNP
concentrations are good indicators of the severity and prognosis of

Table 2.2 Answering a Phase II question: Are patients with higher BNP more
likely to have LVD than patients with lower BNP?

Patients known to have the 
target disorder (LVD) Normal controls

High BNP 39 2
Normal BNP 1 25

Test characteristics and their  
95% confidence intervals Lower Upper

Sensitivity � 98% 87% 100%
Specificity � 92% 77% 98%
Positive predictive value � 95% 84% 99%
Negative predictive value � 96% 81% 100%
Likelihood ratio for an abnormal 3.5 50

test result � 13
Likelihood ratio for a normal 0.0003 0.19

test result � 0.03
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congestive heart failure”. But is Table 2.2 overly encouraging? It compares
test results between groups of patients who already have established diag-
noses (rather than those who are merely suspected of the target disorder),
and contrasts extreme groups of normals and those with severe disease.
Thus, it tells us whether the test shows diagnostic promise under ideal
conditions. A useful way to think about this difference between Phase II

Table 2.3 Explanatory and pragmatic studies of diagnostic tests and treatments.

Promising diagnostic test Promising treatment

Feature Explanatory Pragmatic Explanatory Pragmatic
(Phase II study) (Phase III study)

Question Can this test Does this test Efficacy: Can this Effectiveness:
discriminate discriminate in treatment work Does this
under ideal routine practice? under ideal treatment work in
circumstances? circumstances? routine practice?

Selection of Preselected Consecutive Highly compliant, All comers,
patients groups of normal patients in whom high-risk, high- regardless of

individuals and it is clinically response compliance, risk
of those who sensible to patients or responsiveness
clearly have the suspect the
target disorder target disorder

Application Carried out by Carried out by Administered by Administered by
of manoeuvre expert clinician usual clinician or experts with usual clinicians

or operator on operator on great attention to under usual
best equipment usual equipment compliance circumstances

Definition of Same reference Often different May focus on “Hard” clinical
outcomes standard for standards for pathophysiology, events or death

those with and patients with and surrogate (often all-cause
without the without the target outcomes, or mortality)
target disorder disorder; may cause-specific

invoke good mortality
treatment-free
prognosis as
proof of absence
of target disorder

Exclusion Often exclude Include all May exclude Includes all
of patients patients with lost patients, events before or events after
or events results and regardless of lost after treatment is randomisation

indeterminate results or applied
diagnoses indeterminate

diagnoses

Results Usually not Ideally yes
confirmed in 
a second,
independent
(“test”) sample 
of patients

Incorporation Usually not Ideally yes Sometimes Ideal
into systematic
review

Andre_Chap02.qxd  11/6/01  2:57 PM  Page 27



THE EVIDENCE BASE OF CLINICAL DIAGNOSIS

28

and Phase III studies is by analogy with randomised clinical trials, which
range from addressing explanatory (efficacy) issues of therapy (can the new
treatment work under ideal circumstances?) to management (pragmatic,
effectiveness) issues (does the new treatment work under usual circum-
stances?). We have summarised this analogy in Table 2.3.

As shown in Table 2.3, the Phase II study summarised in Table 2.2 is
explanatory in nature: preselected groups of normal individuals (ducks)
and those who clearly have the target disorder (yaks) undergo testing under
the most rigorous circumstances possible, with the presence or absence of
the target disorder being determined by the same reference standard. No
attempt is made to validate these initial (“training set”) results (especially
the cut-off used to set the upper limit of normal BNP) in a second,
independent “test” set of ducks and yaks. On the other hand, and as with
the Phase I study, this relatively easy Phase II investigation tells us whether
the promising diagnostic test is worth further, costlier evaluation; as we
have said elsewhere,10 if the test cannot tell the difference between a duck
and a yak it is worthless in diagnosing either one. As long as the writers and
readers of a Phase II explanatory study report make no pragmatic claims
about its usefulness in routine clinical practice, no harm is done.
Furthermore, criticisms of Phase II explanatory studies for their failure to
satisfy the methodological standards employed in Phase III pragmatic
studies do not make sense.

Phase III questions: Among patients in whom it is
clinically sensible to suspect the target disorder, does
the level of the test result distinguish those with and
without the target disorder?

Given its promise in Phase I and II studies, it is understandable that BNP
would be tested in the much costlier and more time-consuming Phase III
study, in order to determine whether it was really useful among patients in
whom it is clinically sensible to suspect LVD. As we were writing this
chapter, an Oxfordshire group of clinical investigators reported that they
did just that by inviting area general practitioners “to refer patients with
suspected heart failure to our clinic”.11 Once there, these 126 patients
underwent independent, blind BNP measurements and echocardiography.
Their results are summarised in Table 2.4.

About one third of the patients referred by their general practitioners had
LVD on echocardiography. These investigators documented that BNP
measurements did not look nearly as promising when tested in a Phase III
study in the pragmatic real-world setting of routine clinical practice, and
concluded that “introducing routine measurement [of BNP] would be
unlikely to improve the diagnosis of symptomatic [LVD] in the
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community”. However, their report of the study also documented the effect
of two other cut-points for BNP. This led both to a counterclaim on the
usefulness of BNP in the subsequent email letters to the editor, and to an
opportunity for us to describe an alternative way of presenting information
about the accuracy of a diagnostic test: the multilevel likelihood ratio (LR).
The original report makes it possible for us to construct Table 2.5.

By using multilevel likelihood ratios to take advantage of the full range of
BNP results, we can be slightly more optimistic about the diagnostic
usefulness of higher levels: the LR for BNP results �76 pg/ml was 5.1.These
levels were found in 29% of the patients in this study, and their presence
raised the pretest probability of LVD in the average patient from 32% to a
post-test probability of 70%.This can be determined directly from Table 2.5
for this “average” patient with a pretest probability of 32% and a high BNP:
reading horizontally across the top row, the result is 26/(26�11) � 70%.

Table 2.4 Answering a Phase III question: Among patients in whom it is clinically
sensible to suspect LVD, does the level of BNP distinguish patients with and
without LVD?

Patients with LVD Patients with 
on echocardiography normal echoes

High BNP (�17.9 pg/ml) 35 57
Normal BNP (	18 pg/ml) 5 29
Prevalence or pretest 40/126 � 32%

probability of LVD

Test characteristics and their 
95% confidence intervals Lower Upper

Sensitivity � 88% 74% 94%
Specificity � 34% 25% 44%
Positive predictive value � 38% 29% 48%
Negative predictive value � 85% 70% 94%
Likelihood ratio for an abnormal 1.1 1.6

test result � 1.3
Likelihood ratio for a normal 0.2 0.9

test result � 0.4

Table 2.5 Answering a Phase III question with likelihood ratios.

Patients with LVD Patients with Likelihood ratio 
on echocardiography normal echoes and 95% CI

High BNP (�76 pg/ml) 26 (0.650) 11 (0.128) 5.1 (2.8–9.2)
Mid BNP (10–75 pg/ml) 11 (0.275) 60 (0.698) 0.4 (0.2–0.7)
Low BNP (	10 pg/ml) 3 (0.075) 15 (0.174) 0.4 (0.1–1)
Total 40 (1.000) 86 (1.000)
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However, if the patient has a different pretest likelihood, say 50%, then
either the table must be reconstructed for this higher figure, or the pretest
probability needs to be converted to a pretest odds (50% is a pretest odds
of (1�0.5)/0.5 � 1), and then multiplied by the likelihood ratio for the
test result (5.1 in this case), giving a post-test odds of 5.1, which then can
be converted back into a post-test probability of 5.1/(1�5.1) � 84%.
These calculations are rendered unnecessary by using a nomogram, as in
Figure 2.1.
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Figure 2.1 Nomogram for converting pretest likelihoods (left column) to post-test
likelihoods (right column) by drawing a straight line from the pretest likelihood
through the likelihood ratio for the test result.

Andre_Chap02.qxd  11/6/01  2:57 PM  Page 30



ARCHITECTURE OF DIAGNOSTIC RESEARCH

31

Given the quite wide confidence intervals around these LRs, further
type III studies may be fruitful (and readers can check to see whether this
was done after this chapter was published).

Threats to the validity of Phase III studies

There are several threats to the validity of Phase III studies that distort
their estimates of the accuracy of the diagnostic test, and the first batch are
violations of the old critical appraisal guide: “Has there been an
independent, blind comparison with a gold standard of diagnosis?”12 By
independence we mean that all study patients have undergone both the
diagnostic test and the reference (“gold”) standard evaluation and, more
specifically, that the reference standard is applied regardless of the diagnostic
test result. By blind we mean that the reference standard is applied and
interpreted in total ignorance of the diagnostic test result, and vice versa.
By anticipating these threats at the initial question forming phase of a
study, they can be avoided or minimised.

Although we prefer to conceptualise diagnostic test evaluations in terms
of 2 � 2 tables such as the upper panel of Table 2.6 (and this is the way that
most Phase II studies are performed), in reality Phase III studies generate
the 3 � 3 tables shown in the lower panel of Table 2.6. Reports get lost,
their results are sometimes incapable of interpretation, and sometimes we
are unwilling to apply the reference standard to all the study patients.

The magnitude of the cells v–z and the method of handling patients who
fall into these cells will affect the validity of the study. In the perfect study
these cells are kept empty, or so small that they cannot exert any important

Table 2.6 The ideal Phase III study meets the real world.

Reference standard

The ideal study Target disorder present Target disorder absent

Diagnostic test result
Positive a b
Negative c d

Reference standard

Target disorder Lost, not performed, Target disorder 
The real study present or indeterminate absent

Diagnostic test result
Positive a v b
Lost, not

performed, or w x y
indeterminate

Negative c z d
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effect on the study conclusions. However, there are 6 situations in which
they become large enough to bias the measures of test accuracy. First, when
the reference standard is expensive, painful, or risky, investigators will not
wish to apply it to patients with negative diagnostic test results. As a
consequence, such patients risk winding up in cell z. Furthermore, there is
an understandable temptation to shift them to cell d in the analysis.
Because no diagnostic test is perfect, some of them surely belong in cell c.
Shifting all of them to cell d falsely inflates both sensitivity and specificity.
If this potential problem is recognised before the study begins, investigators
can design their reference standard to prevent such patients from falling
into cell z.This is accomplished by moving to a more pragmatic study and
adding another, prognostic dimension to the reference standard, namely
the clinical course of patients with negative test results who receive no
intervention for the target disorder. If patients who otherwise would end up
in cell z develop the target disorder during this treatment-free follow up,
they belong in cell c. If they remain free of disease, they join cell d. The
result is an unbiased and pragmatic estimate of sensitivity and specificity.

Second, the reference standard may be lost; and third, it may generate an
uninterpretable or indeterminate result. As before, arbitrarily analysing
such patients as if they really did or did not have the target disorder will
distort measures of diagnostic test accuracy. Once again, if these potential
biases are identified in the planning stages they can be minimised, a
pragmatic solution such as that proposed above for cell z considered, and
clinically sensible rules established for shifting them to the definitive
columns in a manner that confers the greatest benefit (in terms of
treatment) and the least harm (in terms of labelling) to later patients.

Fourth, fifth, and sixth, the diagnostic test result may be lost, never
performed, or indeterminate, so that the patient winds up in cells w, x, or
y. Here the only unforgivable action is to exclude such patients from the
analysis of accuracy. As before, anticipation of these problems before 
the study begins should minimise tests that are lost or never performed to
the point where they would not affect the study conclusion regardless of
how they were classified. If indeterminate results are likely to be frequent,
a decision can be made before the study begins as to whether they will be
classified as positive or negative. Alternatively, if multilevel likelihood ratios
are to be used, these patients can form their own stratum.

In addition to the 6 threats to validity related to cells v–z, there are two
more. The seventh threat to validity noted in the above critical appraisal
guide arises when a patient’s reference standard is applied or interpreted by
someone who already knows that patient’s diagnostic test result (and vice
versa).This is a risk whenever there is any degree of interpretation (even in
reading off a scale) involved in generating the result of the diagnostic test
or reference standard. We know that these situations lead to biased
inflations of sensitivity and specificity.
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The eighth and final threat to the validity of accuracy estimates
generated in Phase III studies arises whenever the selection of the “upper
limit of normal” or cut-point for the diagnostic test is under the control of
the investigator. When they can place the cut-point wherever they want, it
is natural for them to select the point where it maximises sensitivity (for use
as a SnNout), specificity (for use as a SpPin), or the total number of
patients correctly classified in that particular “training” set. If the study
were repeated in a second, independent “test” set of patients, employing
that same cut-point, the diagnostic test would be found to function a little
or a lot worse.Thus, the true accuracy of a promising diagnostic test is not
known until it has been evaluated in one or more independent studies.

The foregoing threats apply whether the diagnostic test comprises a
single measurement of a single phenomenon or a multivariate combination
of several phenomena. For example, Philip Wells and his colleagues
determined the diagnostic accuracy of the combination of several items
from the medical history, physical examination, and non-invasive testing in
the diagnosis of deep vein thrombosis.13 Although their study generated
similar results in three different centres (two in Canada and one in Italy),
even they recommended further prospective testing before widespread use.

Limits to the applicability of Phase III studies

Introductory courses in epidemiology introduce the concept that
predictive values change as we move back and forth between screening or
primary care settings (with their low prevalence or pretest probability of the
target disorder) to secondary and tertiary care (with their higher
probability of the target disorder). This point is usually made by assuming
that sensitivity and specificity remain constant across all settings. However,
the mix (or spectrum) of patients also varies between these locations; for
example, screening is applied to asymptomatic individuals with early
disease, whereas tertiary care settings deal with patients with advanced or
florid disease. No wonder, then, that sensitivity and specificity often vary
between these settings. Moreover, because primary care patients with
positive diagnostic test results (which comprise false positive as well as true
positive results) are referred forward to secondary and tertiary care, we
might expect specificity to fall as we move along the referral pathway.There
is very little empirical evidence addressing this issue, and we acknowledge
our debt to Dr James Wagner of the University of Texas at Dallas for
tracking down and systematically reviewing diagnostic data from over 2000
patients with clinically suspected appendicitis seen in primary care and on
inpatient surgical wards (personal communication, 2000). The diagnostic
tests comprised the clinical signs that are sought when clinicians suspect
appendicitis, and the reference standard is a combination of pathology
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reports on appendices when operations were performed, and a benign
clinical course when they were not. The results for the diagnostic test of
right lower quadrant tenderness are shown in Table 2.7.

A comparison of the results in primary and tertiary care shows, as we
might expect, an increase in the proportions of patients with appendicitis
(from 14% to 63%). But, of course, this increase in prevalence occurred
partly because patients with right lower quadrant tenderness (regardless of
whether this was a true positive or false positive finding) tended to be
referred to the next level of care, whereas patients without this sign tended
not to be referred onward; this is confirmed by the rise in the frequency of
this sign from 21% of patients in primary care to 82% of patients in tertiary
care. Although this sort of increase in a positive diagnostic test result is
widely recognised, its effect on the accuracy of the test is not. The forward
referral of patients with false positive test results leads to a fall in specificity,
in this case a dramatic one from 89% down to 16%. As a result, a
diagnostic sign of real value in primary care (LR� of 8, LR� of 0.2) is
useless in tertiary care (LR� and LR� both 1); in other words, its
diagnostic value has been “used up” along the way.‡

This phenomenon can place major limitations on the applicability of
Phase III studies carried out in one sort of setting to another setting where
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Table 2.7 The accuracy of right lower quadrant tenderness in the diagnosis of
appendicitis.

Primary care settings Tertiary care settings
Appendicitis Appendicitis

Yes No Yes No
(%) (%) (%) (%)

Right lower quadrant tenderness
Present 84 11 81 84
Absent 16 89 19 16
Total 100 100 100 100

Frequency of appendicitis 14% 63%
Frequency of positive sign 21% 82%
Sensitivity 84% 81%
Specificity 89% 16%
LR� 7.6 1
LR� 0.2 1

‡Although not germane to this book on research methods, there are two major clinical
ramifications of this phenomenon. First, because clinical signs and other diagnostic tests often
lose their value along the referral pathway, tertiary care clinicians might be forgiven for
proceeding immediately to applying invasive reference standards. Second, tertiary care
teachers should be careful what they teach primary care trainees about the uselessness of
clinical signs.
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the mix of test results may differ. Overcoming this limitation is another
bonus that attends the replication of a promising Phase III study in a
second “test” setting attended by patients of the sort that the test is claimed
to benefit.

Does specificity always fall between primary care and tertiary care
settings? Might this be employed to generate a “standardised correction
factor” for extrapolating test accuracy between settings? Have a look at the
clinical sign of abdominal rigidity in Table 2.8.

In this case, a clinical sign that is useless in primary care (LR� barely
above 1 and LR� close to 1) is highly useful in tertiary care (LR� of 5),
and in this case specificity has risen (from 74% to 95%), not fallen, along
the referral pathway. The solution to this paradox is revealed in the
frequency of the sign in these two settings; it has fallen (from 28% to 14%),
not risen, along the pathway from primary to tertiary care. We think that
the explanation is that primary care clinicians, who do not want to miss any
patient’s appendicitis, are “over-reading” abdominal rigidity compared to
their colleagues in tertiary care. At this stage in our knowledge of this
phenomenon we do not think the “standard correction factors” noted in
the previous paragraph are advisable, and this paradox once again points to
the need to replicate promising Phase III study results in “test” settings
attended by patients (and clinicians!) of the sort that the test is claimed to
benefit. In this regard we welcome the creation of the CARE consortium of
over 800 clinicians from over 70 countries14 for their performance of web-
based, large, simple, fast studies of the clinical examination.15 It is hoped
that this group, which can be contacted at www.carestudy.com, can
make a large contribution to determining the wide applicability of the

Table 2.8 The accuracy of abdominal rigidity in the diagnosis of appendicitis.

Primary care settings Tertiary care settings
Appendicitis Appendicitis

Yes No Yes No
(%) (%) (%) (%)

Rigid abdomen
Present 40 26 23 6
Absent 60 74 77 94
Total 100 100 100 100

Frequency of 14% 47%
appendicitis

Frequency of 28% 14%
positive sign

Sensitivity 40% 24%
Specificity 74% 94%
LR� 1.5 5
LR� 0.8 0.8
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diagnostic test information obtained from the medical history and physical
examination.

For clinicians who wish to apply the bayesian properties of diagnostic
tests, accurate estimates of the pretest probability of target disorders in
their locale and setting are required. These can come from five sources:
personal experience, population prevalence statistics, practice databases,
the publication that described the test, or one of a growing number of
primary studies of pretest probability in different settings.16

Phase IV questions: Do patients who undergo this
diagnostic test fare better (in their ultimate health
outcomes) than similar patients who do not?

The ultimate value of a diagnostic test is measured in the health
outcomes produced by the further diagnostic and therapeutic interventions
it precipitates. Sometimes this benefit is self-evident, as in the correct
diagnosis of patients with life threatening target disorders who thereby
receive life saving treatments. At other times these outcomes can be hinted
at in Phase III studies if the reference standard for the absence of the target
disorder is a benign clinical course despite the withholding of treatment.
More often, however, Phase IV questions are posed about diagnostic tests
that achieve the early detection of asymptomatic disease, and can only be
answered by the follow up of patients randomised to undergo the
diagnostic test of interest or some other (or no) test.

Methods for conducting randomised trials are discussed elsewhere,17

and we will confine this discussion to an example of the most powerful sort,
a systematic review of several randomised trials of faecal occult blood
testing.18 In these trials, over 400 000 patients were randomised to undergo
annual or biennial screening or no screening, and then carefully followed
for up to 13 years in order to determine their mortality from colorectal
cancer. The results are summarised in Table 2.9.

Table 2.9 A systematic review of randomised trials of screening for colorectal
cancer.

Number needed
to screen to

Relative Absolute prevent one
Unscreened Screened risk risk more colorectal 

Outcome group group reduction reduction cancer death

Colorectal 0.58% 0.50% 16% 0.08% 1237
cancer 
mortality
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In this example, patients were randomised to undergo or not undergo the
diagnostic test. Because most of them remained cancer free, the sample size
requirement was huge and the study architecture is relatively inefficient. It
would have been far more efficient (but unacceptable) to randomise the
disclosure of positive test results, and this latter strategy was employed in a
randomised trial of a developmental screening test in childhood.19 In this
study, the experimental children whose positive test results were revealed
and who subsequently received the best available counselling and
interventions fared no better in their subsequent academic, cognitive or
developmental performance than control children whose positive test
results were concealed. However, parents of the “labelled” experimental
children were more likely to worry about their school performance, and
their teachers tended to report more behavioural problems among them.
This warning that diagnostic tests can harm as well as help those who
undergo them is a suitable stopping point for this chapter.
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3 Assessment of the
accuracy of diagnostic
tests: the cross-sectional
study
J ANDRÉ KNOTTNERUS, JEAN W MURIS

Summary box

● In determining the accuracy of diagnostic testing, the first step is to
appropriately define the contrast to be evaluated. Options are: to
evaluate one single test contrast; to compare two or more single
tests; to evaluate further testing in addition to previous diagnostics;
and to compare alternative diagnostic strategies. In addition, the
clinical diagnostic problem under study must be specified. Finally,
distinction should be made between evaluating testing in “extreme
contrast” or “clinical practice” settings.

● For accuracy studies, general design types are (1) a survey of the
total study population, (2) a case–referent approach, or (3) a 
test-based enrolment. The direction of the data collection should
generally be prospective, but ambispective and retrospective
approaches are sometimes appropriate.

● One should specify the determinants of primary interest (the test(s)
under study) and other potentially important determinants
(possible modifiers of test accuracy and confounding variables).

● The reference standard procedure to measure the target disorder
should be applied on all included subjects, independently of the
result of the test under study. Applying a reference standard 
procedure can be difficult because of classification errors, lack of a
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Introduction

Although the ultimate objective of the diagnostic phase is to optimise the
patient’s prognosis by enabling the clinician to choose an adequate
therapeutic strategy, an accurate diagnostic assessment is a first and
indispensable step in the process of clinical management.

Making a useful clinical diagnosis implies classifying the presented health
problem of a patient in the context of accepted nosological knowledge.This
diagnostic classification may result in confirmation or exclusion of the
presence of a certain disease, in the selection of one disease from a set of
possibly present diseases, or in the conclusion that a number of diseases are
present simultaneously.1 Also, it can be concluded that, given present
knowledge, a further diagnostic classification than the observed
symptomatology cannot be achieved. Sometimes such a classification is not
worthwhile, considering the balance between expected gain in certainty,
the burden of making a definitive diagnosis, and relevant therapeutic
consequences.

Apart from making a diagnostic classification, the diagnostic process may
be aimed at assessing the clinical severity or monitoring the clinical course
of a diagnosed condition. Another very important clinical application is
documenting the precise localisation or shape of a diagnosed lesion to
support further, for example surgical, decision making.

A potential new diagnostic test must first go through a phase of
pathophysiological and technical development, before its clinical

well defined pathophysiological concept, incorporation bias, or too
invasive or too complex patient investigations. Possible solutions are:
an independent expert panel, and the delayed-type cross-sectional
study (clinical follow up). Also, a prognostic criterion can be chosen
to define clinical outcome.

● Inclusion criteria must be based on “the intention to diagnose” or
“intention to screen” with respect to the studied clinical problem.
The recruitment procedure is preferably a consecutive series of
presenting patients or a target population screening, respectively.

● In the design phase, sample size estimation should be routine. Both
Bivariate and multivariate techniques can be used in the analysis,
based on the evaluated contrast. Estimating test accuracy and
prediction of outcome require different approaches.

● External (clinical) validation should preferably be based on
repeated studies in other, similar populations. Also, systematic
reviews and meta-analysis have a role.
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effectiveness in terms of diagnostic accuracy or prognostic impact can be
evaluated. The methodology discussed in this book, focused on clinical
effectiveness, is applicable to the further evaluation of tests that have
succesfully passed this early development.

A basic question to be anwered, then, is: what is the probability that this
particular patient with this particular symptomatology or test result has a
certain disorder or a combination of disorders? Obtaining an evidence-
based answer, using clinical epidemiological research data, requires an
analysis of the association between the presented symptomatology or test
result and the appropriate diagnostic classification, that is, the presence or
absence of certain diagnoses.

This chapter deals with principles, design and pitfalls of cross-sectional
diagnostic research. In this context, cross-sectional research includes
studies in which the measured test results and the health status to be
diagnosed essentially represent one point in time for each study subject.2

Diagnostic research on test accuracy:
the basic steps to take

All measures of diagnostic association3 (Chapters 1 and 7) can be
derived from research data on the relation between test results and a
reference standard diagnosis. A valid data collection on this relation is the
main point of concern,4 and the various measures can be calculated by
applying straightforward analytical methods. Research data for the purpose
of diagnostic discrimination are generally collected in cross-sectional
research, irrespective of the diagnostic parameters to be used.

As usual in research, a first requirement is to specify the research
question. Second, the most appropriate study design to answer this
question has to be outlined. A third step is to operationalise the
determinants (test(s) to be evaluated, relevant modifiers of diagnostic
accuracy, and possible confounding variables) and outcome (generally 
the presence or absence of the disorder to be diagnosed). Further, the study
population, the corresponding inclusion and exclusion criteria, and the
most appropriate recruitment procedure have to be further specified.
Finally, an adequate data analysis must be planned and achieved.

The research question: contrast to be evaluated

In short, the diagnostic research question should define:

● The test or test set to be evaluated
● The clinical problem for which the use of these test(s) is considered

possibly relevant
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● Whether the planned study should evaluate (1) the potential of the test
procedure to discriminate between subjects with and without a target
disorder in an ideal situation of extreme contrast, or (2) to what extent
it could be useful in a daily practice clinical setting (where discrimination
is, by definition, more difficult).

Box 3.1 The research question

(a) Contrast to be evaluated
– single test
– comparing single tests
– additional testing
– comparing diagnostic strategies

(b) Define the clinical problem
(c) Extreme contrast or practice setting

A key issue is the specific contrast to be evaluated (a). The question can
be, for example,What is the discriminative power of one specific test or test
procedure to be applied for a certain clinical diagnostic problem (single
test)? However, the focus may also be on the discriminative power of a new
test compared to the best test(s) already available for a similar clinical
diagnostic problem (comparing single tests). For clinical practice, it is
important to determine the added value of further (for example more
invasive) testing, given the tests already performed (additional testing),5 or
to evaluate the most accurate or efficient diagnostic test set or test sequence
(diagnostic strategy) for a certain diagnostic problem. In general, we
recommend that in studying a new, more invasive or more expensive test,
already available less invasive or less expensive tests with fewer adverse
effects should be also included.This makes it possible to critically evaluate
the new test’s net contribution, if any. Also, it is informative to include the
clinician’s diagnostic assessment (without knowing the test result) as a
separate test.The performance of the new approach can then be evaluated
as to its added value compared to the doctor’s usual diagnostic performance
or “black box”.

Regarding the clinical problem studied (b), it is of key importance not
only to define the target disorder(s) to be diagnosed, but also the clinical
setting and clinical spectrum (for example, early or later in the
development of the disorder, and degree of severity) at which one is
primarily aiming. It is crucial whether the investigator wants to evaluate the
validity of a test for diagnosing a possible disease in its early phase in
a primary care setting, or to diagnose more advanced disease in an
outpatient clinic or hospital setting, with patients selected by referral based
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on suspect symptoms or previous tests.6,7 This is dealt with in more detail
in Chapters 2 and 6.

As to (c), critical appraisal of the state of current knowledge is important
for defining an optimally efficient research strategy. For instance, if nothing
at all is known yet about the discriminative power of a test, it is more
efficient – in terms of reducing the burden for study patients, the sample
size, the resources, and the time needed for the study – first to evaluate
whether the test discriminates between clearly diseased and clearly non-
diseased subjects. If the test does not discriminate in such a Phase I study
(Feinstein2, Sackett and Haynes, Chapter 2 of this book) any further,
usually larger and longer, studies evaluating a more difficult contrast
between clinically similar study subjects will be useless: the index test
cannot be expected to add anything valuable to clinical practice anyhow.

The specification of these three aspects of the research question is
decisive for designing the optimal study methodology. Aspect (c) was
extensively addressed in Chapter 2.

Outline of the study design

Because study questions on diagnostic accuracy generally evaluate the
association between (combinations of ) test results and health status (mostly
the presence or absence of a target disorder), a cross-sectional design is a
natural basic design option. However, this basic design has various
modifications, each with specific pros and cons in terms of scientific
requirements, burden for the study subjects, and efficient use of resources.

ASSESSING THE ACCURACY OF DIAGNOSTIC TESTS
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Box 3.2 Study design

General approach
– survey of total study population
– case–referent approach
– test based enrolment

Direction of data collection
– prospective
– ambispective
– retrospective

General approach

The most straightforward approach of the cross-sectional design is a survey
of the study population to determine the test distribution and the presence of
the target disorder simultaneously. Examples are a survey on the relationship
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between intermittent claudication and peripheral arterial occlusive disease in
an elderly population,8 and a study in a consecutive series of sciatica patients
to determine the accuracy of history and clinical examination.9

Another option is the case–referent approach, starting from an already
known disease status (for example present or absent) as the criterion for
enrolment, the test result being determined afterwards in the study
patients. This design type may be more efficient or more acceptable when
the disease under study is infrequent or when the reference standard
procedure is highly invasive to the patient, for example in pancreatic
cancer, or very expensive.

A further approach is test based enrolment, where the available test
result (such as positive or negative) is the criterion for recruitment, with the
disease status being determined afterwards. This modification may be
preferable when test results are easily available from routine health care. An
example regarding the latter is a study on the diagnostic value of “fatigue”
for detecting anaemia in primary care, comparing patients presenting with
fatigue and a control group as to haematological parameters.10

In the context of the cross-sectional design, efficient sampling of the
studied distributions may be artificially facilitated at the determinant (test)
or the outcome (target disorder) side. For example, in order to achieve a
balanced data collection over the relevant categories, a stratified sample can
be drawn from the various test result levels or from various parts of the
whole disease spectrum, from clearly no disease to most severe disease. Also,
the contrast between the categories of the diseased and non-diseased
subjects can be enhanced by limiting the sampling to those who have been
proved to be clearly diseased and those proved to be completely healthy.The
latter approach is applied in planning a Phase I study (Chapter 2), which is
essentially a case–referent study. Because of a sharp contrast in disease
spectrum between diseased and non-diseased, sensitivity and specificity will
be optimal, and as by sampling of cases and referents the “prevalence” in the
study population can also be artificially optimised (with, for example, a
disease prevalence of 50%), Phase I studies generally need a relatively small
number of subjects to be included. Moreover, for a Phase I study the
subjects in the “case group” (the diseased) and those in the reference group
(the healthy or non-diseased subjects) can be specifically selected from
populations consisting of subjects who have already undergone a “reference
standard” procedure with maximum certainty.

Direction of data collection

Whereas Phase I and Phase II studies (according to Sackett and Haynes,
Chapter 2) may be based on either retrospective or prospective
identification of subjects with a certain diagnosis or test status, Phase III
studies must usually be prospectively planned.The latter start from a study
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population of subjects comparable with those who will be tested in clinical
practice. In such studies it is not known in advance who is diseased and who
is not, and the clinical characteristics of the two are therefore very similar
(which in fact is the reason that testing is clinically necessary at all). Because
the clinical contrast is much less pronounced, and as the prevalence of
diseased subjects is usually much lower than 50%, substantially larger
sample sizes are generally needed than in Phase I studies.

Also, when the subject selection is prospective the data collection can be
partly retrospective (ambispective approach). For instance, if patient history
is an important element of the diagnostic test to be evaluated (such as when
studying the diagnostic value of rectal bleeding, palpitations, or psychiatric
symptoms in the preceding 6 months), information about the past is
included in the test result. Essential, however, is that the test result status,
albeit based on historical information, is evaluated and interpreted as to its
diagnostic accuracy at the very moment that the patient “history” is taken.

The “direction” of the sampling and the data collection must be decided
upon in advance. In addition, and secondary to scientific considerations,
practical issues may play a role, such as the availability of data and the
efficiency of its collection. Prospectively planned data collections often take
more time but are generally more valid, as the procedure and the quality of
the data collection can be optimised beforehand. But this is not necessarily
always the case. Valid data may be already available in a well documented
database of an appropriate study population with an adequately described
epidemiological (morbidity) numerator and (population) denominator,
and with all relevant covariables present. Especially when the clinical
indication to perform the test is appropriately defined (for example
coronary angiography in instable angina pectoris) and recorded, and when
all eligible patients can be assumed to be included, this is an option.
Moreover, a prospective data collection may sometimes imply a higher risk
of bias than a retrospective approach. For example, if participating
clinicians know that they are being observed in a study of the accuracy of
their usual diagnostic assessment compared to an independent standard or
panel, their behaviour will be easily be influenced in the context of a
prospective design (Hawthorne effect). However, in a retrospective design
the availability of complete and well standardised data and the controlling
of the subject selection process are often problematic.

Operationalising determinants and outcome

Determinants

As in any (clinical) epidemiological study, research questions on
diagnostic accuracy can be operationalised in a central “occurrence
relation”11 between independent and dependent variables.
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The independent variable or determinant of primary interest is the test
result to be evaluated, and the primary dependent or outcome variable is
(presence or absence of ) the target disorder.When evaluating a single test,
the test results in all study subjects are related to the reference standard. In
fact, we are then comparing testing (yielding the post-test probabilities of
the disorder D, for example for positive and negative test results) with not
testing (expressed in the pretest probability of D).When two or more tests
are compared, we have a number of separate determinants that are
contrasted as to their discriminatory power. In studying the value of an
additional (for example more invasive) test, given the tests already
performed, the discrimination of applying all other tests is compared with
that of applying all other tests plus the additional one. And to evaluate the
most accurate or efficient diagnostic test set or strategy for a certain clinical
problem, the performances of all the considered test combinations and
sequences must be compared. To be able to make these comparisons, all
separate tests have to be performed in all study subjects.

The accuracy of diagnostic tests may vary in relation to subject
characteristics, such as gender, age, and comorbidity. For example, in
studying the diagnostic accuracy of mammography in the detection of
breast cancer, it is important to consider that this accuracy depends on age,
gender, and the possible presence of fibroadenomatosis of the breasts. To
evaluate the influence of such modifiers of test accuracy, these have to be
measured and included in the analysis. In fact, we are dealing here with
various subgroups where the diagnostic accuracy may be different. Effect
modifying variables can be accounted for later in the analysis, for example
by stratified analysis (subgroup analysis) of the measures of diagnostic
association, or by introducing interaction terms in the logistic regression
analysis (Chapter 7).12,13 Because diagnostic assessment can be seen as
optimal discrimination between subgroups with a different probability of

Determinant of 
primary interest:

Box 3.3 The occurrence relation in diagnostic research

Outcome parameter :

(post-test probablity of
target disorder

modifiers of test accuracy
confounding variables

test (s)
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disease, effect modifying variables can also be considered as additional
diagnostic tests themselves.

Confounding variables are independent extraneous determinants of the
outcome that may obscure or inflate an association between the test and 
the disorder. They are essentially related to both the test result and the
outcome. For example, in studying whether the symptom fatigue is
predictive for a low blood haemoglobin level, it is important to know which
study subjects have previously taken oral iron, as this can improve the
fatigue symptoms and enhance the haemoglobin level as well. A
confounder can only be controlled for if it is considered beforehand and
measured, which requires insight into relevant external influences. In
diagnostic research the term “confounding variable” is used in a different,
more pragmatic sense than in aetiologic research, as consistent diagnostic
correlations do not need to be fully causally understood to be useful.

Generally, according to Bayes’ theorem, the pretest probability of the
target disorder is seen as a basic determinant of the post-test probability,
independent of the accuracy of the applied tests. However, the clinical
spectrum of the disorder may be essentially different in high and low
prevalence situations. Because the clinical spectrum can influence test
accuracy (Chapters 1, 2, and 6), it is then crucial to measure separately
spectrum characteristics, such as disease severity, and frequency of
occurrence as such. Spectrum characteristics can then be analysed as
modifiers of test accuracy.

Good test reproducibility is a requirement for good accuracy in practice.
Therefore, when the test under study is sensitive to inter- or intraobserver
variability, documentation and, if possible, reduction of this variability is
important. Documentation can be achieved in a pilot study or in the
context of the main study. For example, in a study of the accuracy and
reproducibility of erythrocyte sedimentation rate (ESR) measurements in
general practice centres, for measuring an identical specimen a clinically
relevant range between practices from 4 to 40 mm/1 h was observed. The
average coefficient of variation (CV: standard deviation as a percentage of
the mean) was 37% between practices and 28% within practices.9 Observer
variability can be reduced by training. In the same ESR study, the average
inter- and intrapractice CVs were reduced by training to 17% and 7%,
respectively. The accuracy of a test can be evaluated in relation to the
achieved reproducibility. This reproducibility must then, for practical
purposes, be judged as to its clinical acceptability and feasibility.

Outcome: the reference standard

Principles

Establishing a final and “gold standard” diagnosis of the target disorder is
generally more invasive and expensive than applying the studied diagnostic
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test. It is exactly for this reason that good test accuracy (for example a very
high sensitivity and specificity) would be very useful in clinical practice to
make a satisfactory diagnostic assessment without having to perform the
reference standard. However, in performing diagnostic research the central
outcome variable – the presence or absence of the target disorder – must
be measured, as it is the reference standard for estimating the test accuracy.
A real gold – that is, perfect – standard test, with 100% sensitivity and
specificity, is exceptional. Even histological classification and MRI imaging
are not infallible, and may yield false positive, false negative and
uninterpretable conclusions. Therefore, the term “reference standard” is
nowadays considered better than “gold standard”.
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Box 3.4 The reference standard

Principles
– to be applied on all included subjects
– independent assessment of test and standard
– standardised protocol

Possible problems with the reference standard
– imperfect: classification errors
– pathophysiological concept not well defined

(independent from clinical presentation)
– incorporation bias
– too invasive
– too complex

Possible solutions
– pragmatic criteria
– independent expert panel
– clinical follow up: delayed-type cross-sectional study
– tailormade standard protocol
– prognostic criterion

The reference standard to establish the final diagnosis (outcome) should
be applied for all included subjects. Applying different standard proce-
dures for different patients may yield an inconsistent reference for the
evaluated test, as each of the “standards” will have its own idiosyncratic
error rate.

The results of the test for each patient should be interpreted without
knowledge of the reference standard results. Similarly, the reference
standard result should be established without knowing the outcome of the
test under study.Where such blinding is not maintained, “test review bias”

Andre_Chap03.qxd  11/6/01  2:56 PM  Page 48



and “diagnosis review bias” may occur: non-independent assessment of test
and reference standard, mostly resulting in overestimation of test accuracy.

The reference standard must be properly performed and interpreted
using standardised criteria. This is especially important when the standard
diagnosis depends on subjective interpretations, for example by a
psychiatrist, a pathologist, or a radiologist. In such cases inter- and even
intraobserver variability in establishing the standard can occur. For
example, in evaluating the intraobserver variability of MRI assessment as
the standard for nerve root compression in sciatica patients, the same
radiologist repeatedly scored the presence of root compression as such
consistently (
: 1.0) but the site of root compression only moderately 
(
: 0.60).14 In these situations, training sessions and permanent
documentation of performance are important.

Problems and solutions

Apart from the limitations in reaching a 100% perfect standard
diagnosis, meeting the requirements for a reference standard can be
problematic in various ways.

For many conditions a reference standard cannot be measured on 
the basis of a well defined pathophysiological concept, independent of the
clinical presentation. Examples are sinusitis, migraine, depression, irritable
bowel syndrome, and benign prostatic hyperplasia. When, in such cases,
information related to the test result (for example symptom status) is
incorporated into the diagnostic criteria, “incorporation bias” may result in
overestimation of test accuracy. Furthermore, a defined reference standard
procedure may sometimes be too invasive for research purposes. For
instance, when validating urinary flow measurement it would be
unacceptable to apply invasive urodynamic studies to those with normal
flow results.15 And in studying the diagnostic value of non-acute abdominal
pain in primary care for diagnosing intra-abdominal cancer, one cannot
imagine that all patients presenting with non-acute abdominal pain would
be routinely offered laparotomy.16 In addition, one may doubt whether
such laparotomy, if it were to be performed, could always provide an
accurate final diagnosis in the very early stage of a malignancy. Another
problem can be that a complex reference standard might include a large
number of laboratory tests, so that many false positive test results could
occur by chance.

For these problems, practical solutions have been sought.

Pragmatic criteria

The absence of a well defined pathophysiological concept can sometimes
be overcome by defining consensus based pragmatic criteria. However, if
applying such reference standard criteria (such as a cut-off value on a
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depression questionnaire) is no more difficult than applying the test under
study, evaluating and introducing the test will not be very useful.

Independent expert panel

Another method is the composition of an independent expert panel that,
given general criteria and decision rules for clinical agreement, can assign a
final diagnosis to each patient, based on the available clinical information.To
achieve a reasonably consistent classification it is important that the panel is
well prepared for its task, and a training session or pilot study using patients
with an already established diagnosis is recommended.The agreement of the
primary assessments of the individual panel members, prior to reaching to
consensus, can be documented.

Clinical follow up: delayed-type cross-sectional study

When applying a definitive reference standard is too invasive or
otherwise inapplicable at the very moment that the test should be
predictive for the presence of the target disorder, a good alternative can
be follow up of the clinical course during a suitable predefined period.
Most diseases that are not self-limiting, such as cancers and chronic
degenerative diseases, will usually become clinically manifest a period of
months or a year or so after the first diagnostic suspicion (generally the
moment of enrolment in the study) was raised. The follow up period
should not be too short, in order to give early phase disorders the chance
to become manifest and therefore to have a minimum number of “false
negative” final diagnoses. Nor should it be too long, so as to avoid the
final diagnosis after follow up being related to a new disease episode
started after the baseline “cross-section” (false positives).16,17 In
addition, it would be ideal to collect the follow up data that are decisive
for making the final diagnosis independently from and blinded to the
health status and test results at time zero, and also to blind the final
outcome assessment for these test results.

One should take into account that “confounding by indication” can
occur: management decisions during follow up are possibly related to the
health status at baseline, and might therefore influence the clinical course
and the probability of detecting the target disorder. This is especially a point
of concern in studying target disorders with a rather variable clinical course,
becoming clinically manifest dependent on management decisions.

In contrast to what is commonly thought, it has to be acknowledged that
the described method of clinical follow up should not be considered as a
“follow up” or “cohort” study, as the focus is not on relating the time zero
data to a subsequently developing (incident) disorder. In fact, the follow up
procedure is aimed at retrospectively assessing the (prevalent) health status
at time zero, as a substitute for establishing the reference standard
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diagnosis of the target disorder immediately at time zero itself. Therefore,
this design modification can be designated a “delayed-type cross-sectional
study”, instead of a follow up study.18

The expert panel and the clinical follow up can be combined in a
composite reference standard procedure, in which the outcome after follow
up is evaluated and established by the panel.15

Tailormade standard protocol

In some situations, for example in diagnostic research on psychiatric
illnesses, it might be difficult to separate test data at time zero (for example
the presence of anxiety) from the information needed to make a final
assessment (anxiety disorder). As mentioned earlier, in such situations
incorporation bias may be the result. If test data are indeed an essential part
of the diagnostic criteria, one cannot avoid balancing a certain risk of
incorporation bias against not being able to perform diagnostic research at
all, or making a final diagnosis while ignoring an important element of the
criteria. Often, one can find a practical compromise in considering that for
clinical purposes it is sufficient to know to what extent the available
diagnostic tests at time zero are able to predict the target disorder’s becoming
clinically manifest during a reasonably chosen follow up period.17 There is
also the option to ask the expert panel to establish the final diagnosis first
without the baseline test data, and then to repeat it with these data
incorporated.This can be done while adding an extra blinding step, such as
randomly rearranging the order of anonymised patient records. If there
then appear to be important differences in the research conclusions, this
should be transparently reported and discussed as to the clinical
implications.

When it is impossible to meet the principle that the reference standard
should be similarly applied to all study subjects irrespective of their health
or test result status, “next best” solutions can be considered. For example,
to determine the accuracy of the exercise electrocardiogram (ECG) in
primary care settings, it might be considered medically and ethically
unjustified to submit those with a negative test result to coronary
angiography. For these test negatives a well standardised clinical follow up
protocol (delayed-type cross-sectional study) might be acceptable. This
option is particularly important when the focus is on exercise ECG in
patients who have a relatively low prior probability of coronary heart
disease. For this spectrum of patients, results of a study limited to those
who would be clinically selected for coronary angiography would be clearly
not applicable.19–21 If one would still prefer an identical standard procedure
for primary care patients, irrespective of previous test results, one could
also consider submitting all patients to the clinical follow up standard
procedure. In order to have some validation of this procedure, for the
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subgroup who had an angiography one can compare the standard
diagnoses based on the follow up with the angiography results.

In summary, although a completely identical and “hard” reference standard
for all included study subjects is the general methodological paradigm, this
is not always achievable. In such situations, given the described limitations
and the suggested alternative approaches, establishing a well documented
and reproducible reference standard protocol – indicating the optimal
procedure for each type of patient – may be not only the best one can get
but also sufficient for clinical purposes.

Prognostic criterion

Diagnostic testing should ultimately be in favour of the patient’s health,
rather than just an assessment of the probability of the presence of disease.
In view of this, the reference standard procedure can sometimes
incorporate prognosis or consequences for clinical management.22,23 It is
then a starting point for further decision making (for example, whether
treatment is useful or not) rather than a diagnostic endpoint. This is
especially relevant in situations where an exhaustive nosological
classification is less important, and when management is based primarily
on the clinical assessment (for example in deciding about physiotherapy in
low back pain, or referral to a neurosurgeon in sciatica14). Sometimes
making a final diagnosis is less important than a prognosis, in view of the
clinical consequences (incidental fever) or the lack of a solid diagnostic
consensus (the pyriformis syndrome). In establishing a “prognostic
reference criterion”, a pitfall is that prognosis can be influenced by
interfering treatments. In this context, methods for unbiased assessment of
the impact of testing on patient prognosis are important (Chapter 4). It is
to be expected that with the progress of DNA testing for disease,
prognostic relevance will increasingly be the reference standard.

Standard shift as a result of new insights

At certain moments during the progress of pathophysiological knowledge
on diagnosis, new diagnostic tests may be developed that are better than the
currently prevailing reference standard. However, if this possibility is
systematically ignored by reducing diagnostic accuracy research to just
comparing new tests with traditional standards, possible new reference
standards would never be recognised, as they would always seem less
accurate than the traditional ones. Therefore, pathophysiological expertise
should be involved in the evaluation of diagnostic accuracy. Examples of a
shift in reference standard are the replacement of the clinical definition of
tuberculosis by the identification of Mycobacterium tuberculosis, and of old
imaging techniques by new ones (see also Chapter 1).
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Specifying the study population

As in all clinical research, the study population for diagnostic research
should be appropriately chosen, defined, and recruited. The selection of
patients is crucial for the study outcome and its external (clinical) validity.
For example, as has already been emphasised, it is widely recognised that
diagnostic accuracy is very much dependent on the spectrum of included
patients and the results of relevant tests performed earlier, and may differ
for primary care patients and patients referred to a hospital.6,7,21

Given that the test has successfully passed Phase I and Phase II studies
(Chapter 2), the starting point is the clinical problem for which the test
under study should be evaluated as to its diagnostic accuracy, taking the
relevant healthcare setting into account. For example, the study can
address the diagnostic accuracy of clinical tests for sciatica in general
practice, the accuracy of ECG recording in outpatients with palpitations
without a compelling clinical reason for immediate referral, or the
diagnostic accuracy of the MRI scan in diagnosing intracerebral pathology
in an academic neurological centre. The study population should be
representative for the “indicated”, “candidate”, or “intended” patient
population, also called the target population, thereby being clinically
similar to the group of patients in whom the validated test is to be applied
in practice.24,25 The “intention to diagnose” should be the key criterion for
the study of presented clinical problems. For the evaluation of population
screening of asymptomatic subjects, such as in the context of breast cancer
screening or hypertension case finding, a study population similar to the
target population “intended to be screened” is required.

Box 3.5 Study population

– In accordance with studied clinical problem
– “Intention to diagnose” or “intention to screen”
– Inclusion criteria corresponding with “indicated” population
– Consecutive series (“iatrotropic”) or target population survey

The next step is generally straightforward: the specification of the
relevant process of selection of patients for the study (preferably
corresponding with the clinical problem and the healthcare setting
requirements), and the relevant inclusion citeria (in accordance with the
indicated population and the relevant patient spectrum). Exclusion criteria
may also be defined, for example identifying those patients for whom the
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reference standard procedure is too risky or too burdensome. The
importance of explicitly formulated entry criteria is demonstrated by a
study on the diagnostic value of reported collapse for the diagnosis of
clinically relevant arrhythmias in general practice: if the inclusion was
based on presented symptoms the odds ratio (OR) was 1.9, whereas for 
an inclusion based on coincidentally finding a pulse 	 60 or � 100 bpm or
an irregular pulse, the OR was 10.1.26 Investigators should include
“indicated” patients as long as there is no compelling reason not to do so,
in order that after the study a non-evidence-based testing practice will not
be introduced or maintained for relevant parts of the “real life” patient
spectrum. In this context it is emphasised that, for example in the elderly,
comorbidity in addition to the possible presence of the target disorder
is often an important aspect of clinical reality.27 For the clinical
applicability of the study measuring comorbidity and studying it as a
modifier of diagnostic accuracy is the preferred approach, instead of
excluding it.

In the section on study design we discussed the choice between
population survey and disorder- or test-oriented subject selection, covering
the principal starting point of patient recruitment. In addition, the pros and
cons of the various options for practical patient recruitment should be
considered. When problems presented to clinicians are studied, recruiting
(a random sample of ) a series of consecutively presenting patients who
meet the criteria of the indicated population is most sensible for clinical
validity purposes. This should preferably be supported by a description of
the patient flow in health care prior to presentation. Sometimes, however, it
may take too long to await the enrolment of a sufficiently large consecutive
series – for example when the clinical problem or target disorder is very
rare, or when a useful contribution to rapidly progressing diagnostic
knowledge can only be made within a limited period. In such situations,
active surveys of the target population or sampling from a patient register
can be alternatives. However, it should be borne in mind that such methods
may yield a population of study subjects with a different clinical spectrum.
Also, for such subjects the indication to test is less clear than for patients
who experienced an “iatrotropic” stimulus2 to visit a doctor at the very
moment that they want their health problem to be solved.

Of course, for validating test procedures to be used in population
screening, an active survey of a study population similar to the target
population is the best approach.

In order to enhance external validity, it is essential to add key demographic
and clinical characteristics of the identified study population, and to
evaluate non-response in relation to these characteristics. Furthermore, all
important steps in the study protocol, with data on specific subgroups,
including subgroup non-response, should be documented. This can be
supported by a flow diagram.
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Adverse effects of test and reference standard

Apart from its accuracy, the performance of a test has to be evaluated as
to its (dis)comfort to both patient and doctor. In particular, a test should
be minimally invasive and have a minimal risk of adverse effects and serious
complications. Measuring these aspects in the context of a diagnostic
accuracy study can add to the comparison with other tests as to their
clinical pros and cons.

For the research community, it is also important to learn about the
invasiveness and risks of the reference standard used. For example, if in the
evaluation of the positive test results of Haemoccult screening colonoscopy,
sigmoidoscopy or double contrast barium enema were to be used, one
might expect complications (perforation or haemorrhage) once in 300–900
subjects investigated.28 Researchers can use the experience reported by
colleagues studying similar problems, in order to make an optimal choice
of reference standard procedure, taking possible adverse events into
consideration.

Statistical aspects
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Box 3.6 Statistical aspects

● Sample size
● Bivariate and multivariable analysis
● Test accuracy or prediction of outcome
● Single test; comparing tests or strategies; additional testing
● Difference between diagnostic and aetiologic data analysis

In the planning phase of the study the required sample size should be
considered. To evaluate the relationship between a dichotomous test and
the presence of a disorder, one can use the usual programs for sample size
estimation. For example, for a case–referent study with equal group sizes,
accepting certain values for type I and type II errors (for example 0.05 and
0.20, respectively) and using two-sided testing, one can calculate the
number of subjects needed per group to detect a minimum sensitivity
(proportion of test positives among the diseased, for example at least 0.60)
assuming a certain maximum proportion of test positives among non-
diseased (for example 0.20, implying a specificity of at least 0.80). For the
example above the calculation using the program EPI-Info29 would yield a
required number of 27 cases and 27 referents. Of course, when performing
a cross-sectional study prospectively in a consecutive series with a low
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expected prevalence of the target disorder (unequal group sizes), the
required sample will be much higher. Also, if a number of determinants is
simultaneously included in the analysis, the required sample size is higher:
as a rule of thumb, for each determinant at least 10 subjects with the target
disorder are needed.30

Data analysis in diagnostic research follows the general lines of that in
clinical epidemiological research. For single tests the first step is a Bivariate
analysis focused on one predictive variable only, for example in a 2�2 table
in the case of a dichotomous test. It is possible to stratify for modifiers of
accuracy, thereby distinguishing relevant clinical subgroups, and to adjust
for potential confounding variables. Point estimates and confidence
intervals for the measures of diagnostic accuracy can be determined.
Subsequently, there are various options for multivariable analysis, taking
the influence of multiple independent variables into account
simultaneously. Multiple logistic regression is especially useful for
analysing accuracy data.12,13 These data analytical challenges in diagnostic
research are discussed in detail in Chapter 7.

It is important to distinguish the analytical approach focusing on the
accuracy of individual tests from the analysis where an optimal prediction
of the presence of the studied disorder in patients is at stake. In the first,
the dependent variable may even be test accuracy itself, as a function 
of various determinants. In the latter, a diagnostic prediction model can 
be derived with disease probability as the dependent variable, and with
various tests, demographic, and clinical covariables as independent
variables.18,31

When a number of tests are applied there are various analytical options.
First, the accuracy of all tests can be determined and compared. Further-
more, using multivariate analysis such as multiple logistic regression, the
combined predictive power of sets of test variables can be determined.
Moreover, starting from the least invasive and most easily available test
(such as history taking), it can be evaluated whether adding more invasive
or more expensive tests contributes to the diagnosis. For example, the sub-
sequent contributions of history, physical examination, laboratory testing,
and more elaborate additional investigations can be analysed, supported by
displaying the ROC curves (with areas under the curve) of the respectively
extended test sets (see Chapter 7).8,26

It must be acknowledged that data analysis in diagnostic research is
essentially different from aetiologic data analysis. The principal difference
is that aetiologic analysis usually focuses on the effect of a hypothesised
aetiologic factor adjusted for the influence of possible confounders, thereby
aiming at a causal interpretation. In diagnostic research the focus is on
identifying the best correlates of the target disorder irrespective of any
causal interpretations. It is sufficient if these correlates (tests) can be
systematically and reproducibly used for diagnostic prediction. Whereas in
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aetiologic analysis there is a natural hierarchical relation between the
possible aetiologic factor of interest and the covariables to be adjusted for,
such a hierarchy is absent for the possible predictors in diagnostic research.
This implies that diagnostic data analysis can be more pragmatic, seeking
for the best correlates.

External validation

Analyses of diagnostic accuracy in the collected data set, especially the
results of multivariable analyses, may produce too optimistic results that
may not be reproducible in clinical practice or similar study populations.32

Therefore, it is advisable to perform one or more separate external
validation studies in independent but clinically similar populations.

Box 3.7 External (clinical) validation

● Results based on study data may be too optimistic
● “Split-half” analysis is no external validation
● Repeated studies in other, similar populations are preferred
● First exploration: compare first included half with second half
● Role of systematic reviews and meta-analysis

Sometimes authors derive a diagnostic model in a random half of the
research data set and test its performance in the other half (split-half
analysis). This approach is not addressing the issue of external validation:
in fact, it only evaluates the degree of random error at the cost of possibly
increasing such error by reducing the available sample size by 50%.18 Also,
other methods using one and the same database do not provide a real
external validation. An exploratory approximation, however, could be to
compare the performance of the diagnostic model in the chronologically
first enrolled half of the patients, with that in the second half. The
justification is that the second half is not a random sample of the total, but
rather a subsequent clinically similar study population. However,
totally independent studies in other, clinically similar settings will be more
convincing. In fact, over time, various studies can be done in comparable
settings, enabling diagnostic systematic reviews and meta-analyses to 
be performed. This may yield a constantly increasing insight into the
performance of the studied diagnostic test, both in general and in relevant
clinical subgroups (Chapter 8).
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4 Diagnostic testing and
prognosis: the randomised
controlled trial in
diagnostic research
JEROEN G LIJMER, PATRICK M BOSSUYT

Summary box

● From the patient’s perspective the contribution of diagnostic tests
to a better health outcome is of primary importance, rather than
their correspondence with the “truth”.

● Diagnostic test evaluations should therefore focus on the likelihood
that tests detect clinical events of interest and the effect that tests
can have on those events by way in which the results affect
subsequent management decisions.

● Randomised controlled trials of diagnostic tests are feasible, and
several designs are possible.

● Each trial design option has its own advantages and disadvantages.
Depending on the clinical problem under study, the type of
information needed, and the costs of tests or follow up, one design
can be preferred over another.

● Whereas in most randomised controlled trials of diagnostic tests so far
the point of randomisation coincided with the clinical decision as to
whether or not to perform the test, the trial design can be made more
efficient by randomising only patients with the test result of interest.

● The randomised trial design can be elaborated both for evaluating
the (additional) prognostic value of a single test, and for comparing
different test strategies.
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Why bother about the prognostic impact 
of a diagnostic test?

For scientific purposes it is worth knowing whether or not a result from
a medical test corresponds to the truth. Can this value be trusted? Is this
truly a sign of disease? These are the first questions that come to the mind
in the evaluation of medical tests.

From a patient perspective, mere knowledge about the present, true state
of things is in most cases not enough. In relieving health problems,
information in itself will not suffice. Patients will only benefit from
diagnostic tests if the information generated by those tests is correctly used
in subsequent decisions on action to restore or maintain the patient’s health.

There are several ways in which medical tests can affect a patient’s
health. First, undergoing the test itself can have an impact. The adverse
effects range from slight discomfort and temporary unpleasantness to
lasting side effects or death. On the other hand, undergoing an elaborate
procedure can also have a non-specific positive effect on patient
complaints, regardless of the information that results from it. This can be
called the “placebo” effect of testing, and we know very little about its
magnitude and modifying factors.

In addition to the effects of the diagnostic procedure itself, the information
generated by the test also influences patients. Information on the likely cause
of one’s health problems or other aspects of health status can have both a
positive and a negative effect, albeit limited. As patients, we want to be
informed about the origin of our complaints, even in the absence of a cure.
Such information may enable us to find better ways of handling them, by
developing strategies to limit their disabling impact on our daily activities.

In these cases it is not just the present state of health that is of interest,
but also the future course of disease. It follows, then, that the value of
information from diagnostic tests lies not only in the past (where did this
come from?) or the present (how is it?), but also in the future. Hence, the
relevance of diagnostic information is closely related to prognosis: the
implications for the future course of the patient’s condition.

● A randomised controlled trial of diagnostic tests should incorporate
a prespecified link between test and treatment options to ascertain
validity and generalisability.

● Methods to preserve allocation concealment and blinding deserve
special attention.

● Sample size calculations need special attention, and must include
an estimation of the discordance rate.
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The first section of this chapter discusses the evaluation of a single test,
starting from an evaluation of its prognostic value and then moving on to
the consequences for treatment. It closes with a presentation of randomised
designs for evaluating test–treatment combinations. The second section
contains an elaboration of the methods for comparing and evaluating
multiple test strategies, also including randomised clinical trials. The
chapter ends with a discussion on practical issues.

How to measure the prognostic impact of a test

A recent example of the assessment of the prognostic value of a test can
be found in the literature on the management of carotid disease. Several
studies have examined the need to perform duplex ultrasonography in
patients with a cervical bruit without further symptoms of cerebrovascular
disease.To answer this question, an assessment has to be made of the value
of duplex ultrasonography. Such an evaluation will often look at the
amount of agreement between the index test (duplex ultrasonography) and
the reference test (the best available method to reveal the true condition of
the carotid arteries). In this case, the reference test will mostly likely be
conventional angiography. If properly conducted, a 2�2 table can be
constructed after the study is done and all indicators of diagnostic accuracy
can be calculated. Unfortunately, many of the evaluation studies in
diagnostic techniques for carotid stenosis performed so far did not meet the
design requirements for an unbiased and useful evaluation.1

From a patient perspective, one could successfully argue that it is not so
much the correspondence with the “truth” that should be of concern,
especially not in asymptomatic patients. For these patients, the true value
of the information should come from the strength of the association
between data on the presence and severity of carotid stenosis and the
likelihood of vascular events in the near future. The appropriate reference
standard for such an evaluation will not be a diagnostic procedure. Instead,
one should look for clinical information collected through a meticulous
follow up of all patients subjected to the index test.

Figure 4.1 illustrates the general design of such a study. All patients with
cervical bruits without previous cerebrovascular disease are eligible for the
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Figure 4.1 Prognostic study.
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study. A duplex ultrasonogram of the right and left common and internal
carotid arteries is performed in all patients and the percentage of stenosis
measured. Ideally, none of the patients receives treatment. Subsequently
patients are followed by regular outpatient visits and telephone interviews.
The following clinical indicators of poor outcome are recorded: TIA
(transient ischaemic attack), stroke, myocardial infarction, unstable angina,
vascular deaths, and other deaths.

With data recorded in such a study standard diagnostic accuracy
measures can be calculated to express the prognostic value of a test.Table 4.1,
based on data published by Lewis et al.,2 shows positive and negative
predictive values of 47% and 80%, respectively, in predicting a poor
outcome for a stenosis � 80%, as detected on duplex ultrasound.The data
also showed that the relative risk of a stenosis � 50% for a TIA or stroke
was 2.3. However, insufficient data were presented to reconstruct the 2 � 2
table for this cut-off point.

The study in Figure 4.1 can provide an answer to the question whether
or not a test is able to discriminate between different risk categories for a
specific event. Such prognostic information, although of value to patients
and healthcare professionals, does not answer the question as to whether
there is an intervention that can improve the prognosis of these patients.To
respond to this it is necessary to compare the prognosis for different
treatment strategies.

Randomised designs for a single test

A slight modification of the design in Figure 4.1 allows us to measure the
prognostic value of a test within the context of subsequent clinical decision
making. Instead of treating all patients identically one can randomly
allocate them to one of the two treatment strategies, establishing the
prognostic value of the test in each arm in a way that is similar to the
previous example.

A straightforward comparison of patient outcome in the two treatment
arms provides an answer as to which treatment is the most effective for all
patients included in the trial. Moreover, an analysis stratified by test result
offers the possibility of comparing the effectiveness of the treatment
options for groups with identical test results.

Table 4.1 Prognostic value of duplex ultrasonography.

Poor Favourable
outcome outcome

Stenosis � 80% 63 (47%) 72 (53%) 135
Stenosis 	 80% 113 (20%) 451 (80%) 564
Total 176 523 699

Andre_Chap04.qxd  11/6/01  2:57 PM  Page 64



This type of design and analysis can be illustrated with another example
from the field of cerebrovascular disease. In the management of acute
stroke the role of intravenous anticoagulation and duplex ultrasonography
of the carotid arteries is unclear. A large trial has been performed with as
its primary objective the documentation of the efficacy of unfractionated
heparin in the treatment of acute stroke. A secondary objective was an
evaluation of the role of duplex ultrasonography in selecting patients for
anticoagulation.3,4 A simplified version of the design of this trial is outlined
in Figure 4.2. Patients with evidence of an ischaemic stroke, with
symptoms present for more than 1 hour but less than 24 hours, were
eligible for the study. A duplex ultrasonogram of the right and left common
and internal carotid arteries was performed in all included patients.
Subsequently, patients were randomised to treatment with unfractionated
heparin or placebo, and followed for 3 months. A favourable outcome after
stroke was defined as a score of I or II on the Glasgow Coma Scale and a
score of 12–20 on the modified Barthel Index.

Tables 4.2(a) and (b) shows the prognostic value of Duplex ultra-
sonography in each trial arm. An odds ratio can be calculated for each table.
These odds ratios can be interpreted as measures of the natural prognostic
value (Table 4.2(b)) and the prognostic value with intervention (Table 4.2(a)),
respectively. Another presentation of the same data gives us Tables 4.2(c) and
(d), which provide us with information on the treatment effect in both test
result categories.We will call the odds ratios of the latter two tables treatment
effect in test normals (Table 4.2(d)) and treatment effect in test abnormals (Table
4.2(c)). When the test discriminates well between patients that benefit from
treatment and those that do not, the treatment effect in test abnormals will
differ from that in test normals.The ratio of the odds ratios of  Tables 4.2(c) and
4.2(d) can therefore be used as a measure of the prognostic impact of the test.

The study in Figure 4.2 provides information on the treatment effect in
all test result categories. In practice, it will not always be necessary or ethical
to randomise all patients, as uncertainty may exist only for patients with a
specific – say, abnormal – test result. This will be the case when there is
information available that the prognosis for normal test results is good and
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Outcome

Duplex US

Unfractionated heparin
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RPatients with
acute stroke

Figure 4.2 Basic RCT of a single diagnostic test.
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that patients with such results need no intervention. A logical translation of
such a question into a study design would be to randomise only patients
with abnormal test results between the different treatment options.

Consider the first example of duplex ultrasonography in patients with
cervical bruits. Such a trial could provide evidence that the natural history
of patients with a stenosis of less than 50% has a good prognosis.The trial
outlined in Figure 4.3 can subsequently answer the question as to whether
therapy can improve the prognosis of patients with a stenosis of 50% or
more. As in the first example, all patients with cervical bruits without
previous cerebrovascular disease are eligible for the study. A duplex
ultrasonography of the right and left common and internal carotid arteries
is performed in all patients to measure the percentage of stenosis.
Subsequently, if the stenosis is 50% or more patients are randomly assigned
to receive either aspirin 325 mg a day or placebo. The clinical endpoints –
TIA, stroke, myocardial infarction, unstable angina, vascular deaths, and
other deaths – are recorded during follow up.
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Table 4.2 Analysis of an RCT of a single diagnostic test.

(a) Unfractionated heparin (b) Placebo

Poor Favourable Poor Favourable
outcome outcome outcome outcome

Stenosis 38 (32%) 82 (68%) 120 Stenosis 51 (47%) 58 (53%) 109
�50% �50%

Stenosis 121 (23%) 400 (77%) 521 Stenosis 116 (22%) 409 (78%) 525
	50% 	50%

Total 159 482 641 Total 167 467 634

(c) Stenosis larger than 50% or occlusion (d) Stenosis smaller than 50%

Poor Favourable Poor Favourable
outcome outcome outcome outcome

Unfract. 38 (32%) 82 (68%) 120 Unfract. 121 (23%) 400 (77%) 521
heparin heparin

Placebo 51 (47%) 58 (53%) 109 Placebo 116 (22%) 409 (78%) 525
Total 89 140 229 Total 237 809 1046

(e) Comparison of strategies

Poor Favourable
outcome outcome

Duplex US 154 (24%) 491 (76%) 645
No duplex US 167 (26%) 467 (74%) 634
Total 321 958 1279

Duplex US in (e): Decision whether or not to give UFH is based on duplex ultrasonography.
The odds ratios and their 95% CI of (a) to (e) are: 1.5 (0.99–2.4), 3.1 (2.0–4.8), 0.53
(0.31–0.90), 1.1 (0.80–1.4), and 0.88 (0.68–1.1). The relative odds ratio of (a)/(b) or (c)/(d)
is 0.48.
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Cote and colleagues performed such a trial in 1995.5 They randomised
372 neurologically asymptomatic patients with a carotid stenosis of 50% or
more between aspirin and placebo. By comparing the outcomes in both
treatment arms the effectiveness of treating patients with a stenosis of 50%
or more with aspirin was evaluated (treatment effect in test abnormals). In
50 of the 188 patients receiving aspirin and 54 of the 184 receiving placebo
a clinical event was measured during follow up, yielding an adjusted hazard
ratio (aspirin versus placebo) of 0.99 (95% CI, 0.67–1.46). The authors
concluded that aspirin did not have a significant long term protective effect
in asymptomatic patients with high grade stenosis (more than 50%).

The trial in Figure 4.3 can also provide information on the accuracy of
duplex US in predicting the outcomes of interest (natural prognostic
value). This can be done by comparing the outcome in patients in the
placebo arm, who all had an abnormal test result, with the outcome in
those with a normal test result. A prerequisite for this comparison is that
patient management in both of these arms is similar. Table 4.3(a) and (b)
shows the crude results and possible comparisons. Note that to calculate
the diagnostic accuracy of duplex US it is necessary to correct for the
sampling rate of patients with high grade stenosis.6

Patients with
cervical bruits

Outcome

Outcome

Outcome

Duplex US

Aspirin 325 mg/day

Placebo

2 years follow up

+

–

R

Figure 4.3 Randomising abnormal test results.

Table 4.3 Analysis of an RCT, randomising only abnormal test results

(a) Natural prognostic value (b) Treatment effect in case of � 50% stenosis

Poor Favourable Poor Favourable
outcome outcome outcome outcome

Stenosis 130 (71%) 54 (29%) 184 Aspirin 138 (73%) 50 (27%) 188
�50%*

Stenosis 255 (78%) 72 (22%) 327 Placebo 130 (71%) 54 (29%) 184
	50%

Total 385 126 511 Total 268 104 372

*Random sample of patients with a stenosis �50%.
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Alternative randomised designs

An alternative to the design in Figure 4.3 would be to move the point of
randomisation back in time to the point where the test results are not yet
known. This comes down to the randomisation of all patients to either
disclosure or non-disclosure of the test results.

The latter design was used to evaluate Doppler ultrasonography of the
umbilical artery in the management of women with intrauterine growth
retardation (IUGR).7 A total of 150 pregnant women with IUGR
underwent Doppler ultrasonography and were subsequently randomised to
disclosure or non-disclosure of the test results (Figure 4.4(a)). In the group
in which the results of the test were revealed, women were hospitalised in
case of abnormal flow and discharged with outpatient management in case
of normal flow. In the non-disclosure group all patients received the
conventional strategy for women with IUGR, of hospitalisation regardless of
their test results. The trial compared perinatal outcome, neurological
development and postnatal growth between the two strategies. The trial
design, depicted in Figure 4.4(a), allows us to determine the natural prognostic
value and the treatment effect in test abnormals. Unfortunately the authors
did not report sufficient data to reconstruct the necessary 2 � 2 tables.

One could move the point of randomisation further back in time, to the
decision whether or not to perform the test. A translation of this

Women with
IUGR

Outcome

Outcome

Outcome

Outcome

Outcome

Outcome

Doppler US

Clin. management

Home care

No disclosure

Disclosure

Clin. management

+

–

R

Women with
IUGR

Doppler US

Clin. management

Home care

Clin. management

+

–

R

(a)

(b)

Figure 4.4 Alternative randomised designs.
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comparison for the Doppler US in IUGR is the RCT in Figure 4.4(b).
Women in whom IUGR has been diagnosed are randomly allocated to two
strategies. The first consists of applying the test of interest, Doppler
ultrasonography, in all women with IUGR. In case of abnormal flow a
patient is hospitalised. In case of normal flow they are discharged with
outpatient management. In the second strategy all women with IUGR are
hospitalised. Subsequently, neonatal outcome is observed in each trial arm.
A comparison of the outcomes in the two arms offers a measure of the
effectiveness of using Doppler ultrasonography in making decisions on
hospitalisation. Such a design evaluates both the test and the treatment
effect; it is, however, not possible to distinguish the treatment effect from
the prognostic value of the test.

Similar outcomes in both arms will be observed if there is no difference
in outcome with either home care or clinical management in all patients
satisfying the inclusion criteria for this trial. Differences in outcome are not
necessarily attributed to the test. In case of a wrong choice of treatment, the
outcome of the Doppler ultrasonography arm can turn out to be inferior to
the conventional strategy, no matter how good or reliable the test actually
is. This same line of reasoning can also be applied in case of a superior
outcome in the Doppler arm. If there is a (sub)group of patients that is
better off with home care, then the expected outcome in the Doppler
ultrasonography group will always be superior, regardless of the intrinsic
quality or accuracy of the test.

These examples demonstrate that it is not possible to make conclusions
on the prognostic impact of the test itself using the design in figure 4(b), as
long as it remains unclear to what degree results of such a trial depend on
the new treatment, on accurate selection through the test, or both.

How to compare test strategies

In many clinical situations there are multiple tests available to examine the
presence of the target condition. When one wishes to compare two
competing tests the first three designs introduced earlier for the evaluation
of a single test have to be adapted slightly.

To compare the prognostic value of two tests, a straightforward
translation of Figure 4.1 is to perform both tests in all patients and to
monitor the outcome of interest during a follow up period. Such a design
is outlined in Figure 4.5(a). The data from such a study can be used to
calculate and compare the prognostic value of each test, using conventional
measures of diagnostic accuracy. One can also analyse the data by
stratifying the results according to the possible test combinations.With two
dichotomous tests this will result in a 4 � 2 table (Table 4.4). Note that
each possible combination of results on test A and test B is treated as a
separate test result category, analogously to a single test with four possible
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Outcome

Outcome

Patients

Treatment I
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Treatment II

Treatment II

+ –

++
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R
A B

Outcome

Outcome

Figure 4.5 Designs to compare diagnostic strategies.

Table 4.4 A 4 � 2 table of the results of two dichotomous tests.

Outcome

A B � �

� �

� �

� �

� �

Total

result categories. Subsequently, the predictive value or the likelihood ratio
of each result category can be calculated as a measure of prognostic value.8

To examine both tests in the context of subsequent clinical decision
making, it is possible to randomise all patients between two treatment

Andre_Chap04.qxd  11/6/01  2:57 PM  Page 70



strategies, similar to the design in Figure 4.2, regardless of their test results.
Figure 4.5(b) shows an example of such a design: both tests are performed
and all patients are randomly allocated to one of the two treatment options.
This allows one to explore the prognostic value of both tests in each
treatment arm. In addition, the data from such a trial can be used to find
the most effective treatment for all patients included in the trial. If
statistical power allows it, subgroup analysis of the treatment effect in the
four possible test result categories offers the possibility of identifying the
most effective treatment option for patients in the respective categories.

Although the previous design allows for many different explorations, only
some are relevant from a clinical perspective.When two tests are compared,
one of them is often already used in clinical practice and decisions on
subsequent management are made based on this test. Let us assume that,
in clinical practice, test positive patients are treated and test negative
patients are not. If future decisions are to be made under the guidance of
the new test, patients who are positive on the new test will be treated and
those who are negative will not. This means that the only patients that will
be managed differently are the ones who are test positive on the existing
test but negative on the new one, and those who are test negative on the
existing test but positive on the new one.

As patients with concordant test results (�� or ��) will receive the same
management, it is unnecessary and in some circumstances even unethical to
examine the treatment effect in these two subgroups. If a new test (B) is then
examined with the goal of substituting the old, possibly more invasive,
and/or costly test (A), the design in Figure 4.5(c), randomising only the
discordant test results, is more efficient. Subsequently, the treatment effect
and the predictive values of the discordant result categories (A�B� and
A�B�) can be examined (see Table 4.5(a–d)).

By transposing these tables it is possible to examine the effect of a clinical
pathway based on test A or test B for patients with discordant test results
(Tables 4.5(e) to 4.5(f )). The difference in poor outcome rate between
these two tables, after correcting for the frequency of discordant results, is
equal to the absolute risk difference of a clinical pathway based on test A
compared to a pathway based on test B.To calculate the relative risk or the
total risk of each strategy separately it is necessary to have information on
the clinical event rate in each concordant group.

An alternative design, using the random disclosure principle, is outlined
in Figure 4.6(a). Both test A and test B are performed in all patients.
Subsequently, patients are randomised between a clinical pathway based on
test A without disclosing the results of test B, and a pathway based on test
B with non-disclosure of the results of test A.The same measures and tables
can be obtained from such a design as discussed for the design in Figure 4.5.

In some situations one might wish to let the point of randomisation
coincide with that of the clinical decision to choose either test A or test B and
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act on the respective results. A recent trial used this design to study two
different diagnostic approaches for the management of outpatients with
dysphagia.9 Patients with dysphagia are at risk for aspiration pneumonia. A
modified barium swallow test (MBS) and flexible endoscopic evaluation of
swallowing with sensory testing (FEESST) are supposed to distinguish
patients who can benefit from behavioural and dietary management from
those who will need a percutaneous endoscopic gastrostomy (PEG) tube.
For the discussion we consider a simplified design as outlined in Figure
4.6(b). Outpatients presenting with dysphagia were randomly allocated to
either a strategy using MBS or a strategy using FEESST to guide subsequent
management. During 1 year of follow up the occurrence of pneumonia was
recorded in both trial arms. There were six cases of pneumonia in the 50
(12%) patients allocated to the FEESST strategy and 14 in the 76 (18%)
patients allocated to the MBS strategy.The absolute risk difference was not
significantly different from zero (risk difference 6%; 95% CI �6% to 19%).
As no patient received both tests it is not possible to distinguish the
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Table 4.5 Analysis of an RCT of two tests randomising only discordant results.

(a) Treatment effect A�B� (b) Treatment effect A�B�

A� B� Poor Favourable A� B� Poor Favourable
outcome outcome outcome outcome

Treatment I Treatment I

Treatment II Treatment II

Total Total

(c) Treatment (d) No treatment

A B Poor Favourable A B Poor Favourable
outcome outcome outcome outcome

� � � �

� � � �

Total

(e) Strategy based on A (f) Strategy based on B

A B Poor Favourable A B Poor Favourable
outcome outcome outcome outcome

� � � �

� � � �

Total
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treatment effect from the prognostic value of the tests, nor is it possible to
compare the outcome in the subgroups with discordant test results.

Often a new test is introduced to complement rather than to replace
existing tests. One example is where the new test is to be added to the
diagnostic pathway before an older test as a triage instrument. Patients with
a particular test result (say, negative) on the new test will not be subjected
to the existing test. Alternatively, the new test is added after the existing
test, making further refinement in diagnosis or treatment decisions
possible. We refer to these two options as pre- and postaddition.

If a test is added at the end of a diagnostic work up to further classify
disease (postaddition) all the designs presented in Figures 4.2 to 4.4 for the
single test evaluation can be used to evaluate this new classification. For

Outcome
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Outcome
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Diet

+

–

R
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Outcome

Outcome
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+

–

MBS

Patients

Patients with
dysphagia

Figure 4.6 Alternative designs to compare diagnostic strategies.
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example, to evaluate the prognostic impact of a genetic test for the
classification of women with breast cancer in two different subgroups, one
could use a design similar to the one in Figure 4.3. Women suspected of
breast cancer are evaluated with the conventional diagnostic work up.
Subsequently, only women with breast cancer are eligible for the trial. In all
these women genetic tests are performed. Depending on the results, they
are subsequently randomised between two types of treatment.

When the goal of a new test is to limit the number of people undergoing
the classic diagnostic work up (triage or preaddition), the designs in
Figures 4.5(b)–(c) and 4.6(a) can be used to evaluate the prognostic
impact of such a strategy. Using the principle that only patients with test
results that will actually account for the difference are randomised, one
could also adapt the design of Figure 4.5(b), randomising only patients
with the pair of discordant test results that will be treated differently if the
new strategy is adopted. Another option is shown in Figure 4.7(a). As the
difference between the two strategies comes from the group of patients who
are not selected for the classic diagnostic work up, one can randomise only
these patients to either the classic work up and treatment, or management
based on the results of the new test.

Many studies to evaluate the preaddition of a test have randomised all
patients between the two different diagnostic work ups.10,11 One such study
evaluated Helicobacter pylori serology as a way to reduce the number of
patients subjected to endoscopy. Lassen et al.10 performed the trial
outlined in Figure 4.7(b). Patients presenting in primary care with
dyspepsia were randomly assigned to either H. pylori and eradication
therapy or prompt endoscopy. In case of a negative H. pylori test patients
were still subjected to endoscopy. During a 1 year follow up the symptoms
were recorded on a Likert scale.

Choice of design

Each of the designs discussed in Figures 4.1 to 4.7 has its own
advantages and disadvantages. Depending on the clinical problem one
wishes to answer, the type of information needed, and the costs of tests or
follow up, one design can be preferred over another.

The outlines in Figures 4.2 to 4.4 can be used to evaluate a strategy with
a new test compared to a classic strategy without such a test. In case of
postaddition the classic strategy will consist of the classic diagnostic work
up and treatment. In case of a substitution problem, any of the trial designs
outlined in Figures 4.5(b) to 4.6(b) can provide an answer. The designs
outlined in Figures 4.5(b), 4.6(a), 4.7(a), and 4.7(b) can provide an answer
in case of a preaddition problem.

Table 4.6 gives an overview of the information that can be deduced from
the different designs. The designs in Figures 4.2 and 4.5(b), testing all
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patients and randomising all between two treatment strategies, provide the
most information. In addition to data on the effects of the two evaluated
strategies, they provide information on the treatment effect and prognostic
value of all possible test result categories.Yet these designs are not always
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Figure 4.7 Designs to evaluate preaddition.
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ethical, as there is often evidence that one treatment is better for some of
the test result categories. In that case a better alternative are the designs
outlined in Figures 4.3, 4.5(c) and 4.7(a), in which only the patients for
whom there is uncertainty in the subsequent management are randomised.

The designs in Figures 4.4(b), 4.6(b) and 4.7(b) have frequently been
used in the medical literature, probably because of their pragmatic
attractiveness. In these designs the point of randomisation coincides with
the decision to perform either test A or test B. From a cost perspective
these designs can be more be economical than the other designs, in case of
an expensive test, as on average fewer patients are tested than with the other
designs. If follow up is expensive, designs randomising only patients with
the test category of interest (Figures 4.3, 4.5(c) and 4.7) are more efficient,
as fewer patients will be needed to achieve the same amount of statistical
precision.12 However, the latter designs are not feasible when tests that
influence each other’s performance are being compared. For example,
it is not possible to compare two surgical diagnostic procedures,
mediastinoscopy and anterior mediastinotomy, for the detection of
mediastinal lymphomas by performing them both in all patients as
suspected lymph nodes are removed.13

Practical issues

We have discussed the pros and cons of different designs to evaluate the
prognostic impact of a single test or to compare different test strategies. In
the design of a trial there are several other issues that should be considered
in advance. In all of the examples we have presented here there was a
prespecified link between test results and management decisions. Test
positive patients were to receive one treatment, test negative another. If such
a link is absent, and clinicians are free to select therapy for each test result,
it will remain unclear to what extent poor trial results reflect deficiencies of
the test itself, ineffective treatment options or, alternatively, incorrect
management decisions. Detailed information on the treatment protocol is
also necessary for others to implement the possible findings of the study.
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Table 4.6 Possible analyses of each randomised design.

Figure 1, 5(a) 2 3, 4(a) 5(b) 5(c) 6(a) 4(b) 6(b)
7(a) 7(b)

Natural prognostic value � � � �
Prognostic value under intervention � �
Treatment effect test abnormals � � �
Treatment effect test normals � �
Treatment effect discordant tests � �
Strategy effect � � � � �
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A clear specification of the treatment options and their relation with the
different test results is an absolute necessity for any diagnostic study.12

As for each randomised controlled trial, methods to preserve allocation
concealment and blinding deserve special attention. It has been shown
empirically that inadequate concealment of allocation, as well as
inadequate blinding, can lead to exaggerated estimates of a strategy’s
effectiveness.14 One way to guard adequate allocation concealment is a
central randomisation procedure. In some situations the use of sealed
opaque envelopes, with monitoring of the concealment process, may 
be more feasible.15 Blinding of the outcome measurement for the
randomisation outcome is of greater importance for some outcomes than
for others, but can be implemented with the same methods as developed
for therapeutic trials. Blinding of the clinician or patient to the allocation is
more difficult. When two different strategies are randomised (Figure
4.6(b)) one can imagine that the knowledge of the type of test influences
subsequent management decisions, despite a prespecified link. For
example, an obstetrician might be more reassured with the results of
magnetic resonance pelvimetry in a breech presentation at term, than with
manual pelvimetry, which will influence subsequent decisions to perform an
emergency section.16 One could choose a design that randomises test
results to overcome this problem. Alternatively, one could try to mask the
clinician by only presenting standardised test results, without any reference
to the type of test.

The a priori calculation of the necessary sample size for a randomised
diagnostic study is not straightforward. When discussing Figure 4.5(c) we
showed that the expected difference in outcome between the two test
strategies resulted from the expected difference in the category with
discordant test results only. In trials in which patients are randomised to
one of two test strategies (Figure 4.6(b)) a large group of participants will
also not contribute to the final difference. Let us explain this with another
randomised diagnostic trial from the literature, in which ultrasonography
was compared with clinical assessment for the diagnosis of appendicitis.17

The authors report a power of 80% to detect a reduction in the non-
therapeutic operation rate from 11% to 2%, by randomising 302 patients.
What are the nominator and denominator of these estimated rates?

Figure 4.8 shows the two trial arms. A large group of patients with
abnormal results in the ultrasound group, indicating operation, would also
have been detected at clinical examination. The same argument stands for
a subgroup of patients with a normal ultrasound. The sum of these two
groups forms the total with concordant test results. As patients with
concordant test results will receive the same management, their event rates
will be identical except for chance differences.The rate of 11% results from
( x�n�o)/151. The rate of 2% results from ( y�n�o)/151. The rate
difference, 9%, results solely from the events in the discordant group. By
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assuming a concordance rate of ultrasonography with clinical assessment of
80%, one can calculate the postulated rate difference in this discordant
group: 9%/20% is 45%. This could result from a rate of non-therapeutic
operations of 55% in patients with a positive clinical assessment and
otherwise negative ultrasound, and a rate of 10% in patients with a positive
ultrasound and otherwise negative clinical examination. (This implies that
the event rate is 0% in the concordant group, which is not very likely, as the
authors discuss in their introduction that 15–30% of all operations are non-
therapeutic.) With some extra calculations we can show that the difference
assumed by the authors implies a discordance rate of at least 80%. It would
be very strange to expect such a high discordance rate in advance. This
example shows that it is important to incorporate the discordance rate in
sample size calculations of randomised trials of diagnostic tests.

Conclusions

In this chapter we discuss the evaluation of the prognostic impact of
tests. From a patient perspective one could argue that it is not so much the
correspondence with the “truth” that should be the focus of a diagnostic
test evaluation, but the likelihood that such a test detects events of clinical
interest, and the possibilities that exist to let test results guide subsequent
clinical decision making to reduce the likelihood of such events occurring.
The latter can be evaluated by evaluating a test–treatment combination in
a clinical trial, for which several possible designs are discussed.

The examples of published randomised diagnostic trials in this chapter
show that it is feasible to perform such a thorough evaluation of a
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Figure 4.8 Sample size calculation.
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diagnostic test. Several additional examples can be found in the literature,
such as trials of mediastinoscopy, cardiotocography and MRI,11,18,19 and of
a number of screening tests.20–22 These date back as far as 1975.23

In most of these trials the point of randomisation coincided with the
clinical decision as to whether or not to perform the tests. This makes it
impossible to differentiate between the treatment effect and the prognostic
value of the test. Power analyses of any diagnostic trial should incorporate
an estimation of the discordance rate, as differences in outcome can only
be expected for patients who have discordant test results. In this chapter we
have shown that a design incorporating randomisation of discordant test
results is more efficient, provides more information, and is less prone to
bias. Most importantly, all of these designs require a prespecified
test–treatment link. This is to allow for the application of the study results
in other settings, and to guard the internal validity of the study.
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5 The diagnostic
before–after study to 
assess clinical impact
J ANDRÉ KNOTTNERUS, GEERT-JAN DINANT,
ONNO P VAN SCHAYCK

Summary box

● The before–after design is more appropriate for evaluating the
clinical impact of additional testing than to compare the impact of
different diagnostic options.

● Demonstrating an effect of diagnostic testing on the patient’s health
outcome is more difficult than showing a change in the doctor’s
assessment and management plan.

● Whether and what specific blinding procedures have to be applied
depends on the study objective.

● To optimise the assessment of the independent effect of the test
information, performance of the test or disclosure of the test result
can be randomised.This would change the before–after design in a
randomised trial.

● The therapeutic consequences of the various test results can be
standardised in the research protocol, provided that such therapy
options are clinically rational and have a well documented evidence
base. The study will then evaluate the impact of the test result
connected with a defined therapeutic consequence, rather than the
test result per se.

● If evaluating the doctor’s assessment is the primary study objective,
the assessment should preferably take place immediately after
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Introduction

Apart from facilitating an accurate diagnosis, a test is aimed at causing
change: starting from a baseline situation, applying the test and interpreting
its outcome should result in a new situation. In fact, the most important
justification for diagnostic testing is that it is expected to make a difference,
by influencing clinical management and ultimately benefiting the patient’s
wellbeing. Accordingly, performing a test can be seen as an intervention
that should be effective in bringing about a clinically relevant change.

In studying the clinical effect of a test result, the randomised controlled
trial (RCT) is the strongest methodological design option,1 and is dealt
with in Chapter 4. However, although it is the paradigm for effectiveness
research, an RCT cannot always be achieved.This is, for example, the case
if randomly withholding a test or test result from patients or doctors is
considered medically or ethically unacceptable. Difficulties may also arise
if the diagnostic test is integrated in the general skills of the clinician, so
that performing it cannot be randomly switched on and off in his or 
her head, nor simply assigned to a different doctor. This is especially
problematic if at the same time patients cannot be randomly assigned to a
doctor. This situation may, for instance, occur in studying the impact of
diagnostic reasoning skills in general practice. Also, when an RCT is
complex and expensive, or will last too long to still be relevant when the
results become available, one may wish to consider a more feasible
alternative.

One alternative that may be considered is the diagnostic before–after
study.2 This approach seems attractive, as it fits naturally within the clinical
process and is easier to perform than the randomised trial. Therefore, this
chapter will discuss the potentials, limitations, and pitfalls of this design
option.

disclosure of the test result, with a minimal risk of interfering
factors influencing the doctor’s judgement.

● Because a rather long follow up is mostly needed to estimate the
impact of testing on the clinical course, the risk of interfering
influences is substantial.

● Given that before–after studies can be carried out relatively fast,
largely embedded in daily care, while RCTs are more complex or
expensive, a well designed before–after study may sometimes be
used to explore whether and how a diagnostic RCT should be
performed. If an RCT is impossible or infeasible, or ethically
unacceptable, a well designed before–after study can be the most
suitable alternative.
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The research question

Example

In a study to assess the diagnostic impact of erythrocyte sedimentation
rate (ESR) in general practice, 305 consecutive patients with aspecific
symptoms for whom general practitioners (GPs) considered ESR testing
necessary were included.3 Before testing, the GPs were asked to specify the
most likely diagnosis in each patient, and to assess whether or not this
diagnosis was severe in the sense of malignant or inflammatory disease for
which further management would be urgently needed. Subsequently, the
ESR was independently performed and the result was made available to the
GPs, who then again specified their (revised) diagnostic assessment. After
3 months, based on all the available medical information, a clinical
assessment was carried out for each patient by an independent clinician not
knowing about the pre- and post-test assessments for each patient, in order
to establish a final diagnosis (reference standard).4

In Figure 5.1 the percentage of patients most likely having severe
pathology according to the GP is presented before and after disclosure of
the ESR result. There seems to be no relevant pre–post-test change.
However, looking at Table 5.1, it is clear that there was a change in 32
patients: 17 from severe pathology to “other”, and 15 from “other” to
severe pathology.
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Pretest diagnostic
interpretation:

53/305 = 17.4%
Severe pathology

Post-test diagnostic
interpretation:

51/305 = 16.7%
Severe pathology

ESR result

Figure 5.1 Pre- and post-test diagnostic assessment in studying the impact of ESR.

Table 5.1 Relation between pre- and post-test diagnostic assessments in studying
the impact of ESR.

Post-test interpretation

Pretest interpretation Severe pathology Other Total

Severe pathology 36 17 53
Other 15 237 252

Total 51 254 305
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Whether these changes had indeed resulted in a more accurate
diagnostic assessment could be determined after correlating the GPs’ pre-
and post-test findings with the reference standard procedure. It appeared
that the pretest accuracy of the GPs’ assessment was 69% (that is, 69% of
cases were correctly classified), whereas the post-test accuracy was 76%,
implying an increase of 7%.

Furthermore, of the 32 patients with a diagnostic classification changed
by the GP, nine with a positive (severe) post-test diagnosis proved to be
“false positives”, and two with a negative (other) post-test diagnosis were
“false negatives”.

The test characteristics of the ESR (cut-off value � 27 mm/1h) could be
also determined in relation to the reference diagnosis, yielding a sensitivity
of 53%, a specificity of 94%, a positive predictive value of 46%, and a
negative predictive value of 91%.

The general model

The basic question in the diagnostic before–after study is whether applying
a certain diagnostic test favourably influences the doctor’s 
(a) diagnostic or (b) prognostic assessment of a presented clinical problem;
(c) the further management; and, ultimately, (d) the patient’s health. It
essentially comprises the baseline (pretest) situation, a determinant (the
test), and the outcome (post-test situation) (Figure 5.2).

Pretest baseline
Doctor’s assessment
of clinical problem:
* Diagnostic or
  prognostic
  interpretation
* Clinical
  management
Patient :
* Health status

Post-test outcome
Doctor’s assessment
of clinical problem:
* Diagnostic or
  prognostic
  interpretation
* Clinical
   management
Patient :
* Health status

Determinants
* Test result
* Effect
  modifiers
* Confounding
  variables

Figure 5.2 General representation of the research question in a diagnostic
before–after study.
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The point of departure can be characterised by a clinical problem, with
the doctor’s assessment regarding the possible diagnosis, prognosis, or the
preferred management option, and the patient’s health status at baseline,
without knowing the information from the test to be evaluated. The
patient’s health status at baseline is important, not only as a starting point
for possible outcome assessment but also as a reference for generalising the
study results to comparable patient groups.

The determinant of primary interest is performing the diagnostic test
and disclosure of its result, which is in fact the intended intervention.
Furthermore, because diagnostic classification is essentially involved with
distinguishing clinically relevant subgroups, it is often useful to consider
the influence of effect modifying variables, such as the doctor’s skills and
experience, the patient’s age and gender, and pre-existing comorbidity. In
addition, the effect of possible confounding variables should be taken into
account. For example, extraneous factors such as reading publications or
attending professional meetings may affect the clinician’s assessment. But
also the time needed to do the test and obtain its result may be important,
as it may be used to think and study on the clinical problem, and this will
independently influence the assessment. Moreover, the patient’s health
status may have changed as a result of the clinical course of the illness, by
interfering comorbidity and related interventions, by environmental
factors, or by visiting other therapists. The patient’s symptom perception
may have been influenced by information from family, friends, or the
media, or by consulting the internet. Also, the patient may claim to have
benefited from a diagnostic intervention because he does not wish to
disappoint the doctor.

The key challenge for the investigator is now to evaluate the extent to
which applying the diagnostic test has independently changed the doctor’s
diagnostic or prognostic assessment of the presented clinical problem, the
preferred management option, or the patient’s health status.The latter will
generally be influenced indirectly, via clinical management, but can
sometimes also be directly affected, for example because the patient feels
himself being taken more seriously by the testing per se. Moreover, patient
self testing, which is nowadays becoming more common, can influence
patient self management.

At this point, two important limitations of the before–after design must
be emphasised. First, the design is more appropriate to evaluate the impact
of “add on” technologies2 (that is, the effect of additional testing) than to
compare the impact of different diagnostic technologies or strategies. For
the latter purpose one could, in principle, apply both studied technologies,
for example colonoscopy and double contrast barium enema, in
randomised order, to all included patients, and then compare the impact of
disclosing the test results, again in random order, on the clinicians’
assessment. Another example would be to subject patients to both CT and
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NMR head scanning to study their influence on clinicians’ management
plans in those with suspected intracranial pathology. However, such
comparisons are unrealistic, as the two tests would never be applied
simultaneously in practice. Moreover, such studies are very burdensome for
patients, not to say ethically unacceptable, and would make it virtually
impossible to study the complication rate of each procedure separately.5

When the various options are mutually exclusive, for example when comparing
diagnostic laparotomy with endoscopy in assessing intra-abdominal
pathology as to their adverse effects, a before–after design is clearly
inappropriate. In such situations, a randomised controlled trial is by far the
preferred option. Only when the compared tests can be easily carried out
together without any problem for the patient, can they be applied
simultaneously.This can be done, for instance, when comparing the impact
of different blood tests using the same blood sample. However, when the
disclosure of the results of the compared tests to the clinicians is then
randomised, which would be a good idea, we are in fact in the RCT option.

Second, demonstrating an effect of diagnostic testing on the patient’s
health outcome is much more difficult than showing a change in the
doctor’s assessment and management plan. In fact, this is often impossible,
as it usually takes quite some time to observe a health effect that might be
ascribed to performance of the test. Controlling for the influence of the
many possible confounders over time generally requires a concurrent control
group of similar patients not receiving the test. However, a diagnostic
before–after study could be convincing in case of: (1) studying a clinical
problem with a highly predictable outcome in the absence of testing (such
as unavoidable death in the case of imminent rupture of an aneurysm of the
aorta), (2) while adding specific diagnostic information (an appropriate
imaging technique) leading to a specific therapeutic decision (whether and
how to operate) (3), which is aimed at a clearly defined short term effect
(prevention of a rupture and survival), possibly followed by less specific
long term effects (rehabilitation). However, such opportunities are
extraordinary. Besides, although on the one hand some clinicians would
consider such clinical situations to be self evident and not needing
evaluation by research, others may still see room for dispute as to what
extent clinical events are predictable or unavoidable.

Working out the study

Pretest baseline

The study protocol follows the elements of the research question.
At baseline, the clinical problem and the study question are defined.The

clinical problem could be aspecific symptoms as presented in primary care,
with the question being whether the ESR would contribute to the doctor’s
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diagnostic assessment,3,4 or sciatica, in order to study whether radiography
would affect therapeutic decision making.

The health status of each patient to be included is systematically
documented, using standardised measurement instruments for the
presented symptoms, patient history, physical examination, and further
relevant clinical data.

Overseeing all available patient data, the doctor makes a first clinical
assessment of the probability of certain diagnoses or diagnostic categories.
In primary care, for example, the probability of a severe organic malignant
or inflammatory, disorder can be assessed. This can be done for one
specified diagnostic category, for a list of specified diagnoses, or in an open
approach, just asking the differential diagnosis the doctor 
has in mind, with the estimated probability of each specific diagnostic
hypothesis being considered.

Furthermore, the doctor is asked to describe the preferred diagnostic or
therapeutic management plan, which can be done, again, according to a
prepared list of items or as an open question.

At baseline, possibly relevant effect modifying variables should be
considered. Often the general clinical experience of the clinicians and their
specific expertise regarding the test under study are important. Furthermore,
variables characterising important clinical subgroups can be assessed, and
potential confounding factors have to be measured in order to be able to
take these into account in the data analysis. Recording of covariables is
sometimes difficult, for example for extraneous variables such as media
exposure. Moreover, it cannot be excluded that important or even decisive
factors are not identified or even foreseen.

Diagnostic testing

In performing the diagnostic test or procedure under study and revealing
its outcome after the baseline assessment, different options can be
considered depending on the specific study objective.

● If one wishes to assess the specific effect of the test information on the
outcome, in addition to the pretest clinical information, the test result
should be determined independently from the pretest information. This
is especially relevant for test procedures with a subjective element in the
interpretation of the result, such as patient interviews, auscultation,
imaging, x ray films, and pathological specimens. Accordingly, those who
interpret the test should not be aware of the pretest information.
However, when patient history itself is the test to be evaluated, this will
generally not be feasible.

● When it is important to limit possible confounding effects of a
preoccupation of participating doctors with the expected relevance of a
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certain test, the investigator may wish to obscure the performing of the
evaluated test itself. This can theoretically be achieved by not telling the
doctor in advance about what specifically is being evaluated, and by
disclosing the test result while also providing information on a number
of other items irrelevant for the studied comparison. However, such
masking is difficult and often not feasible, or may be so much in conflict
with clinical reality that the findings will not be relevant for practice.
Finally, intentional obscuring of the specific research question will need
the explicit approval of the medical ethics review board.

● If the investigator wishes to assess the diagnostic process as it is usually
embedded in clinical practice, the interpretation of the test result can be
carried out as usual without specific blinding procedures. However,
particularly for tests with subjective elements in reading or interpretation
of the results, this will imply that the independent contribution of the
test cannot be reliably determined.

● To optimise the assessment of the independent effect of the test
information, performance of the test or, even more precisely, disclosure
of the test result, can be randomised so that half of the participants
would and half would not get the result. In fact, this would change 
the before–after design into a randomised trial, which is discussed in
Chapter 4.

Because a test is almost never perfect, applying it may produce mis-
classification. Even when most patients are more accurately classified if the
clinician uses the test information, some patients with a correct pretest
diagnosis may be incorrectly classified after testing, for example because of
a false positive or false negative result. As this may have important negative
consequences for those patients – for example when a false positive
mammography would lead to unnecessary surgery – it is recommended to
include evaluation of the actual disease status in the context of the
before–after study. This also enables the investigator to determine test
accuracy by relating the test result cross-sectionally to the disease status,
established according to an acceptable reference standard.5

Post-test outcome

The measurement of the final post-test outcome after disclosure of the 
test result (diagnostic assessment, preferred management plan, and/or
patient health status) should follow the same procedure as the baseline
measurement. In doing so, both the doctor and the patient will generally
remember the baseline status, implying that the post-test assessment of the
doctor’s differential diagnosis and management options cannot be blinded
for the pretest assessment. This has probably been the case in the example
of the diagnostic impact of the ESR measurement.
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When one is evaluating the impact of adding the test information 
to already known clinical information at baseline in order to make a 
comprehensive assessment, lack of blinding is not always a principal problem.
In fact, it is clinically natural and supported by Bayes’s theorem to study the
impact of the test result in the light of the prior probability. However, when
clinicians are more or less “anchored” to their initial diagnostic assessment,
they are biased in that they do not sufficiently respond to the test information
in revising their diagnostic assessment. But even this can sometimes be
acceptable for an investigator who deliberately aims to assess the impact of the
test in clinical reality, where such anchoring is a common phenomenon,6,7 and
to study the influence of the test result in terms of confirming or refuting this
anchoring. As doctors will vary in “anchoring”, such evaluations need to
include sufficient participating clinicians.

When the post-test outcome is patient status, objective assessment 
independent of both pretest status and the doctor’s interpretations is a
basic requirement.

If one evaluates a test which is already firmly accepted among the
medical profession, the response of clinicians is in fact “programmed” by
medical education, continuing medical education, or clinical guidelines. In
such cases the investigator is studying the adherence to agreed guidelines
rather than the independent clinical impact of the test result. On the other
hand, the clinical impact of testing will not be easily detected if there is no
clear relationship between revision of the diagnostic classification based on
the test information, and the revision of the management plan.2 This
relation can indeed be unclear when doctors ignore the test information, or
when the same test result may lead to a variety of management decisions,
including doing nothing. The latter can, for example, be the case when
laboratory tests are carried out in asymptomatic patients. As a remedy, the
therapeutic consequences of the various test results can be standardised in
the research protocol, provided that such therapy options are clinically
rational and have a well documented evidence base. Accordingly, the study
will then evaluate the impact of the test result connected with a defined
therapeutic consequence, rather than the test result per se. On the other
hand, when there is a lack of clarity beforehand as to the potential
management consequences of performing a test, we should ask ourselves
whether such testing should be evaluated or used at all.

The time factor

The interval between the pre- and post-test assessments should be
carefully chosen. Generally, the interassessment period should be short if
evaluating the doctor’s assessment is the primary study objective: the
assessment should preferably take place immediately after disclosure of the
test result, with a minimal risk of interfering factors influencing the doctor’s
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judgement. Sometimes, however, this may take some days (bacterial
culture) or longer (cervical smear). A rather long period until the final post-
test assessment is mostly needed if estimating the impact of testing on the
clinical course is the objective, although this longer period will be
associated with an increased risk of interfering interventions and influences
during follow up. A combined approach can be chosen, with a pretest
measurement, a post-test measurement of the clinician’s assessment, and a
longer follow up period for measuring patient health outcome, respectively
(Figure 5.3). In the analysis, then, the relation between the test’s impact on
the clinician’s assessment and patient outcome could be studied if
extraneous factors and changes in the clinical condition can be sufficiently
controlled for. However, as outlined in the section on the research
question, this is mostly impossible in the context of the before–after design.
For the purpose of studying the test’s impact on patient health, the
randomised controlled trial is a more valid option.

Selection of the study subjects

Regarding the selection of the study subjects, similar methodological
criteria to those discussed in Chapter 3 should be met: the study patient
population should be representative for the “indicated”, “candidate” or
“intended” patient population, or target population, with a well defined
clinical problem, clinically similar to the group of patients in whom the 
test would be applied in practice. Accordingly, the healthcare setting from
where the patients come, the inclusion criteria, and the procedure for
patient recruitment must be specified. Regarding the selection of
participating doctors, the study objective is decisive. If the aim is to
evaluate what the test adds to current practice, the pre- and post-test
assessments should be made by clinicians representing usual clinical
standards. However, if one wishes to ensure that the test’s contribution is
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Pretest baseline
Doctor’s assessment
of clinical problem:
* Diagnostic or
  prognostic
  interpretation
* Clinical
  management
Patient :
* Health status

Outcome 1
Doctor’s assessment
of clinical problem:
* Diagnostic or
  prognostic
  interpretation
* Clinical
  management

Outcome 2

Patient :
* Health status

test

Figure 5.3 Separate post-test measurements of doctor’s assessment (immediately)
and patient health outcome (later).
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analysed using a maximum of available expertise, top experts in the specific
clinical field must be recruited.

Generally, in clinical studies a prospectively included consecutive series
of patients with a clearly defined clinical presentation will be the most
appropriate option with the lowest selection bias. If one were to
retrospectively select patients who had already had the test in the past, one
would generally not be able to be certain whether those patients really had
a similar clinical problem, and whether all candidate patients in the source
population would have non-selectively entered the study population. Apart
from this, a valid before–after comparison of the doctors’ assessments (with
the doctors first not knowing and subsequently knowing the test result) is
not possible afterwards, as a change in diagnostic assessment and the
planning of management cannot be reliably reconstructed post hoc.

Sample size and analysis

Sample size requirements for the before–after study design need to be
met according to general conventions. Point of departure can be the size of
the before–after difference in estimated disease probability or other
effectiveness parameters, for example, the decrease in the rate of
(diagnostic) referrals, which would be sufficiently relevant to be detected.
If the basic phenomenon to be studied is the clinical assessment of doctors,
the latter are the units of analysis. When the consequences for the patients
are considered the main outcome, their number is of specific interest.

The data analysis of the basic before–after comparison can follow the
principles of the analysis of paired data. In view of the relevance of evaluating
differences of test impact in various subgroups of patients, and given the
observational nature of the before–after study, studying the effect of 
effect modifying variables and adjusting for confounding factors using
multivariable analytical methods, may add to the value of the study. When
the clinician and patient “levels” are to be considered simultaneously,
multilevel analysis can be used.

As it is often difficult to reach sufficient statistical power in studies with
doctors as the units of analysis, and because of the expected heterogeneity
in observational clinical studies, before–after studies are more appropriate
to confirm or exclude a substantial clinical impact than to find subtle
differences.

Modified approaches

Given the potential sources of uncontrollable bias in all phases of the 
study, investigators may choose to use “paper” or videotaped patients or
clinical vignettes, interactive computer simulated cases, or “standardised
patients” especially trained to simulate a specific role consistently over time.
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Standardised (simulated) patients can consult the doctor even without
being recognised as “non-real”.8 Furthermore, the pre- and post-test 
assessments can also be done by an independent expert panel in order to
ensure that the evaluation of the clinical impact is based on best available
clinical knowledge.The limitations of such approaches are that they do not
always sufficiently reflect clinical reality, are less suitable (vignettes) for an
interactive diagnostic work up, cannot be used to evaluate more invasive
diagnostics (standardised patients), and are not appropriate for additionally
assessing diagnostic accuracy.

A before–after comparison in a group of doctors applying the test to an
indicated patient population can be extended with a concurrent observational
control group of doctors assessing indicated patients, without receiving the
test information (quasi experimental comparison). However, given the
substantial risk of clinical and prognostic incomparability of the
participating doctors and patients in the parallel groups compared, and of
possibly incorrectable extraneous influences, this will often not strengthen
the design substantially. If a controlled design is considered, a randomised
trial is to be preferred (Chapter 4).

Concluding remarks

As Guyatt et al.2 have brilliantly pointed out, in considering a
before–after design to study the clinical impact of diagnostic testing, two
types of methodological problem must be acknowledged. First, we have to
deal with problems for which, in principle, reasonable solutions can be
found in order to optimise the study design. In this chapter, some of these
“challenges” have been discussed. Examples are appropriate specifications
of the clinical problem to be studied and the candidate patient population,
and the concomitant documentation of test accuracy. Second, the
before–after design has inherent limitations that cannot be avoided nor
solved. If these are not acceptable, another design should be chosen.
The most important of these limitations are: (1) the before–after design 
is especially appropriate for evaluating additional testing, rather than
comparing two essentially different (mutually exclusive) diagnostic
strategies; (2) the reported pretest management options may be different
from the real strategy the clinicians would have followed if the test had not
been available, or if they would not have known that there is a second (post-
test) chance for assessment; (3) the pre- and post-test assessments by the
same clinicians for the same patients are generally not independent; and (4)
an unbiased evaluation of the impact of testing on the patients’ health
status can mostly not be achieved.

Acknowledging the large number of difficulties and pitfalls of the
before–after design, as outlined in previous sections, we conclude that the
design can have a place especially if the pre–post-test assessment interval
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can be relatively short (evaluation of the test’s impact on the doctor’s
assessment), and if the relation between the diagnostic assessment, the
subsequent therapeutic decision making, and therapeutic effectiveness is
well understood. If impact on patient outcome is studied, it is important
that the clinical course of the studied problem in the absence of testing is
well known and highly predictable.

Given the various limitations for studying the clinical impact of
diagnostic tests, the randomised controlled trial design, if feasible, will in
most cases be superior. However, given that before–after studies can be
carried out relatively fast, largely embedded in daily care, whereas RCTs
are more complex or expensive, a well designed before–after study may be
useful to explore whether a diagnostic RCT could be worthwhile, or how it
should be performed. In addition, if an RCT is impossible or infeasible, or
ethically unacceptable, a before–after study may be the most suitable
alternative. Other options, which could provide a more uniform clinical
presentation and a better control of interfering variables, are before–after
studies using written patient vignettes, interactive computer simulations, or
standardised patients. The specific potentials and limitations (for example
representing less clinical reality) of these alternative approaches will then
have to be taken into account.
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6 Designing studies to
ensure that estimates of
test accuracy will travel
LES M IRWIG, PATRICK M BOSSUYT,
PAUL P GLASZIOU, CONSTANTINE GATSONIS,
JEROEN G LIJMER

Summary box

● There may be genuine differences between test accuracies in
different settings, such as primary care or hospital, in different types
of hospital, or between countries.

● Deciding whether estimates of test accuracy are transferable to other
settings depends on an understanding of the possible reasons for
variability in test discrimination and calibration across settings.

● The transferability of measures of test performance from one setting
to another depends on which indicator of test performance is to be
used.

● Real variation in the performance of diagnostic tests (such as
different test types, or a different spectrum of disease) needs to be
distinguished from artefactual variation resulting from study design
features. These features include the target condition and reference
standard used, the population and the clinical question studied, the
evaluated comparison, and the way the index test was performed,
calibrated, and interpreted.

● In preparing studies on diagnostic accuracy, a key question is how to
design studies that carry more information about the transferability
of results.
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Introduction

Measures of test accuracy are often thought of as fixed characteristics that
can be determined by research and then applied in practice.Yet even when
tests are evaluated in a study with adequate quality – including features such
as consecutive patients, a good reference standard, and independent,
blinded assessments of tests and the reference standard1 – diagnostic test
performance in one setting may vary from the results reported elsewhere.
This has been explored extensively for coronary artery disease,2–5 but has
also been shown for a variety of other conditions.6–8 This variability is not
only due to chance.There may be genuine differences between test accuracy
in different settings, such as primary care or hospital, different types of
hospital, or the same type of hospital in different countries. As a
consequence, the findings from a study may not be applicable to the specific
decision problem for which the reader has turned to the literature.

We suggest that deciding whether the estimates of test accuracy from
studies are transferable to other settings depends on an understanding of
the possible reasons for variability in test discrimination and calibration
across settings. Variability may be due to artefactual differences (for
example different design features of studies in different settings) or true
differences (such as different test types, or a different spectrum of disease).
To decide on the transferability of test results, we are concerned with true
differences, after artefactual differences have been addressed.9–11

This chapter is divided into two main sections. The first is concerned
with the reasons for true variability in accuracy; it explores conceptual

● In order to ensure that estimates of diagnostic accuracy will travel,
before starting to design a study the following questions must be
answered:
– How are the target condition and reference standard defined?
– Is the objective to estimate global test performance or to estimate

probability of disease in individuals?
– What is the population and clinical problem?
– Is the test being considered as a replacement or incremental test?
– To what extent do you want to study the reasons for variability

of the results within your population?
– To what extent do you want to study the transferability of the

results to other settings?
● Designing studies with heterogeneous study populations allows

exploration of the transferability of diagnostic performance in
different settings. This will require larger studies than have
generally been carried out in the past for diagnostic tests.
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underpinnings. The second section is a pragmatic guide for those
interpreting and designing studies of diagnostic tests. It is based on the
view that value can be added to studies of diagnostic tests by exploring the
extent to which we can characterise the reasons for variability in diagnostic
performance between patients in different settings, and examining how
much variability remains unexplained.

1. Reasons for true variability in test accuracy:
conceptual underpinnings

Measures of diagnostic test performance:
discrimination and calibration

There are many measures of test accuracy. Broadly speaking, we can
think of them as falling into one of the following categories.

1 Global measures of test accuracy assess only discriminatory
power. These measures assess the ability of the test to discriminate
between diseased and non-diseased individuals. Common examples are the
area under the receiver operating characteristic curve, and the odds ratio,
sometimes also referred to as the diagnostic odds ratio. They may be
sufficient for some broad health policy decisions, for example whether a
new test is in general better than an existing test for that condition.

2 Measures of test performance to estimate the probability of
disease in individuals require discrimination and calibration. These
measures are used to estimate probabilities of the target condition in
individuals who have a particular test result. An example is the predictive
value: the proportion of people with a particular test result who have the
disease of interest. To be useful for clinical practice, these estimates should
be accompanied by other relevant information. For example, fracture rates
in people with a particular result of a test for osteoporosis differ between
people depending on their age, sex, and other characteristics. It is clumsy
and difficult to estimate disease rates for all categories of patient who may
have different prior probabilities. Therefore, the estimation is often done
indirectly using Bayes’ theorem, based on the patient-specific prior
probability and some expression of the conditional distributions of test
results: the distribution of test results in subjects with and without the target
condition. Examples are the sensitivity and specificity of the test, and
likelihood ratios for test results.These measures of test performance require
more than the discrimination assessed by the global measures. They require
tests to be calibrated. As an example of the difference between discrimination
and calibration, consider two tests with identical odds ratios (and ROC
curves) which therefore have the same discriminatory power. However, one
test may operate at a threshold that gives a sensitivity of 90% and a
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specificity of 60%, whereas the other operates at a threshold that gives a
sensitivity of 60% and a specificity of 90%.Therefore, they differ in the way
they are calibrated.

Features that facilitate transferability of test results

The transferability of measures of test performance from one setting to
another depends on which indicator of test performance is to be used.The
possible assumptions involved in transferability are illustrated in Figure
6.1. Table 6.1 indicates the relationship between these assumptions and the
transferability of the different measures of test performance.

The main assumptions in transferring tests across settings are:

1 The definition of disease is constant. Many diseases have ambiguous
definitions. For example, there is no single reference standard for heart
failure, Alzheimer’s disease or diabetes. Reference standards may differ
because conceptual frameworks differ between investigators, or because
it is difficult to apply the same framework in a standardised way.

2 The same test is used. Although based on the same principle, tests may
differ – for example over time, or if made by different manufacturers.

3 The thresholds between categories of test result (for example positive and
negative) are constant. This is possible with a well standardised test that
can be calibrated across different settings. However, there may be no
accepted means of calibration: for example different observers of
imaging tests may have different thresholds for calling an image
“positive”. The effect of different cut points is classically studied by the
use of an ROC curve. In some cases calibration may be improved by
using category specific likelihood ratios, rather than a single cut point.

4 The distribution of test results in the disease group is constant in shape and
location.This assumption is likely to be violated if the spectrum of disease
changes: for example, a screening setting is likely to include earlier
disease, for which test results will be closer to a non-diseased group
(hence a lower sensitivity).

5 The distribution of test results in the non-disease group is constant in shape and
location. This assumption is likely to be violated if the spectrum of non-
disease changes: for example the secondary care setting involves
additional causes of false positives due to comorbidity, not seen in
primary care.

6 The ratio of disease to non-disease (pretest probability) is constant. If this were
the case, we could use the post-test probability (“predictive” values)
directly. However, this assumption is likely to be frequently violated: for
example, the pretest probability is likely to be lowest in screening and
greatest in referral settings. This likely non-constancy is the reason for
using Bayes’ theorem to “adjust” the post-test probability for the pretest
probability of each different setting.
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Figure 6.1 Distribution of test results in individuals with the disease of interest
(D) and those without it (non-D). Numbers refer to assumptions for transferability
of test results as explained in the text and Table 6.1.

Table 6.1 Assumptions for transferring different test performance characteristics.
More important assumptions are marked X and those that are less crucial are
marked X.

Assumption*

Measures of test 3 4 5 6 Comment
discriminatory
power

Odds ratio X X X Both of these measures are used for
Area under ROC X X global assessment of discriminatory

power and are transferable if the
assumptions are met. Neither of 
them is concerned with calibration 
and therefore cannot be used for 
assessing the probability of disease 
in individuals

Measures of 3 4 5 6
discriminatory
power and
calibration

Predictive value X X X X Directly estimates probability of
disease in individuals

Sensitivity X X X
Specificity X X X These three measures can be used to
Likelihood ratios X X X estimate the probability of disease

for a multicategory in individuals using Bayes’ theorem
test

*Assumptions are numbered as described in the text.

Andre_Chap06.qxd  11/6/01  3:00 PM  Page 99



All the measures of test performance need the first two assumptions to
be fulfilled. The extent to which the last four assumptions are sufficient is
shown in Table 6.1, although they may not be necessary in every instance;
occasionally the assumptions may be violated, but because of compensating
differences transferability is still reasonable.

Lack of transferability and applicability of measures
of test performance

We need first to distinguish artefactual variation from real variation in
diagnostic performance. Artefactual variation arises when studies vary in
the extent to which they incorporate study design features, such as whether
consecutive patients were included, or whether the reference standard and
the index test were read blind to each other. Once such artefactual sources
of variation have been ruled out, we may explore the potential sources of
true variation.12 The issues to consider are similar to those for assessing
interventions. For interventions, we consider patient, intervention,
comparator, and outcome (PICO).13,14 For tests the list is as follows, but
with the target condition (equivalent to outcome in trials) shifted to the
beginning of the list: (1) The target condition and reference standard used
to assess it; (2) the population/clinical question; (3) the comparison; and
(4) the index test. We now look at each of these in turn.

The target condition and the reference standard used to assess it

Test accuracy in any population will depend on how we define who has
the target condition(s) that the test aims to detect. Clearly, the stage and
spectrum of the target disease will influence the accuracy of the index test,
as described later. However, even within a fixed spectrum and stage, there
may be different definitions of who is “truly” diseased or not. Depending on
the purpose of the study, the target conditions may be defined on grounds
of clinical relevance, oriented to management decisions or prognosis, or
defined on the grounds of pathological diagnosis. The definition of the
target condition is therefore an active choice to be made by the investigator
and its relevance interpreted by the reader of the study in the light of how
they want to use the information. For example, should myocardial infarction
include (a) “silent” myocardial infarction (with no chest pain)? (b) coronary
thrombosis reversed by thrombolytic treatment, which then averts full
infarction? This issue of the definition of the target condition and its method
of ascertainment will clearly affect the apparent accuracy of the index test.
For example, in parallel to considerations in clinical trials, the closer the
reference standard is to a patient-relevant measure, the more this will help
decisions about clinical applicability. Often reference standards that are
considered objective and free of error are surrogates for (predictors of )
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natural history, which could be measured directly. Consider the reference
standard for a test for appendicitis.The “objective” reference standard for a
new test of appendicitis is often considered to be histology (arrow 2 on
Figure 6.2.) In fact, conceptually, follow up of natural history is a far more
useful reference standard than histology (Figure 6.2, arrow 1). It is patient-
relevant: those people who would have been found to have abnormal
histology but whose condition resolves without operation can be considered
false positives of the histological reference standard (Figure 6.2, arrow 3). In
practice, the data for arrow 3 cannot be established, and we need to use a
combined reference standard that we would consider as natural history
when available and histology when not, rather than (as it is usually
conceptualised) histology when available and natural history when not.

The usual presentation deals with a dichotomous definition of the target
condition: it is either present or absent. In most cases the possibility of
multiple conditions is more plausible. If these are known in advance, the
polytomous nature can be taken into account.15–17

Misclassification of the reference standard will tend to result in
underestimation of test accuracy if the errors in the reference standard and
test are uncorrelated. The degree of underestimation is prevalence
dependent in a non-linear way. Estimation of sensitivity is underestimated
most when the prevalence of the target condition is low, whereas specificity
is underestimated most when the prevalence of the target condition is
high.18,19 The odds ratio is underestimated most when prevalence is at
either extreme. Therefore, error in the reference standard may cause
apparent (rather than real) effect modification of test discrimination in
subgroups in which the target condition has different prevalences.20,21 This
is shown in Table 6.2 where the same hypothetical test and reference
standard are applied to a population in which disease prevalence is 50%

New test

Histology reference standard

Natural history reference standard

1

2

3

Figure 6.2 Choosing a relevant reference standard.
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(top half of table) and about 9% (bottom half ). Sensitivity is reduced more
in the population with 9% prevalence of disease, and specificity more in the
population at 50% prevalence. The odds ratio is reduced most in the
population at 9% prevalence. If errors in the reference standard are
correlated with test errors, then the effect will be more difficult to predict.
Correlated errors may result in overestimation of test accuracy.

The population and the clinical question

The population/clinical question are concerned not only with what disease
is being tested for, but with what presentation of symptoms, signs and other
information has prompted the use of the test. Test performance may vary
in different populations and with minor changes in the clinical question.
There are three critical concepts that help in understanding why this
occurs. These are the spectrum of disease, the referral filter, and the
incremental value of the test.

● Spectrum of disease and non-disease. Many diseases are not on/off
states, but represent a spectrum ranging from mild to severe forms of
disease.22 Tumours, for example, start small, with a single cell, and then
grow, leading eventually to symptoms. The ability of mammography, for
example, to detect a breast tumour depends on its size. Therefore, test
sensitivity will generally differ between asymptomatic and symptomatic

Table 6.2 Reference standard misclassification results in underestimation of test
accuracy and apparent effect modification of different prevalences.
If reference standard has sensitivity � 0.9 and specificity � 0.8

True disease Reference standard

Test Present Absent Total Test Present Absent Total

Positive 80 30 110 Positive 78 32 110
Negative 20 70 90 Negative 32 58 90

Total 100 100 200 Total 110 90 200

Sensitivity � 0.80 OR � 9.3 Sensitivity � 0.71 OR � 4.4
Specificity � 0.70 Specificity � 0.64

If reference standard has sensitivity � 0.9 and specificity � 0.8
True disease Reference standard

Test Present Absent Total Test Present Absent Total

Positive 80 300 380 Positive 132 248 380
Negative 20 700 720 Negative 158 562 720

Total 100 1000 1100 Total 290 810 1100

Sensitivity � 0.80 OR � 9.3 Sensitivity � 0.46 OR � 1.9
Specificity � 0.70 Specificity � 0.69
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persons. If previous tests have been carried out the spectrum of disease in
tested patients may be limited, with patients who have very severe forms of
disease or those with very mild forms being eliminated from the
population. For example, in patients with more severe urinary tract
infection, as judged by the presence of more severe symptoms and signs,
the sensitivity of dipstick tests was much higher than in those with minor
symptoms and signs.6

Likewise, patients without the target condition are not a homogeneous
group. Even in the absence of disease, variability in results is the norm rather
than the exception. For many laboratory tests, normal values in women
differ from those in men. Similarly, values in children differ from those in
adults, and values in young adults sometimes differ from those in the elderly.

Commonly, the “non-diseased” group consists of several different
conditions, for each of which the test specificity may vary. The overall
specificity will depend on the “mix” of alternative diagnoses: the proportion
of people in each of the categories that constitute the non-diseased; for
example, prostate specific antigen may have a lower specificity in older
people or those with prostatic symptoms, as it is elevated in men with
benign prostatic hypertrophy.23 In principle, patients without that target
condition could represent a wide range of other conditions. However, the
decision to use a test is usually made because of the presenting problem of
the patient and the route by which they reached the examining clinician.
Hence, the actual range of variability in patients without the target
condition will depend on the mechanism by which patients have ended up
in that particular situation. As an example, consider a group of ambulant
outpatients presenting with symptoms of venous thromboembolism
without having this disease compared to a group of inpatients suspected of
venous thromboembolism but actually having a malignancy.The specificity
of a D-dimer test in outpatients will be lower than that in inpatients.24

● Referral filter. The discriminatory power of tests often varies across
settings because patients presenting with a clinical problem in one
setting – for example primary care – are very different from those
presenting to a secondary care facility with that clinical problem.25,26

Patients who are referred to secondary care may be those with a more
difficult diagnostic problem, in whom the usual tests have not resolved the
uncertainty. These patients have been through a referral filter to get to the
tertiary care centre.

This concept can best be considered using the hypothetical results of a
diagnostic test evaluation in primary care (Table 6.3). Imagine that patients
are referred from this population to a source of secondary care, and that all
the test positive patients are referred, but only a random half of the test
negative patients. As shown in Table 6.4, the overall test discrimination, as
reflected in the odds ratio, has not changed. However, there appears to be
a shift in threshold, with an increased sensitivity and a decreased specificity.
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Of course, it is unlikely that test negatives would be referred randomly;
rather, it may be on the grounds of other clinical information that the
practitioner is particularly concerned about those test negatives. If the
practitioner is correct in identifying patients about whom there is an
increased risk of disease, the table could well turn out like Table 6.5.

In this case, because of the clinician’s skill and the use of other
information, not only does the test threshold appear to be shifted, but the
overall test performance of the test in secondary care has been eroded, as
shown by the reduced odds ratio. The more successfully the primary care
practitioner detects cases that are test negative but which nevertheless need
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Table 6.3 Accuracy of a test in primary care.

Disease

Test Present Absent Total

Positive 60 40 100
Negative 40 60 100

Total 100 100 200

Sensitivity � 0.60 OR � 2.25
Specificity � 0.60

Table 6.4 Test accuracy if a random sample of test negatives are referred for
verification.

Disease

Test Present Absent Total

Positive 60 40 100
Negative 20 30 50

Total 80 70 150

Sensitivity � 0.75 OR � 2.25
Specificity � 0.43

Table 6.5 Diagnostic performances vary by setting because of selective patient
referral.

Disease

Test Present Absent Total

Positive 60 40 100
Negative 25 25 50

Total 85 65 150

Sensitivity � 0.71 OR � 1.5
Specificity � 0.38
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referral for management of the disease of interest, the more the
performance of the test in secondary care is eroded.

● To what prior tests is the incremental value of the new test being assessed ?
In many situations several tests are being used and the value of a particular
test may depend on what tests have been done before,27 or simple prior
clinical information.28,29 In Table 6.6 two tests are cross-classified within
diseased and non-diseased people. The sensitivity and specificity of each
test is 0.6, and they remain 0.6 if test B is used after test A, that is, the test
performance characteristics of B remain unaltered in categories of patients
who are A positive and those who are A negative.

However, if the tests are conditionally dependent or associated with each
other within diseased and non-diseased groups, for example because they
both measure a similar metabolite, then the overall test performance of B
is eroded, as judged by the OR changing from 2.25 to 2.00 (Table 6.7 and
Figure 6.3). In addition, there appears to be a threshold shift: the test is
more sensitive but less specific in patients for whom A is positive than in
those for whom A is negative. In other words, not only is the discrimination
of the new test (B) less if done after the existing test (A), as judged by the
odds ratio, but the calibration appears to differ depending on the result of
the prior test. In fact, the threshold has not altered but there has been a
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Table 6.6 Incremental value when tests A and B are conditionally independent.

Have disease No disease

A� A� Total A� A� Total

B� 36 24 60 16 24 40
B� 24 16 40 24 36 60

Total 60 40 100 40 60 100

“Crude” sensitivity and specificity of both A and B � 0.6 and odds ratio � 2.25.
If A is � or �, SnB � 0.6, SpB � 0.6 and OR � 2.25.

Table 6.7 Incremental value when tests A and B are conditionally dependent.

Have disease No disease

A� A� Total A� A� Total

B� 40 20 60 20 20 40
B� 20 20 40 20 40 60

Total 60 40 100 40 60 100

“Crude” sensitivity and specificity of both A and B � 0.6.
Odds ratio � 2.25.
If A �, SnB � 0.67, SpB � 0.50 and OR � 2.00.
If A �, SnB � 0.50, SpB � 0.67 and OR � 2.00.
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shift in the distribution of test results in diseased and non-diseased groups,
conditional on the results of test A.

An example is provided by Mol and colleagues,30 who evaluated the
performance of serum hCG (human chorionic gonadotrophin)
measurement in the diagnosis of women with suspected ectopic pregnancy.
Several studies have reported an adequate sensitivity of this test.30

However, the presence of an ectopic or intrauterine pregnancy can also be
diagnosed with ultrasound. Mol et al. reported the sensitivity of hCG to be
significantly different in patients with signs of an ectopic pregnancy
(adnexal mass, or fluid in the pouch of Douglas) on ultrasound, compared
to those without signs on ultrasound. As a consequence, an uncritical
generalisation of the “unconditional” sensitivity will overestimate the
diagnostic performance of this test if it is applied after an initial
examination with ultrasound, as is the case in clinical practice.30

Categories of patients for whom new tests are most helpful are worth
investigating. For example, whole-body positron emission tomography
(PET) contributed most additional diagnostic information in the subgroup
of patients in whom prior conventional diagnostic methods had been
equivocal.31

The comparison: replacement or incremental test

Note that a new test may be evaluated as a replacement for the existing test,
rather than being done after the existing test, in which case the incremental
value is of interest. For assessment of replacement value, the cross-
classification of the tests is not necessary to obtain unbiased estimates of how
the diagnostic performance of the new test differs from that of the existing
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Figure 6.3 Test characteristics for test B alone and in those with positive and
negative test A.
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one. However, information about how they are associated from a cross-
classification will provide extra useful information and improve precision.32

Readers may have noticed that the issue of incremental value and the
decreased test performance if tests are conditionally dependent is related to
the prior issue of decreased test performance if the primary care clinician
is acting as an effective referral filter. In our previous example, imagine that
the test being evaluated is B. The clinician may be using test A to alter the
mix of A� and A�s that get through to secondary care, and the test
performance of B reflects the way in which this mix has occurred.

The test

● Discriminatory power. Information about the test is relevant to both
discriminative power and calibration. Discrimination may differ between
tests that bear the same generic name but which, for example, are made by
different manufacturers.Tests may be less discriminatory when produced in
“kit” form than in initial laboratory testing.33 When tests require
interpretative skill, they are often first evaluated in near-optimal situations.
Special attention is usually devoted to the unambiguous and reproducible
interpretation of test results.This has implications for the interpretation and
generalisability of the results. If the readers of images are less than optimal
in your own clinical setting, test accuracy will be affected downward.34–36

The usual presentation deals with a two-way definition of test results,
into positive and negative. In many cases, multiple categories of test results is
more plausible. In addition, there may be a category of uninterpretable test
results that needs to be considered.The polytomous nature of tests should
be taken into account, for which several methods are available. Rather than
a simple positive–negative dichotomy and the associated characteristics
sensitivity and specificity, likelihood ratios for the multiple categories and
ROC curves can be calculated (see Chapter 7). In all cases, a more general
n � n table can be used to describe test characteristics, and several
likelihoods can be calculated.16

● Calibration. If the purpose of the study is clinical decision making, in
which information is being derived to estimate probablilities of disease,
then a second major issue is the calibration of test results. A continuous test
may have equivalent ROCs and diagnostic ORs in two different settings,
but very different likelihood ratios (LRs). For example, machine calibration
may be different in the two settings, so that one machine may show results
considerably higher than another. Likewise, even if two readers of
radiographs have similar discriminative power, as shown by similar ROCs,
the threshold they use to differentiate positive from negative tests (or
adjacent categories of a multicategory test) may vary widely.37–40

In summary, variability in the discriminative power and calibration of the
same test used in different places is the rule rather than the exception.
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When we strive for parsimony in our descriptions, we run the risk of
oversimplification. In the end, the researcher who reports a study, as well
as the clinician searching the literature for help in interpreting test results,
has to bear in mind that test performance characteristics are never just
properties of the test itself: they depend on several factors, including prior
clinical and test information, and the setting in which the test is done.

2. Implications of variation in discriminative power 
and calibration of tests: questions to ask yourself 
before you start designing the study

1 What is the target condition and the reference standard?
2 Is the objective to estimate test performance using a global measure, or

a measure that will allow estimation of the probability of disease in
individuals?

3 What is the population and clinical problem?
4 Is the test being considered as a replacement or incremental test?
5 To what extent do you want to study the reasons for variability of the

results within your population?
6 To what extent do you want to study the transferability of the results to

other settings?

In what follows, we assume that the usual criteria for adequate design of an
evaluation of a diagnostic test have been fulfilled.The issue is then: How do
we design a study which will also help to ensure that its transferability can
be determined? Based on the concepts in the first part of this chapter, we
suggest that investigators ask themselves the following questions to help
ensure that readers have the necessary information to decide on the
transferability of the study to their own setting.

1. What is the target condition and reference standard?

The target condition and reference standard need to be chosen to reflect
the investigator’s requirements. Is the choice appropriate to whether the
investigator is doing the study to assist with predicting prognosis, deciding
as the need for intervention, or researching pathological processes? For
example, in a study of tests to assess stenosis of the carotid artery, it would
be sensible to choose the reference standard as angiographic stenosis
dichotomised around 70%, if this is the level of angiographic abnormality
above which, on currently available evidence, the benefits of treatment
outweigh the harm. On the other hand, if the study is being done by
researchers whose interest is in basic science, they may wish to compare the
test with stenosis assessed on surgically removed specimens at a different
threshold, or across a range of thresholds.
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Error in the reference standard is a major constraint on our ability to
estimate test accuracy and explore reasons for variability of test
characteristics.18,19,41 Therefore, researchers should consider methods of
minimising error in the reference standard, for example by using better
methods or multiple assessments. Any information about the test
performance characteristics of the reference standard will help
interpretation, as will several different measures of the target condition,
which can be combined. Multiple measures of the reference standard or
multiple different tests also allow the use of more sophisticated analyses,
such as latent class analysis, to minimise the potential for bias in estimates
of test accuracy or factors that affect it.21,42 Because the effects of
misclassification in the reference standard have different effects in
populations of different prevalence, as shown in Table 6.2, one may choose
to assess a test in a population where any residual effects of error in the
reference standard are minimised. For the odds ratio, this is at about 50%
prevalence. For sensitivity it is when prevalence is high, and for specificity
when prevalence is low. However, when using this strategy, consider
whether the spectrum of disease may also vary with prevalence. If so, you
will need to judge whether reference standard misclassification is a
sufficiently important problem to outweigh the potential for spectrum bias
induced by choosing a study in a population with specified prevalence.

2. Is the objective to estimate test performance using a global
measure (discrimination) or a measure that will allow 
estimation of the probability of disease in individuals
(discrimination and calibration)?

Global assessment of the discriminatory power of the test requires
measures such as the area under the ROC curve, or the diagnostic odds
ratio. These may be sufficient for some purposes, for example if a policy
decision needs to be made about alternative tests of equivalent cost, or to
decide whenever a test has sufficient accuracy to warrant further calibration.
For estimating the probability of disease in individuals, likelihood ratios (or
sensitivity and specificity) are needed, with additional information on how
tests were calibrated. Information about calibration should be provided in
papers for readers to be able to use the result of your study. Access to
selected example material, such as radiographs of lesions, will help readers
understand what thresholds have been used for reading in your study.

3. What is the population and clinical problem?

This question defines how the inception cohort should be selected for
study, although the breadth of the group selected will also be determined
by the extent to which you wish to address the following questions.
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For example, a new test for carotid stenosis could be considered for all
patients referred to a surgical unit. However, ultrasound is reasonably
accurate at quantifying the extent of stenosis, and so investigators may
choose to restrict the study of a more expensive or invasive test to patients
in whom the ultrasound result is near the decision threshold for surgery. A
useful planning tool is to draw a flow diagram of how patients reach the
population/clinical problem of interest. This flow diagram includes what
clinical information has been gathered and what tests have been done, and
how the results of those tests determine entry into the population and
clinical problem of interest. For example, in the flow diagram in Figure 6.4
the clinical problem is suspected appendicitis in children presenting to a
hospital emergency service. The decisions based sequentially on clinical
evidence and ultrasonography are shown.The flow diagram helps to clarify
that computed tomography (CT) is being assessed only in patients in
whom those prior tests had not resolved the clinical problem. Also as shown
in the figure, in addition to being helpful at the design stage, publishing
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Children with suspected
appendicitis, n = 177

Evaluated with
ultrasonography, n = 139

Went to operating room
for appendectomy, n = 20

Went to operating room
for appendectomy, n = 31

Admitted to hospital for
observation, n = 25

Discharged home from
emergency department, n = 52

No appendicitis, n = 0

No appendicitis,
n = 3

Appendicitis,
n = 28

No appendicitis,
n = 24

Appendicitis,
n = 1

No appendicitis,
n = 52

Appendicitis,
n = 0

Appendicitis, n = 20 No appendicitis, n = 10 Appendicitis, n = 1

Evaluated with CTRC,
n = 108

Discharged home,
n = 11

Discharged home from
emergency department, n = 4

No appendicitis, n = 4 Appendicitis, n = 0 No appendicitis, n = 4 Appendicitis, n = 30

Directly to operating room,
 n = 34

Figure 6.4 A flow diagram to formulate a diagnostic test research question. Study
profile flow diagram of patients with suspected appendicitis. (From Garcia Pena
BM et al. Ultrasonography and limited computed tomography in the diagnosis and
management of appendicitis in children. JAMA 1999;282:1041–6. Reproduced
with permission from the American Medical Association.43)
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such flow diagrams, with numbers of patients who follow each step, is very
helpful to readers.43

4. Is the test being considered as a replacement
or incremental test?

As outlined above, the population and the clinical problem define the
initial presentation and referral filter. In addition, a key question is whether
we are evaluating the test to assess whether it should replace an existing test
(because it is better, or just as good and cheaper) or to assess whether it has
value when used in addition to a particular existing test. This decision will
also be a major determinant of how the data will be analysed.44–46

5. To what extent do you want to study the reasons for 
variability of the results within your population?

How much variability is there between readers/operators?

Data should be presented on the amount of variability between different
readers or test types and tools to help calibration, such as standard
radiographs,39,40 or laboratory quality control measures. The extent to
which other factors, such as experience or training, affect reading adequacy
will also help guide readers of the study. Assessment of variability should
include not only test discriminatory power but also calibration, if the
objective is to provide study results that are useful for individual clinical
decision making.

Do the findings vary in different (prespecified) subgroups
within the study population?

Data should be analysed to determine the influence on test performance
characteristics of the following variables, which should be available for each
individual.

● The spectrum of disease and non-disease, for example by estimating
“specificity” within each category of “non-disease”. These can be
considered separately by users or combined into a weighted specificity
for different settings. The same approach can be used for levels (stage,
grade) in the “diseased” group.

● The effect of other test results. This follows the approach often used in
clinical prediction rules. It should take account of logical sequencing of
tests (simplest, least invasive, and cheapest are generally first). It should
also take account of possible effect modification by other tests. In some
instances people would have been referred because of other tests being
positive (or negative), so that the incremental value of the new test cannot
be evaluated. In this case, knowing the referral filter and how tests have
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been used in it (as in Figure 6.4) will help interpretation. For example, a
study by Flamen31 has shown that the major value of PET for recurrent
colorectal adenocarcinoma is in the category of patients in whom prior
(cheaper) tests gave inconclusive results. It would therefore be a useful
incremental test in that category of patients, but would add little (except
cost) if being considered as a replacement test for all patients, many of
whom would have the diagnostic question resolved by the cheaper test.
This suggests that PET is very helpful in this clinical situation.31

● Any other characteristics, such as age or gender.

There are often a vast number of characteristics that could be used to
define subgroups in which one may wish to check whether there are
differences in test performance. The essential descriptors of a clinical
situation need to be decided by the researcher. As for subgroup analysis in
randomised trials,47 these characteristics should be prespecified, rather
than decided at analysis stage.The decision is best made on the basis of an
understanding of the pathophysiology of the disease, the mechanism by
which the test assesses abnormality, an understanding of possible referral
filters, and knowledge of which characteristics vary widely between centres.
Remember that variability between test characteristics in subgroups may
not be due to real subgroup differences if there is reference standard
misclassification and the prevalence of disease differs between subgroups,
as shown in Table 6.2. Modelling techniques can be used to assess the effect
of several potential predictors of test accuracy simultaneously.48–52

6. To what extent do you want to study the transferability 
of the results to other settings?

To address this question, you need to perform the study in several
populations or centres, and assess the extent to which test performance
differs, as has been done for the General Health Questionnaire53 and
predictors of coma.54 The extent to which observed variability is beyond
that compatible with random sampling variability can be assessed using
statistical tests for heterogeneity. Predictors (as discussed above) should
also be measured to assess the extent to which within-population variables
explain between-population variability. Because of the low power of tests of
heterogeneity, this is worth doing even if tests for heterogeneity between
centres or studies are not statistically significant. The more the measured
variables explain between-population differences, the more they can be
relied on when assessing the transferability of that study to the population
in the reader’s setting. Between-site variability can also be explored across
different studies using meta-analytical techniques.55,56

Sites for inclusion in the multicentre comparison should be selected as
being representative of the sorts of populations in which the results of the
diagnostic study are likely to be used. The more the variability in site
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features can be characterised – and indeed taken account of in the sampling
of sites for inclusion in studies – the more informative the study will be.
Data should be analysed to determine the influence on results of the
within-site (individually measured) patient characteristics mentioned
above. They should also explore the following sources of between-site
variability that are not accounted for by the within-site characteristics:

● Site characteristics, for example primary, secondary or tertiary care
● Other features, such as country
● Prevalence of the disease of interest.

Residual heterogeneity between sites should be explored to judge the extent
to which there is inexplicable variability that may limit test applicability.

Explanatory note about prevalence

The inclusion of “prevalence” in the above list may seem unusual, as it
is not obviously a predictor of test performance. However, there are many
reasons why prevalence should be included in the list of potential
predictors, in an analogous way to the exploration of trial result
dependence on baseline risk.57 First, many of the reasons for variation
between centres may not be easy to characterise, and prevalence may
contain some information about how centres differ that is not captured by
other crude information, for example whether the test is evaluated in
primary, secondary or tertiary care centres. Second, it is a direct test of the
common assumption that test performance characteristics such as
sensitivity and specificity are independent of prevalence. Third, non-linear
prevalence dependence is an indication that there is misclassification of the
reference standard.

In summary, there is merit in designing studies with heterogeneous study
populations. This will allow exploration of the extent to which diagnostic
performance depends on prespecified predictors, and how much residual

Table 6.8 The value of designing studies that enable the exploration of predictors
of heterogeneity of diagnostic accuracy.

Heterogeneity in
Heterogeneity in study population

diagnostic accuracy Yes No

Yes To what extent is Transferability limited
heterogeniety in accuracy
explained by predictors?

If not, transferability is
limited

No Highly transferable Design does not allow
exploration of 
transferability
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heterogeneity exists. The more heterogeneity there is in study populations,
the greater the potential to explore the transferability of diagnostic
performance to other settings, as shown in Table 6.8.

Concluding remarks

There is good evidence that measures of test accuracy are not as
transferable across settings as is often assumed. This chapter outlines the
conceptual underpinnings for this, and suggests some implications for how
we should be designing studies that carry more information about the
transferability of results. Major examples are examining the extent to which
test discrimination and calibration depend on prespecified variables, and
the extent to which there is residual variability between study populations
which is not explained by these variables. This will require larger studies
than have generally been done in the past for diagnostic tests.
Improvements in study quality and designs to assess transferability are
needed to ensure that the next generation of studies on test accuracy are
more able to meet our needs.
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7 Analysis of data on the
accuracy of diagnostic tests
J DIK F HABBEMA, RENÉ EIJKEMANS,
PIETA KRIJNEN, J ANDRÉ KNOTTNERUS

Summary box

● Neither sensitivity nor specificity is a measure of test performance
on its own. It is the combination that matters.

● The statistical approach for analysing variability in probability
estimates of test accuracy is the calculation of confidence intervals.

● The magnitude of the change from pretest to post-test probability
(predictive value) reflects the informativeness of the diagnostic test
result.

● The informative value of a test result is determined by the
likelihood ratio: the ratio of the frequencies of occurrence of this
result in patients with and patients without the disease.

● The odds ratio summarises the diagnostic value of a dichotomous
test, but does not tell us the specific values of sensitivity and
specificity and the likelihood ratios.

● A measure of performance for a continuous test is the area under the
ROC curve.This varies between 0.5 for a totally uninformative test
and 1.0 for a test perfectly separating diseased and non-diseased.

● Bayes’ theorem implies that “post-test odds equals pretest odds
times likelihood ratio”.

● One can derive the optimal cut-off from the relative importance of
false positives and false negatives.

● A sensitivity analysis is important for getting a feeling for the
stability of our conclusions.
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Introduction

After the painstaking job of collecting, computerising and cleaning
diagnostic data, we enter the exciting phase of analysing and interpreting
these data and assessing the clinical implications of the results. It would be
a pity if all the effort put into the research were not to be crowned with a
sound analysis and interpretation. It is the purpose of this chapter to help
readers to do so.

We will study the classic test performance measures introduced in
Chapter 1: sensitivity, specificity, positive and negative predictive value,
likelihood ratio, and error rate, first for dichotomous tests and later, for
continuous tests, including the possibility of dichotomisation, with its quest
for cut-off values. ROC curves are part of this.

Next, Bayes’ theorem for the relationship between pretest and post-test
probability of disease is discussed, followed by decision analytical
considerations. For generalisation of the one-test situation to diagnostic
conclusions based on many diagnostic test results, there will be a discussion
on logistic regression and its link with Bayes’ theorem.

The strengths and weaknesses of study designs, possible biases, and
other methodological issues have been discussed in previous chapters and
will not be repeated here, although the discussion will provide some links
between biases and analysis results.

We will refer to software for performing the analysis. Also, we will include
appendices with tables and graphs, which can support you in the analysis.

Clinical example

Renal artery stenosis in hypertension

We use data from a study on the diagnosis of renal artery stenosis. In
about 1% of all hypertensive patients the hypertension is caused by a
constriction (stenosis) of the renal artery. It is worth identifying these
patients because their hypertension could be cured by surgery, and
consequently their risk of myocardial infarction and stroke could be

● From multiple logistic regression analysis one can not only learn
about the predictive value of a combination of tests, but also what
a certain test adds to other tests that have already been performed.

● When starting a data analysis one must be confident that the
research data have been collected with avoidance of important bias
and with acceptable generalisability to the target population.
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reduced. Moreover, renal failure could be prevented by relieving the
stenosis. The definitive diagnosis of renal artery stenosis is made by renal
angiography. This diagnostic reference test should be used selectively,
because it is a costly procedure that can involve serious complications.
Thus, clinicians need a safe, reliable, and inexpensive screening test to help
them select patients for angiography.

The diagnostic tests that we will use in this chapter are clinical
characteristics suggestive of renal artery stenosis, and renography;
angiography serves as the reference standard test for stenosis. The clinical
characteristics used as examples are symptoms and signs of atherosclerotic
vascular disease, the presence of an abdominal bruit and the serum
creatinine concentration. Renography is a non-invasive test for detecting
asymmetry in renal function between the kidneys, which also is suggestive
of renal artery stenosis.

The data, listed as indicated in Table 7.1, are from a Dutch multicentre
study aiming to optimise the diagnosis and treatment of renal artery
stenosis (RAS). The study included 437 hypertensive patients aged 18–75
years, who had been referred for unsatisfactory blood pressure control or
for analysis of possible secondary hypertension.

Diagnostic questions and concepts

One can ask a number of questions concerning this diagnostic problem.
Some are mentioned below, with the diagnostic concept concerned in
parentheses.

● How good is my diagnostic test in detecting patients with RAS (sensitivity)?
● How good is my diagnostic test in detecting patients without RAS

(specificity)?
● How well does a positive/abnormal test result predict the presence of

RAS (positive predictive value)?
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Table 7.1 The first three and last three patients of 8�437 data array from a study
on diagnostics in possible renal artery stenosis (RAS).

Patient Atherosclerotic Abdominal Creatinine Abnormal RAS on
code Age Gender vascular disease bruit (micromol) renogram angiography

1 62 F No Yes 87 No Yes
2 52 M No No 146 Yes Yes
3 49 F No No 77 No No
… … … … … … … …
… … … … … … … …
435 36 M No No 84 No No
436 51 M Yes No 74 No No
437 55 M No No 83 No No
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● How well does a negative/normal test result predict the absence of RAS
(negative predictive value)?

● What is a reasonable estimate for the pretest probability of RAS
(prevalence of RAS)?

● How many false conclusions will I make when applying the diagnostic
test (error rate)?

● How informative is my positive/negative test result (likelihood ratio)?
● How do I summarise the association between a dichotomous test and the

standard diagnosis (diagnostic odds ratio)?
● What is an optimal cut-off level when I want to dichotomise a

continuous test (ROC curve)?
● To what extent does the test result change my pretest belief/probability

of RAS (Bayes’ theorem)?
● How are the above concepts applied to a number of diagnostic tests

simultaneously (logistic regression)?

Sensitivity and specificity for a dichotomous test

We will illustrate the dichotomous test situation by assessing how well
renography is able to predict arterial stenosis. Therefore we construct from
our database the 2 � 2 table with, as entries for renographic assessment,
“abnormal/normal”, and for angiography, “stenosis/no stenosis” (Table 7.2).

The generic table with the corresponding symbolism is given in Table 7.3,
with N � total number of patients, NT� � number of patients with positive
test results, NT� � number of patients with negative test results,

Table 7.2 2�2 table for analysing the diagnostic value of renographic assessment
in predicting renal artery stenosis.

Angiography

Renography Stenosis No Stenosis Total

Abnormal 71 33 104
Normal 29 304 333

100 337 437

Table 7.3 Generic 2 � 2 table representing possible classifications for the
relationship between a diagnostic test and a diagnosis (reference test).

Test Diagnosis

� �

� TP FP NT�

� FN TN NT�

ND� ND� N
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ND� �number of patients without the disease, ND� � the number of patients
with the disease, TP�number of true positives, TN�number of true
negatives, FP�number of false positives, and FN�number of false negatives.

Together, sensitivity (the probability of a positive test result in diseased
subjects, P(T�|D�) and specificity (the probability of a negative test result
in non-diseased subjects, P(T�|D�), characterise the dichotomous test
for the clinical situation at hand. Neither is a measure of test performance
on its own: it is the combination that matters.2

For the example in Table 7.2 we can calculate:

Sensitivity � TP/ND� � 71/100 � 71%
Specificity � TN/ND� � 304/337 � 90%

In the next section we will see the degree of variability with which these
estimates are associated.

Sampling variability and confidence intervals
for probabilities

Confidence intervals

A main challenge in the analysis of diagnostic data is to assess how
confident we can be about the test characteristics as observed in our
patients. This may sound strange because an observed proportion, for
example the sensitivity of renography in Table 7.2 of 71%, is a fact.
However, it is unlikely that we will again find exactly 71% for sensitivity in
a new series of 437 similar patients, and an indication of the limits of what
can reasonably be expected is therefore important (even when the same
patients would have been re-examined in the same or another setting, other
data will be obtained because of inter- and intraobserver variability).

The statistical method for analysing the variability in estimates of
sensitivity, and of all other probability estimates that we will discuss, is
confidence intervals. The probability level of the confidence interval can be
chosen. A higher level of confidence corresponds to a larger interval in terms
of number of percentiles covered. Throughout the chapter, we will –
conventionally – work with 95% confidence intervals. The interpretation of
a 95% confidence interval for an observed proportion, that is, a probability
estimate, is as follows: when the data sampling is repeated many times, the
95% confidence interval calculated from each sample will, on average,
contain the “true” value of the proportion in 95% of the samples.Variability
in sensitivity estimates is illustrated in Table 7.4. In part(a) of this table, the
100 stenosis patients of our study are subdivided into four groups of 25
consecutive patients. It is seen that the four subgroup sensitivities range
enormously, from 48% to 88% (tables and formulae for the confidence
interval will be discussed later). Part(b) illustrates what sensitivities we would
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Table 7.4 Analysis of diagnostic data of patients with possible renal artery stenosis
(RAS): confidence intervals for sensitivity of renography in diagnosing RAS; (a)
variability in sensitivity between equal numbers of RAS patients, and (b) smaller
confidence intervals with larger sample size, as cumulated during the study.

TP ND� Sensitivity 95% Confidence interval

(a) 18 25 0.72 0.51–0.88
22 25 0.88 0.69–0.97
19 25 0.76 0.55–0.91
12 25 0.48 0.28–0.69

(b) 3 5 0.60 0.15–0.95
7 10 0.70 0.35–0.93

18 25 0.72 0.51–0.88
40 50 0.80 0.66–0.90
71 100 0.71 0.61–0.80

Table 7.5 Confidence interval for the 71% (71 out of 100) sensitivity estimate of
renography in diagnosing RAS, for different confidence levels.

Confidence level (%) Confidence interval (%)

50 67–74
67 66–76
80 64–77
90 63–78
95 61–80
99 58–82
99.9 54–84

have obtained if we had finished the study earlier, that is, after observing the
first 5, 10, 25, 50 and 100 stenosis patients of the present study.

As you see from Table 7.4(a), the 95% confidence intervals of the
highest and lowest estimates of sensitivity of 0.88 and 0.48 just touch each
other. Table 7.4(b) shows that the width and the confidence interval
become smaller with increasing sample size, as you would expect. For
confidence intervals, and more generally for the accuracy of statistical
estimates, the square root rule applies: when one makes the sample size A
times as large, the confidence interval will be a factor �A smaller. For
example, for a two-times smaller confidence interval one needs four times
as many patients. You can check the (approximate) validity of the square
root rule in Table 7.4(b).

The confidence interval for the 71% sensitivity estimate for the total
study runs from 61% to 80% (bottom line in Table 7.4). Table 7.5 gives
confidence intervals for a number of confidence levels, with wider intervals
for higher levels.

For the specificity of renography in diagnosing RAS we get the following
confidence interval around the 90% estimate for the total number of 337
non-diseased subjects: from 87% to 93%. As you can see, the confidence
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interval is roughly half the size of the confidence interval for the sensitivity,
which reflects about four times as high the number of observations on
which the estimate is based (square root rule!).

Some theory and a guide to the tables in the appendix

The theory of calculating confidence intervals for proportions is based
on the binomial distribution and requires complicated calculations. In
general, the confidence interval is asymmetrical around the point estimate
of the sensitivity, because of the “floor” and “ceiling” effects implied by the
limits of 0 and 1 to any probability.

Fortunately, when the numbers are not small the 95% confidence
interval becomes approximately symmetrical and the upper, and lower
limits can be calculated by adding or substracting 1.96 � standard error,
with the standard error calculated by:

where p̂ stands for the proportion or probability estimate, and N for the
number of observations on which the proportion is based (in practice,
multiplication by 2 instead of the more tedious 1.96 works well).

For other confidence levels, the multiplication factor 1.96 should be
replaced by other values (see Appendix A.3).

Appendix Tables A.1 and A.2 give confidence levels for situations with
small sample sizes where you need the tedious binomial calculations.
Table A.3 gives the confidence interval for a number of situations in which
the above formula for the standard error works well. In cases not covered
by the tables, the standard error can be calculated using the formula. The
reader can now verify the correctness of the confidence intervals presented
in this section.

Positive and negative predictive value:
pre- and post-test probability of disease

The positive predictive value (PPV) is the probability that the patient has
the disease when the test result is positive. This “post-test probability” is
easily derived from Table 7.2. For the probability of RAS in case of
abnormal renography, it is:

PPV � P(D�|T�) � TP/NT� � 71/104 � 68%

The confidence interval (CI) can be estimated using the formula on page 137
or Table A.3.: the 95% confidence interval for PPV runs from 59% to 77%.

The negative predictive value (NPV), that is, the probability that the
patient has the disease if the test result is negative, translates in our case to

2p̂(1 �  p̂)>N
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the probability of no stenosis in case of normal renography. We get:

NPV � P(D�|T�) � TN/NT� � 304/333 � 91%

with 95% CI from 88% to 94% (see Table A.3).
The probabilities of no stenosis for an abnormal renogram and of

stenosis for a normal renogram, and their CIs, are obtained as 100% minus
PPV and 100% minus NPV, respectively because the probabilities of
stenosis and no stenosis have to add up to 100%:

P(D�|T�) � 1�P(D�|T�) � 32% (95% CI: 23% to 41%)
P(D�|T�) � 1�P(D�|T�) � 9% (95% CI: 6% to 12%)

The PPV and NPV are post-test probabilities, that is, they are the updated
probabilities given the information provided by the positive and negative
test results, respectively. Before the test, we have the pretest probabilities of
presence and absence of disease, which for our RAS example are:

P(D�) � 100/437� 23% (95% CI: 19% to 27%)
P(D�) � 337/437� 77% (95% CI: 73% to 81%)

The magnitude of the change from pre- to post-test probability reflects
the informativeness of the diagnostic test result. In our case, the pretest
probability of stenosis of 23% changes to 68% in case of an abnormal
renogram, and to 9% in case of a normal renogram.

Error rate

How well does our diagnostic test discriminate between patients with
and without stenosis, or, more generally, how well does the test
discriminate between the two disease categories? So far we have only
looked at partial measures of performance, such as sensitivity, specificity,
and predictive values. None of these concepts on its own gives an
assessment of the performance of the test.

The most straightforward measure expresses how many errors we make
when we diagnose patients with an abnormal test result as diseased, and
those with a normal test result as non-diseased. This concept is known as
the error rate. For our example, the error rate is easily calculated from
Table 7.1.There are 29 false negative results, as the test was negative when
stenosis was present, and 33 false positive results, with the test being
abnormal when there was no stenosis. Thus, in total there are 62 errors,
from a total of 437 patients.

This gives the following calculations for the error rate and its confidence
interval, the latter being derived from Table A.3 (the closest entry is 60 out
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of 500, with a half-CI size of 0.028; interpolation to 70 and 300 shows that
� 3% is indeed the correct CI):

Error rate(ER) � 62/437� 14% (95% CI: 11% to 17%)

The error rate is a weighted average of errors among persons with the
disease (the false negatives) and among those without the disease (the false
positives), as is seen from the following equation:

ER � P(T�|D�) � P(D�)� P(T�|D�) � P(D�)

For our stenosis example we can easily verify this expression for the error
rate:

ER � (29/100) � (100/437) � (33/337) � (337/437) � 62/437 �14%

The weights in this formula are 23%, being the pretest probability of
disease, and 77% for the probability of no disease.

This equation enables us to investigate what the error rate would be if the
pretest probability of disease were different. For example, if the pretest
probability of disease were 50% instead of 23%, the error rate would be
calculated as:

ER � 29/100 � 0.5 � 33/337 � 0.5 � 19.4%

Using this formula we can speculate about the performance of the test in
situations that differ from the original context (the assumption is that false
positive and false negative rates do not change. This is unfortunately not
always valid; see Chapters 1, 2, and 6).

Information in a diagnostic test result:
the likelihood ratio

The informative value, or weight of evidence, of a test result is
determined by the frequency of occurrence of this result in patients with
the disease compared to those without the disease. If, for example, a certain
test result occurs twice as often in patients with the disease, this result gives
an evidence factor of 2 in favour of the disease. If, on the other hand, a test
result occurs twice as often in patients without the disease, it gives an
evidence factor of 2 in favour of non-disease, that is, a factor 2 against the
disease (or a factor 1/2 in favour of disease).

This important probability ratio is called the likelihood ratio (LR). Each
test result X has its own likelihood ratio LR(X) � P(X|D�)/P(X|D�).

For dichotomous tests, we have only two test results, T� and T�, and
therefore also only two likelihood ratios:

the LR of a positive test result: LR(T�) � P(T�|D�)/P(T�|D�)
� Se/(1�Sp)
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the LR of a negative test result: LR(T�) � P(T�|D�)/P(T�|D�)
�(1�Se)/Sp

For our example of renal artery stenosis, we obtain the following values
for the likelihood ratio of an abnormal and a normal renogram,
respectively:

LR (T�)� 0.71/0.10� 7.1 with 95% CI: 5.1 to 10.3
LR (T�)� 0.29/0.90� 0.32 with 95% CI: 0.24 to 0.44.

Thus, an abnormal renogram provides a factor of 7 in favour of stenosis,
whereas a normal renogram yields a factor of 3 (that is, 1/0.32) in favour
of no stenosis.

The following approximate formula has been used to calculate the 95%
confidence interval for the likelihood ratio:

in which p1 � P(X|D�) is based on sample size n1 and p2 � P(X|D�) on
sample size n2.3

Diagnostic odds ratio

For a dichotomous test it is possible to summarise the association
between the test and the diagnosis (reference standard) presented in the 2 � 2
table in one measure: the diagnostic odds ratio (OR), which is equivalent
to the cross-product of the table. Looking at the example of renal artery
stenosis (Table 7.2):

OR � (71/33) /(29/304)�(71 � 304)/(33 � 29)� 22.6,
with 95% CI: 12.4 to 41.3

The OR is equivalent to the ratio of LR(T�) and LR(T�), as can be
easily checked in the table. The 95% confidence interval of the OR is
provided by the software recommended in the references with this chapter.

The advantage of the OR is that it summarises in one figure the
diagnostic association in the whole table. However, this summary measure
does not tell us the specific values of the likelihood ratios of the two test
results, nor those of sensitivity and specificity. These measures have to be
calculated as described earlier.

Continuous tests, and their dichotomisation 
and trichotomisation

Another test for investigating the presence or absence of renal artery
stenosis is the serum creatinine concentration. This test has a continuous

expaln 

p1
p2

 �1.96B1 � p1
p1n1

�
1 � p2
p2n2

b
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range of possible test results. For analysis, results can best be grouped in
classes of sufficient size (Table 7.6). Each class has its own evidence for and
against stenosis, as expressed in the likelihood ratio.

The theory thus far has concerned only dichotomous tests, but the
specific concepts for the dichotomous test situation can be translated into
more general concepts for tests with more categories. The probabilities of
observing a test result for stenosis and non-stenosis patients are given in
Table 7.6. The likelihood ratio is a concept linked to a specific test result,
and so also applies to multicategory tests. For example, the likelihood ratio
for a test result in the category 61–70 micromol can be calculated as the
ratio of the likelihood of this test result in diseased and the likelihood of this
result in non-diseased, that is: (4/100)/(36/337) � 0.37. As expected, the
likelihood ratio increases with higher serum creatinine levels. The
irregularity in this increasing trend in the 81–90 class reflects sampling
variation, and not an underlying biological phenomenon.

We will now analyse the relationship between the multicategory test of
serum creatinine described in Table 7.6 and its possible simplification to a
dichotomous test. Dichotomisation can take place at any category boundary.
This is done in Table 7.7, which gives in each row the corresponding
dichotomous test data. For example, based on a cut-off level of 80 the
number of patients with and without stenosis over the value of 80 is 82 and
215, respectively, resulting in a sensitivity of 82% and a specificity of 36%.
Likelihood ratios can again be calculated, now for the two results of the
dichotomised test. As can be seen, much information is lost by the
dichotomisation. All results above and below the threshold are aggregated,
and the likelihood ratio after dichotomisation becomes an average of the
likelihood ratios of the individual classes above and below this threshold.
Also, the question of the choice of the cut-off value is a difficult one, especially
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Table 7.6 Probability of test results and diagnostic information of serum
creatinine concentration in relation to renal artery stenosis.

Serum creatinine Likelihood
(micromol/l) Stenosis No stenosis All ratio (95% CI)

60 1 (1%) 19 (6%) 20 (5%) 0.18 (0.02–1.31)
61–70 4 (4%) 36 (11%) 40 (9%) 0.37 (0.14–1.03)
71–80 13 (13%) 67 (20%) 80 (18%) 0.65 (0.38–1.13)
81–90 12 (12%) 71 (21%) 83 (19%) 0.57 (0.32–1.01)
91–100 17 (17%) 71 (21%) 88 (20%) 0.81 (0.50–1.30)

101–110 15 (15%) 41 (12%) 56 (13%) 1.23 (0.71–2.13)
111–120 7 (7%) 10 (3%) 17 (4%) 2.33 (0.92–6.04)
121–130 9 (9%) 9 (3%) 18 (4%) 3.33 (1.37–8.26)
131–150 11 (11%) 8 (2%) 19 (4%) 4.58 (1.92–11.20)
�150 11 (11%) 5 (1%) 16 (4%) 7.33 (2.64–20.84)

All 100 (100%) 337 (100%) 437 (100%)
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when patients require a different amount of evidence in deciding for or
against a certain further action. In our case, it could well be that some
patients with a history that more clearly corroborates renal artery stenosis
only need limited further evidence in order to decide for surgical
intervention, whereas others need high likelihood ratios for the same decision.

The sensitivity–specificity pairs obtained for different cut-off values can
be connected in a graph, yielding the so-called ROC curve (Figure 7.1).The
more the ROC curve moves toward the left upper corner, which represents
a perfect dichotomous test with 100% sensitivity and 100% specificity, the
better the test is. The steepness of the slope between two adjoining cut-off
points represents the likelihood ratio of an observation falling in between
these two points. This is shown in Figure 7.2. The likelihood ratios in
Figure 7.2 are the same as those in Table 7.6.

A measure of performance for the test is the area under the ROC curve.4

This varies between 0.5 for a totally uninformative test with a likelihood
ratio of 1 for all its cut-off values (the diagonal of Figure 7.1), and 1 for a
test that perfectly separates diseased and non-diseased (Se�Sp�1.0). The
serum creatinine has an area under the curve of 0.70 for differentiating
between stenosis and non-stenosis patients.The interpretation of the value
of 0.70 is as follows. Consider the hypothetical situation that two patients,
drawn randomly from the stenosis patients and the non-stenosis patients
respectively, are subjected to the serum creatinine test. If the test results are
used to guess which of the two is the stenosis patient, the test will be right
70% of the time. The confidence interval can be calculated using a
computer program (see software references).

If a continuous test such as serum creatinine has to be summarised in a
few classes for further condensation of the results or for further decision
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Table 7.7 Probability of test results and diagnostic information of dichotomised
serum creatinine concentration values for nine possible cut-offs between high and
low values.

Serum creatinine Stenosis No stenosis
(Micromol) Se 1 � Sp All LR� LR�

�60 99 (99%) 318 (94%) 417 (95%) 1.05 0.18
�70 95 (95%) 282 (84%) 377 (81%) 1.14 0.31
�80 82 (82%) 215 (64%) 297 (68%) 1.29 0.50
�90 70 (70%) 144 (43%) 114 (49%) 1.64 0.52
�100 53 (53%) 73 (22%) 126 (29%) 2.44 0.60
�110 38 (38%) 32 (9%) 70 (16%) 4.00 0.69
�120 31 (31%) 22 (7%) 53 (12%) 4.77 0.74
�130 22 (22%) 13 (4%) 35 (8%) 5.64 0.81
�150 11 (11%) 5 (1%) 16 (4%) 7.33 0.90

Total 100 (100%) 337 (100%) 437 (100%)
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Figure 7.1 Receiver operating characteristic (ROC) curve for serum creatinine
concentration in diagnosing renal artery stenosis. For each cut-off value of the
serum creatinine, the probability of finding a higher value in stenosis (Se) and in
non-stenosis patients (1�Sp) is plotted. The area under the ROC curve is 0.70
(95% CI 0.64–0.76).
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Figure 7.2 Receiver operating characteristic (ROC) curve for serum creatinine
concentration in diagnosing renal artery stenosis, with the likelihood ratio for
stenosis for each class of serum creatinine values.
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making, it is often more useful to consider a trichotomisation than a
dichotomisation. In Table 7.8 we have divided the serum creatinine value
into three classes, one for values giving a reasonable evidence for stenosis
(likelihood ratio greater than 2.0), one for results giving reasonable
evidence against stenosis (likelihood ratio smaller than 0.5), and an
intermediate class for rather uninformative test results. It is seen that serum
creatinine gives informative test results in about 30% of patients, whereas
the test results are rather uninformative in the remaining 70%.

From pretest probability to post-test probability:
Bayes’ theorem

The formula for calculating how the pretest probability changes under the
influence of diagnostic evidence into a post-test probability is known as
Bayes’ theorem. In words, this is as follows:

“If disease was A times more probable than no disease before carrying out a certain
test, and if the observed test result is B times as probable in diseased as in
non-diseased subjects, then the disease is (A � B) as probable compared to no disease
after the test.”

A, B and A � B are respectively the pretest odds, the likelihood ratio, and
the post-test odds, and a technical formulation of Bayes’ theorem is
therefore: “post-test odds equals pretest odds times likelihood ratio”; and in
formula: O(X) � O � LR(X). An example: take the dichotomous
renography test (Table 7.2). The pretest odds (A) are 100:337, or 0.30.
Assuming a positive test result, the likelihood ratio B equals 7.1. Bayes’
theorem tells us now that the post-test odds of disease are 0.30 � 7.1 � 2.13.
This corresponds to a probability of 2.13/(2.13 � 1) � 0.68, because of the
relationship between probability P and odds O: O � P/(1�P), and therefore
P � O/(1 � O).

Another example: take the category 61–70 for serum creatinine (Table
7.6) with a likelihood ratio of 0.37. In the post-test situation, stenosis is
0.30 � 0.37 � 0.11 times as probable as no disease.This yields a probability
of stenosis of 0.11/1.11 � 0.10.
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Table 7.8 Probability of test results and diagnostic information of serum
creatinine concentration for a trichotomisation of the test results.

Serum creatinine Likelihood 
(Micromol/l) Stenosis No stenosis All ratio

70 5 (5%) 55 (16%) 60 (14%) 0.31
71–110 57 (57%) 250 (74%) 307 (70%) 0.77
�110 38 (38%) 32 (10%) 70 (16%) 4.00

All 100 (100%) 337 (100%) 437 (100%)
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The formula of Bayes’ theorem for directly calculating the post-test
probability is as follows:

P(D�|X) �
P(D�) � P(X|D�)

P(D�) � P(X|D�) � P(D�) � P(X|D�)

For dichotomous test we can express this formula in terms of sensitivity
(Se) and specificity (Sp), and positive and negative predictive values (PPV
and NPV), as can also be easily derived from the (2 � 2) Tables 7.2 and 7.3:

PPV �
P(D�) � Se

and
P(D�) � Se � P(D�)�(1 � Sp)

NPV �
P(D�)�Sp

P(D�) � Sp � P(D�) � (1 � Se)

Figure 7.3 gives a graphical presentation of Bayes’ theorem and enables
you to directly calculate the post-test probability from pretest probability
and likelihood ratio.The two examples described earlier can be graphically
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Figure 7.3Graphical presentation in which the result of Bayes’ theorem can be
read for a number of likelihood ratios. Each curve represents one likelihood ratio.
For example, a pretest probability of 0.7 and a likelihood ratio of 4 give rise to a
post-test probability of about 0.90.
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verified with a pretest probability of stenosis of 23%: a likelihood ratio of
7.1 gives a post-test probability of 68%, and a likelihood ratio of 0.37 gives
a post-test probability of 10% (these post-test probabilities can only be
read approximately in the figure). For an alternative, nomogram type of
representation of Bayes’ theorem, see Chapter 2, Figure 2.1.

Decision analytical approach of the 
optimal cut-off value

The error rate is a good measure of test performance, as it gives the number
of false positives and false negatives in relation to the total number of
diagnostic judgements made. It should be realised that the error rate
implicitly assumes that false positives and false negatives have an equal
weight. This may not be reasonable: for example a missed stenosis may be
judged as much more serious than a missed non-stenosis. Here we enter the
realm of decision science, where the loss of wrong decisions is explicitly
taken into account. As an appetiser to decision analysis, look at Table 7.9.
This is based on Table 7.7, but now with an indication of how many false
positives are additionally avoided and how many additional false negatives
are induced by increasing the threshold between positive and negative
(“cut-off”) with one class of serum creatinine values at a time.

With the (uninteresting) cut-off value of 0, we would have 337 false
positives (FP) and 0 false negatives (FN). Increasing the threshold from 0
to 60 would decrease the FP by 19 and increase the FN by 1. A shift from
60 to 70 would decrease the FP by 36 and increase the FN by four, and so
on, until the last step in cut-off from 150 to “very high” serum creatinine
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Table 7.9 Decrease in false positives and increase in false negatives when
increasing the cut-off between high and low serum creatinine values by one class at
a time. Eleven possible cut-offs are considered.

FP decrease:
Serum creatinine FN increase Approximate
(micromol/l) No stenosis Stenosis per step trade-off

�0 337 100 337:0
�60 318 99 19:1 20:1
�70 282 95 36:4 10:1
�80 215 82 67:13 5:1
�90 144 70 71:12 5:1
�100 73 53 71:17 5:1
�110 32 38 41:15 3:1
�120 22 31 10:7 1:1
�130 13 22 9:9 1:1
�150 5 11 8:11 1:1
“Very high” 0 0 5:11 1:2

Total 337 100

Andre_Chap07.qxd  11/6/01  3:01 PM  Page 132



values, by which the last five FP are prevented but also the last 11 stenosis
patients are turned into FN.

One can derive the optimal cut-off from the relative importance of false
positives and false negatives. For example, if one false positive is judged to
be four times more serious than a false negative, a good cut-off would be
100, because all shifts in cut-off between 0 and 100 involve a trade-off of at
least five FN to one FP, which is better than the 4 : 1 judgement on the
relative seriousness of the two types of error. A further shift from 100 to 110
is not indicated because the associated trade-off is three FN or less to one
FP or more, which is worse than the 4 : 1 judgement. Note that for different
pretest values of stenosis the FN : FP trade-offs will change, and therefore
also the optimal threshold. For example, if the pretest probability were two
times higher, the threshold would shift to 60 (calculations not shown).

For a further study of decision analytical considerations, the reader is
referred to Sox et al.5

Sensitivity analysis

In a sensitivity analysis we look at what would have happened to our
conclusions in case of other, but plausible, assumptions. This is important
for getting a feeling for the stability of the conclusions.

We saw an example of a sensitivity analysis in our discussion of the error
rate, when we looked what the error rate would have been if the pretest
probability of stenosis had been different from the 30% in the study.

Sensitivity analysis could also be conducted using Figure 7.3, the
graphical representation of Bayes’ theorem. Using the confidence intervals
for the pretest probability and for the likelihood ratio, we can assess the
associated uncertainty in the post-test probability. For example, when we
have a confidence interval for the pretest probability between 0.5 and 0.7,
and a confidence interval for the likelihood ratio of our test results between
4 and 8, Figure 7.3 tells us that values for the post-test probability between
0.8 and 0.95 are possible.

A third type of sensitivity analysis could be done using the relative
seriousness of false positive and false negative results by checking how the
threshold between positive and negative test results will shift when different
values for this relative seriousness are considered.

“Many” diagnostic tests: logistic regression

The analysis of many diagnostic tests is more complicated than the analysis
of a single diagnostic test.There is, however, a standard statistical method,
logistic regression, that can be applied in this situation. It is a general
method for the analysis of binary data, such as the presence or absence of
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disease.6 It is best seen as a generalised form of Bayes’ theorem, using a
logarithmic transformation, in order to have an additive instead of a
multiplicative formula. Thus “post-test odds equals pretest odds times
likelihood ratio”, becomes, after taking the logarithm, “log post-test odds
equals log pretest odds plus log likelihood ratio”. Or, in formula form, with
the L indicating “logarithm”:

O(X)� O � LR becomes LO(X) � LO � LLR(X)

The similar generalised formula of logistic regression is as follows: the log
odds of disease, (also called logit (LO)), given test results X1, X2, … Xk, is
a linear function of the test results:

LO(X1, X2, … Xk) � b0 � b1X1 � b2X2 � … � bkXk

Usually, the natural logarithm (Ln) is used, as we will do in the
remainder of this section.We will illustrate logistic regression by applying it
to a single dichotomous test, because in such a case calculations are easily
done by hand. We take again the renography test for renal artery stenosis,
the results of which were depicted in Table 7.2.

We start with the situation prior to performing the test: our best estimate
of stenosis is then the prior or pretest probability, based on the observation
that we have 100 patients with and 337 patients without stenosis. The
logistic formula in this case LnO� b0, and contains only a constant b0,
because no tests have been performed yet. Thus b0, the Ln pretest odds,
which in this case is Ln (100/337) � �1.21.

Next the renography test is performed.The test result is coded as X1 � 0
(normal) or X1 � 1 (abnormal), and the logistic formula is LnO(X1) � b0�
b1X1. We will derive the coefficients b0 and b1 by applying the log odds
form of Bayes’ theorem to both the normal and the abnormal test results.
The logistic formula follows immediately from the results.

In case of a normal renogram (X1�0) there are 29 patients with and 304
patients without stenosis in Table 7.2. Bayes’ theorem tells that the log odds
on stenosis for result X1�0, LnO(X1 � 0) � Ln(29/304) � �2.35, equals
the Ln pretest odds of �1.21 plus the Ln likelihood ratio of a normal
renogram, which is �1.14.

In case of an abnormal renogram (X1 � 1) there are 71 patients with and
33 patients without stenosis, and LnO(X1 � 1)� Ln(71/33) � 0.77, being
the Ln pretest odds of �1.21 plus the Ln likelihood ratio 1.98 of an
abnormal renogram. Combining the two applications of Bayes’ theorem,
we get:

LnO(X1) � �1.21 � 1.14 (when X1 � 0) � 1.98 (when X1 � 1).

This can be simplified to the logistic formula:

LnO(X1) � b0 � b1X1 � �2.35 � 3.12 X1.
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Two remarks can be made: the coefficient b1 (3.12) is precisely the Ln of
the diagnostic odds ratio (22.6) of renography discussed earlier. And b0 in
the logistic formula can no longer be interpreted as a pretest log odds of
stenosis, but as the LnO(X1�0). This completes the logistic regression
analysis of one dichotomous test.

When more than one test is involved the calculations are extensions of
the described single test situation, using the multiple logistic regression
formula:

Ln(X1, X2, … Xk) � b0 � b1X1 � b2X2 � … � bkXk

Using this approach, the investigator can account for dependency and
interaction between the various tests.7 However, such multivariate
calculations are very troublesome to do by hand. In general, when many
tests, including continuous tests, are involved, standard statistical software
such as SPSS, SAS or BMDP will have to be used. This software also
provides 95% confidence intervals for b0, b1, b2, … bk, and the
corresponding odds ratios (eb).

From multiple logistic regression analysis one can not only learn about
the predictive value of a combination of tests, but also what a certain test
adds to other tests that have already been performed.

Concluding remarks

In this chapter we have given an overview of the most important
performance measures of diagnostic tests, illustrated with a clinical
example. Also, the estimation of confidence intervals to account for
sampling variability has been explained. Furthermore, decision analytical
considerations and sensitivity analysis, as methods to deal with value
judgements and uncertainties, have been introduced. Finally, the principles
of logistic regression to analyse the predictive value of multiple tests, when
applied simultaneously, have been outlined.

In applying the presented analysis techniques it is presupposed that the
research data have been collected with the avoidance of important bias
(affecting internal validity) and with acceptable generalisability to the target
population where the diagnostic test(s) are to be applied (external validity).
These issues regarding the validity of the study design are dealt with in
Chapters 1–6. As a general rule, in the analysis phase one cannot correct for
shortcomings of the validity of the study design, such as bias resulting from
an unclear or inappropriate process of selection of study subjects, or from an
inadequate reference standard. However, if potential factors that may affect
test performance are measured during the study, these can be included as
independent covariables in the analysis. An example may be age as a
potential effect modifier of the performance of renography. The potential
influence of other possible biases can be explored using sensitivity analysis.
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In the past decade, new data analytical challenges have resulted from the
need to synthesise a number of studies and to analyse the pooled data of
those studies (meta-analysis). Also, in such a pooled analysis the usual
performance measures of diagnostic tests can be assessed, as is shown in
Chapter 8. Finally, although it is always the aim to minimise the number of
lost outcomes or not-performed tests, in most studies these will not be
totally avoided. Although associated methodological problems are
discussed in Chapter 2, there are various options for the analytical
approach to such “missing values” on which professional biostatisticians
can give advice.
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Software
● For the analysis of test results, including logistic regression for single and multiple tests and

confidence intervals for the diagnostic odds ratio, standard statistical software such as
SPSS, SAS or BMDP may be used. In SPSS and SAS analysis of the area under the ROC
curve (plus confidence intervals) can be performed.

● Visual Bayes is a freely available program introducing basic methods for the interpretation
and validation of diagnostic tests in an intuitive way. It may be downloaded from
http://www.imbi.uni-freiburg.de/medinf.

● Treeage-DATA is a decision analysis program in which diagnostic tests and subsequent
treatment decisions can be represented. Good opportunities for sensitivity analysis.

Appendix: Tables for confidence intervals 
for proportions
Table A.1–A.2 Exact confidence intervals for proportions based on small N (Table A.1) or
on small n (Table A.2).

Table A.3 Half 95% confidence intervals for proportions.

For all tables N � number of observations (denominator), n � number of successes
(numerator).

Table A.1 Example: In a group of five patients with renal artery stenosis, three were positive
on diagnostic renography.The estimated sensitivity of renography is therefore 3/5, that is, 0.6
with 95% confidence interval (0.15–0.95).
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Table A.2 Exact confidence intervals for small n. Because the binomial distribution is
symmetric around p � 0.5, the table can also be used for small values of N-n: when using 
N-n instead of n the resulting confidence interval changes to (1�upper limit, 1�lower limit).

Example for small n: A new screening test for a disease is required to have a very low false
positive rate that is, high specificity. In a sample of 200 proven non-diseased subjects only one
had a positive test result. The false positive rate is estimated at 1/200 � 0.005 and the exact
95% confidence interval is (0.000–0.028)

Example for small N-n: In the previous example we can estimate the specificity as
199/200 � 0.995, with 95% confidence interval (0.972–1.000).

Table A.3 The half 95% confidence interval for proportions, based on the normal
approximation to the binomial distribution for large numbers of observations. With this
approximation, the half 95% confidence interval for a proportion p̂ � n/N is 1.96 � SE, with
SE being the standard error.The 95% confidence interval is constructed by subtracting (lower
confidence limit) or adding (upper confidence limit) the number from the table to the
estimate p. By symmetry the values for n and for N-n are the same.When the values of n and
N are not given directly in the table, linear interpolation for n and/or N may be used.

Example
In a group of 333 patients with a negative renography, 29 nevertheless appeared to suffer

from renal artery stenosis. The estimated negative predictive value (NPV) of renography is
therefore (333–29)/333, that is, 0.91.

The value from the table is required for N � 333 and N-n � 29.We use linear interpolation
for N. At N � 300, the table gives a value of 0.0335 and at N � 500 the value is 0.0205, for
n � 29, taking the averages of the values for n � 28 and 30.

Linear interpolation at N � 333 requires:
({Value at N � 333} � 0.0355) : (0.0205 � 0.0335) � (333 � 300) : (500 � 300). Thus {Value
at N � 333} � 0.03.
The 95% confidence interval becomes (0.91 – 0.03, 0.91 � 0.03) � (0.88 � 0.94).

Note 1
Instead of interpolation, the formula for SE could have been used directly:

Multiplying by 1.96 gives a value of 0.03 for the half 95% confidence interval.

Note 2
For other levels of confidence the numbers in Table A.3 have to be multiplied by a factor.

The following table gives multiplication factors for a few commonly used levels of confidence:

SE � B p̂(1 � p̂)

N
, giving SE �R 304

333
a1 �

29
333
b

333
� 0.0154
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Confidence level (%) Multiplication factor

50 0.34
67 0.49
80 0.65
90 0.84
95 1
99 1.31
99.9 1.68
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0 0 0.00 0.78
1 0.5 0.01 0.99
2 1 0.22 1.00

[N � 3]

0 0 0.00 0.63
1 0.33 0.01 0.91
2 0.67 0.09 0.99
3 1 0.37 1.00

[N � 4]

0 0 0.00 0.53
1 0.25 0.01 0.81
2 0.5 0.07 0.93
3 0.75 0.19 0.99
4 1 0.47 1.00

[N � 5]

0 0 0.00 0.45
1 0.2 0.01 0.72
2 0.4 0.05 0.85
3 0.6 0.15 0.95
4 0.8 0.28 0.99
5 1 0.55 1.00

[N � 6]

0 0 0.00 0.39
1 0.17 0.00 0.64
2 0.33 0.04 0.78
3 0.5 0.12 0.88
4 0.67 0.22 0.96
5 0.83 0.36 1.00
6 1 0.61 1.00

[N � 7]

0 0 0.00 0.35
1 0.14 0.00 0.58
2 0.29 0.04 0.71
3 0.43 0.10 0.82
4 0.57 0.18 0.90
5 0.71 0.29 0.96
6 0.86 0.42 1.00
7 1 0.65 1.00

[N � 8]

0 0 0.00 0.31
1 0.13 0.00 0.53
2 0.25 0.03 0.65

3 0.38 0.09 0.76
4 0.5 0.16 0.84
5 0.63 0.24 0.91
6 0.75 0.35 0.97
7 0.88 0.47 1.00
8 1 0.69 1.00

N � 9

0 0 0.00 0.28
1 0.11 0.00 0.48
2 0.22 0.03 0.60
3 0.33 0.07 0.70
4 0.44 0.14 0.79
5 0.56 0.21 0.86
6 0.67 0.30 0.93
7 0.78 0.40 0.97
8 0.89 0.52 1.00
9 1 0.72 1.00

N � 10

0 0 0.00 0.26
1 0.1 0.00 0.45
2 0.2 0.03 0.56
3 0.3 0.07 0.65
4 0.4 0.12 0.74
5 0.5 0.19 0.81
6 0.6 0.26 0.88
7 0.7 0.35 0.93
8 0.8 0.44 0.97
9 0.9 0.55 1.00

10 1 0.74 1.00

N � 11

0 0 0.00 0.24
1 0.09 0.00 0.41
2 0.18 0.02 0.52
3 0.27 0.06 0.61
4 0.36 0.11 0.69
5 0.45 0.17 0.77
6 0.55 0.23 0.83
7 0.64 0.31 0.89
8 0.73 0.39 0.94
9 0.82 0.48 0.98

10 0.91 0.59 1.00
11 1 0.76 1.00

N � 12

0 0 0.00 0.22
1 0.08 0.00 0.38

2 0.17 0.02 0.48
3 0.25 0.05 0.57
4 0.33 0.10 0.65
5 0.42 0.15 0.72
6 0.5 0.21 0.79
7 0.58 0.28 0.85
8 0.67 0.35 0.90
9 0.75 0.43 0.95

10 0.83 0.52 0.98
11 0.92 0.62 1.00
12 1 0.78 1.00

N � 13

0 0 0.00 0.21
1 0.08 0.00 0.36
2 0.15 0.02 0.45
3 0.23 0.05 0.54
4 0.31 0.09 0.61
5 0.38 0.14 0.68
6 0.46 0.19 0.75
7 0.54 0.25 0.81
8 0.62 0.32 0.86
9 0.69 0.39 0.91

10 0.77 0.46 0.95
11 0.85 0.55 0.98
12 0.92 0.64 1.00
13 1 0.79 1.00

N � 14

0 0 0.00 0.19
1 0.07 0.00 0.34
2 0.14 0.02 0.43
3 0.21 0.05 0.51
4 0.29 0.08 0.58
5 0.36 0.13 0.65
6 0.43 0.18 0.71
7 0.5 0.23 0.77
8 0.57 0.29 0.82
9 0.64 0.35 0.87

10 0.71 0.42 0.92
11 0.79 0.49 0.95
12 0.86 0.57 0.98
13 0.93 0.66 1.00
14 1 0.81 1.00

N � 15

0 0 0.00 0.18
1 0.07 0.00 0.32
2 0.13 0.02 0.40
3 0.2 0.04 0.48

Table A.1 Exact 95% confidence intervals for proportions n/N for N from 2 to 25

n p 95% CI n p 95% CI n p 95% CI

N�2 N�8(cont’d) N�12(cont’d)
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4 0.27 0.08 0.55
5 0.33 0.12 0.62
6 0.4 0.16 0.68
7 0.47 0.21 0.73
8 0.53 0.27 0.79
9 0.6 0.32 0.84
10 0.67 0.38 0.88
11 0.73 0.45 0.92
12 0.8 0.52 0.96
13 0.87 0.60 0.98
14 0.93 0.68 1.00
15 1 0.82 1.00

[N � 16]

0 0 0.00 0.17
1 0.06 0.00 0.30
2 0.13 0.02 0.38
3 0.19 0.04 0.46
4 0.25 0.07 0.52
5 0.31 0.11 0.59
6 0.38 0.15 0.65
7 0.44 0.20 0.70
8 0.5 0.25 0.75
9 0.56 0.30 0.80
10 0.63 0.35 0.85
11 0.69 0.41 0.89
12 0.75 0.48 0.93
13 0.81 0.54 0.96
14 0.88 0.62 0.98
15 0.94 0.70 1.00
16 1 0.83 1.00

[N � 17]

0 0 0.00 0.16
1 0.06 0.00 0.29
2 0.12 0.01 0.36
3 0.18 0.04 0.43
4 0.24 0.07 0.50
5 0.29 0.10 0.56
6 0.35 0.14 0.62
7 0.41 0.18 0.67
8 0.47 0.23 0.72
9 0.53 0.28 0.77
10 0.59 0.33 0.82
11 0.65 0.38 0.86
12 0.71 0.44 0.90
13 0.76 0.50 0.93
14 0.82 0.57 0.96
15 0.88 0.64 0.99
16 0.94 0.71 1.00
17 1 0.84 1.00

0 0 0.00 0.15
1 0.06 0.00 0.27
2 0.11 0.01 0.35
3 0.17 0.04 0.41
4 0.22 0.06 0.48
5 0.28 0.10 0.53
6 0.33 0.13 0.59
7 0.39 0.17 0.64
8 0.44 0.22 0.69
9 0.5 0.26 0.74

10 0.56 0.31 0.78
11 0.61 0.36 0.83
12 0.67 0.41 0.87
13 0.72 0.47 0.90
14 0.78 0.52 0.94
15 0.83 0.59 0.96
16 0.89 0.65 0.99
17 0.94 0.73 1.00
18 1 0.85 1.00

N � 19

0 0 0.00 0.15
1 0.05 0.00 0.26
2 0.11 0.01 0.33
3 0.16 0.03 0.40
4 0.21 0.06 0.46
5 0.26 0.09 0.51
6 0.32 0.13 0.57
7 0.37 0.16 0.62
8 0.42 0.20 0.67
9 0.47 0.24 0.71

10 0.53 0.29 0.76
11 0.58 0.33 0.80
12 0.63 0.38 0.84
13 0.68 0.43 0.87
14 0.74 0.49 0.91
15 0.79 0.54 0.94
16 0.84 0.60 0.97
17 0.89 0.67 0.99
18 0.95 0.74 1.00
19 1 0.85 1.00

N � 20

0 0 0.00 0.14
1 0.05 0.00 0.25
2 0.1 0.01 0.32
3 0.15 0.03 0.38
4 0.2 0.06 0.44
5 0.25 0.09 0.49
6 0.3 0.12 0.54

7 0.35 0.15 0.59
8 0.4 0.19 0.64
9 0.45 0.23 0.68

10 0.5 0.27 0.73
11 0.55 0.32 0.77
12 0.6 0.36 0.81
13 0.65 0.41 0.85
14 0.7 0.46 0.88
15 0.75 0.51 0.91
16 0.8 0.56 0.94
17 0.85 0.62 0.97
18 0.9 0.68 0.99
19 0.95 0.75 1.00
20 1 0.86 1.00

N � 21

0 0 0.00 0.13
1 0.05 0.00 0.24
2 0.1 0.01 0.30
3 0.14 0.03 0.36
4 0.19 0.05 0.42
5 0.24 0.08 0.47
6 0.29 0.11 0.52
7 0.33 0.15 0.57
8 0.38 0.18 0.62
9 0.43 0.22 0.66

10 0.48 0.26 0.70
11 0.52 0.30 0.74
12 0.57 0.34 0.78
13 0.62 0.38 0.82
14 0.67 0.43 0.85
15 0.71 0.48 0.89
16 0.76 0.53 0.92
17 0.81 0.58 0.95
18 0.86 0.64 0.97
19 0.9 0.70 0.99
20 0.95 0.76 1.00
21 1 0.87 1.00

N � 22

0 0 0.00 0.13
1 0.05 0.00 0.23
2 0.09 0.01 0.29
3 0.14 0.03 0.35
4 0.18 0.05 0.40
5 0.23 0.08 0.45
6 0.27 0.11 0.50
7 0.32 0.14 0.55
8 0.36 0.17 0.59
9 0.41 0.21 0.64

10 0.45 0.24 0.68

Table A.1 Continued

n p 95% CI n p 95% CI n p 95% CI

N�15(cont’d) N�18 N�20(cont’d)
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11 0.5 0.28 0.72
12 0.55 0.32 0.76
13 0.59 0.36 0.79
14 0.64 0.41 0.83
15 0.68 0.45 0.86
16 0.73 0.50 0.89
17 0.77 0.55 0.92
18 0.82 0.60 0.95
19 0.86 0.65 0.97
20 0.91 0.71 0.99
21 0.95 0.77 1.00
22 1 0.87 1.00

[N � 23]

0 0 0.00 0.12
1 0.04 0.00 0.22
2 0.09 0.01 0.28
3 0.13 0.03 0.34
4 0.17 0.05 0.39
5 0.22 0.07 0.44
6 0.26 0.10 0.48
7 0.3 0.13 0.53
8 0.35 0.16 0.57
9 0.39 0.20 0.61
10 0.43 0.23 0.66
11 0.48 0.27 0.69
12 0.52 0.31 0.73
13 0.57 0.34 0.77
14 0.61 0.39 0.80
15 0.65 0.43 0.84
16 0.7 0.47 0.87

17 0.74 0.52 0.90
18 0.78 0.56 0.93
19 0.83 0.61 0.95
20 0.87 0.66 0.97
21 0.91 0.72 0.99
22 0.96 0.78 1.00
23 1 0.88 1.00

N � 24

0 0 0.00 0.12
1 0.04 0.00 0.21
2 0.08 0.01 0.27
3 0.13 0.03 0.32
4 0.17 0.05 0.37
5 0.21 0.07 0.42
6 0.25 0.10 0.47
7 0.29 0.13 0.51
8 0.33 0.16 0.55
9 0.38 0.19 0.59

10 0.42 0.22 0.63
11 0.46 0.26 0.67
12 0.5 0.29 0.71
13 0.54 0.33 0.74
14 0.58 0.37 0.78
15 0.63 0.41 0.81
16 0.67 0.45 0.84
17 0.71 0.49 0.87
18 0.75 0.53 0.90
19 0.79 0.58 0.93
20 0.83 0.63 0.95
21 0.88 0.68 0.97

22 0.92 0.73 0.99
23 0.96 0.79 1.00
24 1 0.88 1.00

N � 25

0 0 0.00 0.11
1 0.04 0.00 0.20
2 0.08 0.01 0.26
3 0.12 0.03 0.31
4 0.16 0.05 0.36
5 0.2 0.07 0.41
6 0.24 0.09 0.45
7 0.28 0.12 0.49
8 0.32 0.15 0.54
9 0.36 0.18 0.57

10 0.4 0.21 0.61
11 0.44 0.24 0.65
12 0.48 0.28 0.69
13 0.52 0.31 0.72
14 0.56 0.35 0.76
15 0.6 0.39 0.79
16 0.64 0.43 0.82
17 0.68 0.46 0.85
18 0.72 0.51 0.88
19 0.76 0.55 0.91
20 0.8 0.59 0.93
21 0.84 0.64 0.95
22 0.88 0.69 0.97
23 0.92 0.74 0.99
24 0.96 0.80 1.00
25 1 0.89 1.00

Table A.1 Continued

n p 95% CI n p 95% CI n p 95% CI

N�22(cont’d) N�23(cont’d) N�24(cont’d)
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8 Guidelines for
conducting systematic
reviews of studies
evaluating the accuracy 
of diagnostic tests
WALTER L DEVILLÉ, FRANK BUNTINX
On behalf of an ad hoc working group of the Cochrane
Methods Group on Screening and Diagnostic Tests*

Summary box

● A systematic review should include all available evidence, and so a
systematic and comprehensive search of the literature is needed in
computerised databases and other sources.

● The search strategy must be based on an explicit description of the
subjects receiving the test of interest, the diagnostic test and its
accuracy estimates, the target disease, and the study design. These
elements can be specified in the criteria for inclusion of primary
studies in the review.

● Two independent reviewers should screen the titles and abstracts of
the identified citations using specific prespecified inclusion criteria.
In case of disagreement or insufficient information, a third reviewer
and/or the full papers should be consulted. The publications to be
evaluated should provide sufficient information on the reference
standard, the study population, and the setting(s) studied.

*Riekie de Vet, Jeroen Lijmer, Victor Montori
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Introduction

Systematic reviews and meta-analyses of studies evaluating the accuracy
of diagnostic tests (we will refer to them generically as diagnostic systematic
reviews) are appearing more often in the medical literature.1,2 Of the 26
reviews on diagnostic tests published between 1996 and 1997, 19 were
systematic reviews or meta-analyses.2 In the field of clinical chemistry and
haematology, 23 of 45 reviews published between 1985 and 1998 were
systematic reviews.3 Although guidelines for the critical appraisal of
diagnostic research and meta-analyses have already been published,1,4–7

these may be difficult for clinical researchers to understand.
We here present a set of practical guidelines, based on evidence and the

expertise of the Cochrane Collaboration, to facilitate the understanding of
and appropriate adherence to methodological principles when conducting
diagnostic systematic reviews.We reviewed reports of systematic searches of
the literature for diagnostic research,8–11 methodological criteria to
evaluate diagnostic research,1,4–7 methods for statistical pooling of data on
diagnostic accuracy,12–20 and methods for exploring heterogeneity.21–25

● The methodological quality of each selected paper should be
assessed independently by at least two reviewers. Chance-adjusted
agreement should be reported and disagreement solved by
consensus or arbitration. Internal and external validity criteria,
describing participants, diagnostic test, and target disease of
interest, and study methods can be used in meta-analysis to assess
the overall “level of evidence”, and in sensitivity and subgroup
analyses.

● Two reviewers should independently extract the required
information from the primary studies, about the participants, the
testing procedure, the cut-off points used, exclusions, and
indeterminate results.

● To be able to carry out subgroup analyses, sources of heterogeneity
should be defined based on a priori existing hypotheses.

● Whether meta-analysis with statistical pooling can be conducted
depends on the number and methodological quality of the primary
studies.

● In view of the low methodological quality of most published
diagnostic studies, the use of random effect models for pooling may
be useful, even if there is no apparent heterogeneity.

● Methods for statistical pooling of proportions, likelihood ratios,
and ROC curves are provided.
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Guidelines for conducting diagnostic systematic reviews are presented in
a stepwise fashion and are followed by comments providing further
information. Examples are given using the results of two systematic reviews
on the accuracy of the urine dipstick in the diagnosis of urinary tract
infections,26 and on the accuracy of the straight-leg raising test in the
diagnosis of intervertebral disc hernia.27

The guidelines

How to search the literature for studies evaluating the 
accuracy of diagnostic tests

A systematic review should include all available evidence, and so a
systematic and comprehensive search of the literature is needed. The
reviewer has to design a search strategy based on a clear and explicit
description of the subjects receiving the test of interest, the diagnostic test
and its accuracy estimates, the target disease, and the study design. These
elements are usually specified in the criteria for inclusion of primary studies
in the review. The search will include electronic literature databases.
However, because computerised databases only index a subset of all the
available literature, the search should be extended using other sources.9

The search to identify primary studies may take the following basic but
labour intensive steps:

1. A computer aided search of MEDLINE (PubMed website
(http://www.ncbi.nlm.nih.gov/PUBMED), EMBASE and other
databases. A search strategy begins by creating a list of database specific
keywords and text words that describe the diagnostic test and the target
disease of interest (subject specific strategy). Because the number of
diagnostic accuracy studies is often small, the subject specific strategy
usually yields a limited number of publications to be screened.10

An accurate search strategy for diagnostic publications (generic
strategy) was recently published11 and can be combined with the subject
specific strategy if the number of publications resulting from the latter
is large. We found a combination of two published generic strategies
adapted for use in PubMed (MEDLINE) to be more sensitive and
precise than previously published strategies8,10 (Box 8.1). Each
electronic database will need to be searched using a specially designed
search strategy.

2. The reference section of primary studies, narrative reviews, and
systematic reviews should be checked to search for additional primary
studies that could have been missed by the electronic search.
Identification methods for systematic reviews have also been
published.28 The MEDION database, available at the University of

GUIDELINES FOR SYSTEMATIC REVIEWS

147

Andre_Chap08.qxd  11/6/01  3:02 PM  Page 147



THE EVIDENCE BASE OF CLINICAL DIAGNOSIS

148

Maastricht, the Netherlands, collects some 250 published reviews of
diagnostic and screening studies. It is available through
berna.schouten@hag.unimaas.nl and will shortly be published on the
internet.

3. Consultation of experts in the disease of interest to identify further
published and unpublished primary studies. As diagnostic accuracy
studies are often based on routinely collected data, publication bias may
be more prevalent in diagnostic than in therapeutic research.17

Box 8.1 Search strategy in PubMed (MEDLINE) for
publications about the evaluation of diagnostic accuracy

((((((((((((“sensitivity and specificity”[All Fields] OR “sensitivity and
specificity/standards”[All Fields]) OR “specificity”[All Fields]) OR
“screening”[All Fields]) OR “false positive”[All Fields]) OR “false
negative”[All Fields]) OR “accuracy”[All Fields]) OR ((((“predictive
value”[All Fields] OR “predictive value of tests”[All Fields]) OR
“predictive value of tests/standards”[All Fields]) OR “predictive
values”[All Fields]) OR “predictive values of tests”[All Fields])) 
OR ((“reference value”[All Fields] OR “reference values”[All
Fields]) OR “reference values/standards”[All Fields])) OR
(((((((((((“roc”[All Fields] OR “roc analyses”[All Fields]) OR “roc
analysis”[All Fields]) OR “roc and”[All Fields]) OR “roc area”[All
Fields]) OR “roc auc”[All Fields]) OR “roc characteristics”[All
Fields]) OR “roc curve”[All Fields]) OR “roc curve method”
[All Fields]) OR “roc curves”[All Fields]) OR “roc estimated”[All
Fields]) OR “roc evaluation”[All Fields])) OR “likelihood ratio”[All
Fields]) AND notpubref[sb]) AND “human”[MeSH Terms])

Comments

The first step in a literature search is the identification of relevant
publications. Diagnostic research reports – older publications in particular –
are often poorly indexed in the electronic databases. It is often fruitful to
conduct pilot searches using the subject specific strategy. This process is
repeated after identifying and incorporating additional keywords and text
words to describe and index the retrieved reports. Studies found only in the
reference sections of the retrieved reports but missed by the search strategy
should be searched for in the database, using the article title or the first
author’s name. If a study is found in the database, its keywords should be
noted and added to the strategy. Citation tracking may provide additional
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studies. The Science Citation Index could be searched forward in time to
identify articles citing relevant publications.29 Once the search is
completed, two independent reviewers should screen the titles and
abstracts of the identified citations using specific prespecified inclusion
criteria. These can be pilot tested on a sample of articles. If disagreements
cannot be resolved by consensus, or if insufficient information is available,
a third reviewer and/or the full papers should be consulted.

Inclusion criteria

● Reference test The accuracy of a diagnostic or screening test should be
evaluated by comparing its results with a “gold standard”, criterion
standard, or reference test accepted as the best available by content experts.
The reference test may be a single test, a combination of different tests, or
the clinical follow up of patients.20 The publication should describe the
reference test, as it is an essential prerequisite for the evaluation of a
diagnostic test.

● Population Detailed information about the participants in diagnostic
research is often lacking. Participants should be defined explicitly in terms
of age, gender, complaints, signs, and symptoms, and their duration. At
least a definition of participants with and without the disease, as
determined by the reference test, should be available.The minimal number
of participants needed with and without the disease depends on the type of
study, the estimates of diagnostic accuracy, and the precision used to
estimate these parameters.30

● Outcome data Information should be available to allow the construction
of the diagnostic 2 � 2 table with its four cells: true positives, false
negatives, false positives and true negatives.

● Language If a review is limited to publications in certain languages,
this should be reported.

Comments

As the patient mix (spectrum of disease severity) is different at different
levels of care, a diagnostic review may focus on a specific setting (primary
care, etc.) or include all levels. This information may be important for
subgroup analyses in case of heterogeneity. All evidence available should be
reviewed, regardless of the language of publication. It is not easy to identify
non-English publications, as they are often not indexed in computerised
databases. In the field of intervention research there is some evidence of
bias when excluding non-English publications.31 Our research on the
accuracy of the urine dipstick revealed differences in methodological
validity between European and American studies, but these differences had
no effect on accuracy.
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Although large samples are no guarantee against selection bias, small
samples seldom result from a consecutive series of patients or a random
sample. Small studies are very vulnerable to selection bias.

Methodological quality

The methodological quality of each selected paper should be assessed
independently by at least two reviewers. Chance-adjusted agreement should
be reported, and disagreements solved by consensus or arbitration. To
improve agreement, reviewers should pilot their quality assessment tools in
a subset of included studies or studies evaluating a different diagnostic test.

Validity criteria for diagnostic research have been published by the
Cochrane Methods Group on Screening and Diagnostic Tests32

(http://www.som.fmc.flinders.edu.au/fusa/cochrane), and by other authors.4–6

Criteria assessing internal and external validity should be coded and
described explicitly in the review (Table 8.1). The internal validity criteria
refer to study characteristics that safeguard against the intrusion of systematic
error or bias. External validity criteria provide insight into the generalisability
of the study and judge whether the test under evaluation was performed
according to accepted standards. Internal and external validity criteria,
describing participants, diagnostic test and target disease of interest, and
study methods may be used in meta-analysis to assess the overall “level of
evidence” and in sensitivity and subgroup analyses (see Data extraction
and Data analysis sections).

It is important to remember that studies may appear to be of poor
methodological quality because they were either poorly conducted or poorly
reported. Methodological appraisal of the primary studies is frequently
hindered by lack of information. In these instances reviewers may choose to
contact the studies’ authors, or to score items as “don’t know” or “unclear”.

Example A urine dipstick is usually read before the material is cultured. So,
it can be interpreted that the dipstick was read without awareness of 
the results of the culture. However, the culture (reference test) may be
interpreted with full awareness of the results of the dipstick. If blinding is
not explicitly mentioned, reviewers may choose to score this item as “don’t
know” or “diagnostic test blinded for reference test” (implicitly scoring the
reference test as not blinded). Or, the authors may be contacted for
clarification.

A survey of the diagnostic literature from 1990 to 1993 in a number of
peer-reviewed journals showed that only a minority of the studies satisfied
methodological standards.7 There is some evidence that inadequate
methods may have an impact on the reported accuracy of a diagnostic test:
Lijmer2 screened diagnostic meta-analyses published in 1996 and 1997,
and showed that the diagnostic accuracy of a test was overestimated in
studies (1) with a case–control design; (2) using different reference tests for
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Table 8.1 Validity criteria operationalised for papers reporting on the accuracy of
urine dipsticks in the diagnosis of urinary tract infections (UTI) or bacteriuria.

Positive score

Criteria of internal validity (IV)
1 Valid reference standard (Semi-)quantitative (2 points) to dipslide 

culture (1 point)
2 Definition of cut-off point for Definition of urinary tract infection/

reference standard bacteriuria by colony forming
units per ml (1 point)

3 Blind measurement of index test and In both directions (2 points) or only 
reference test index or reference test

4 Avoidance of verification bias Assessment by reference standard
independent from index test
results (1 point)

5 Index test interpreted independently Explicitly mentioned in the publication,
of all clinical information or urine samples from mixed outpatient

populations examined in a general
laboratory (1 point)

6 Design Prospective (consecutive series) (1 point)
or retrospective collection of data
(0 points)

Criteria of external validity (EV)
1 Spectrum of disease In- and/or exclusion criteria mentioned

(1 point)
2 Setting Enough information to identify setting 

(1 point)(community through tertiary care)
3 Previous tests/referral filter Details given about clinical and other 

diagnostic information as to which index 
test is being evaluated (symptomatic or
asymptomatic patients (1 point)

4 Duration of illness before diagnosis Duration mentioned (1 point)
5 Comorbid conditions Details given (type of population) (1 point)
6 Demographic information Age (1 point) and/or gender (1 point)

data provided
7 Execution of index test Information about standard procedure 

directly or indirectly available, urine
collection procedure, first voided urine,
distribution of microorganisms, procedure
of contaminated urine samples, time of
transportation of urine sample, way of
reading index test, persons reading index
test (1 point each)

8 Explanation of cut-off point of index test Trace, 2 or more � (1 point if applicable)
9 Percentage missing If appropriate: missings mentioned (1 point)

10 Reproducibility of index test Reproducibility studied or reference
mentioned (1 point)

Blinding (IV3): When information about blinding of measurements was not given and the
dipstick was performed in setting other than the culture, we assumed blind assessment of the
index test versus the reference test, but not vice versa.
Explanation of the cut-off point (EV8) was only necessary for the leukocyte esterase
measurement.
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positive and negative results of the index test; (3) accepting the results of
observers who were unblinded to the index test results when performing
the reference test; (4) that did not describe diagnostic criteria for the index
test; and (5) where participants were inadequately described.

Comments

Ideally, all participants should be submitted to the same reference test.
Sometimes different groups of patients are submitted to different reference
tests, but details are not given. In this case it is important to assess whether
the different reference tests are recognised by experts as being adequate.
Verification or work-up bias may be present if not all participants who
received the index test are referred to the reference test(s).Verification bias
is present if the participants are referred according to the index test results.
This is usually the case in screening studies where only subjects with
positive index test results receive the reference test, so that only a positive
predictive value can be calculated. Estimation of accuracy will not be
possible in these studies unless complete follow up registries are available.
This is the case if, for example, cancer screening registries and cancer
diagnosis registries are coupled.

Data extraction

Two reviewers should independently extract the required information
from the primary studies. Detailed information must be extracted about
the participants included in the study and about the testing procedures.
The cut-off point used in dichotomous testing, and the reasons and the
number of participants excluded because of indeterminate results or
infeasibility, are always required.

Example Detailed information extracted in the case of the dipstick meta-
analysis: mean age, male/female ratio, different cut-off points for leukocyte
esterase (trace, 2�, 3�), time needed for transportation, whether
indeterminate results were excluded, included as negative, or repeated.

As the information extracted may be used in subgroup analyses and
statistical pooling of the validity, possible sources of heterogeneity should
be defined based on existing evidence or hypotheses.

Example In the dipstick meta-analysis we hypothesised that the following
factors may explain heterogeneity if present: procedures of collection of test
material (method of urine collection, delay between urine collection and
culture), who was executing the test and how (manually or automatic), and
different brands of commercial products.

Accuracy may be presented in different ways. For the meta-analysis of
dichotomous tests (see below) it is necessary to construct the diagnostic
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2 � 2 table: absolute numbers in the four cells are needed. Totals of
“diseased” and “non-diseased” participants are needed to calculate prior
probability (pretest probability), and to reconstruct the 2 � 2 table from
sensitivity, specificity, likelihood ratios, predictive values or receiver
operator characteristic (ROC) curves. If possible, the 2 � 2 table should be
generated for all relevant subgroups. Further information to extract
includes year of publication, language of publication, and country or region
of the world where the study was performed.

Comments

A standardised data extraction form may be used simultaneously with
but separately from the quality assessment form. This approach facilitates
data extraction and comparison between reviewers. The form has to be
piloted to ensure that all reviewers interpret data in the same way. As in
other steps of the review where judgements are made, disagreements
should be recorded and resolved by consensus or arbitration. Lack of
details about test results or cut-off points, inconsequential rounding off of
percentages, and data errors require common sense and careful data
handling when reconstructing 2 � 2 tables. If predictive values are
presented with sensitivity and specificity in “diseased” and “non-diseased”
individuals, the calculation of the four cells from sensitivity and specificity
can be confirmed by using the predictive values. Details can be requested
from the authors of the studies, but these attempts are often unsuccessful,
as the raw data may no longer be available.

Example In a review of the accuracy of the CAGE questionnaire for the
diagnosis of alcohol abuse, sufficient data were made available in only nine
of the 22 studies selected, although the authors of the review tried to
contact the original authors by all means.33

Data analysis

Whether or not a meta-analysis – statistical analysis and calculation of a
summary diagnostic accuracy estimate – can be conducted depends on the
number and methodological quality of primary studies included and the
degree of heterogeneity of their estimates of diagnostic accuracy. Because
diagnostic accuracy studies are often heterogeneous and present limited
information it is typically difficult to complete a meta-analysis. If
heterogeneity is identified, important information is obtained from
attempts to explain it. For instance, the effect that each validity criterion
has on the estimates of diagnostic accuracy and the influence of previously
defined study characteristics should be explored as potential explanations
of the observed study to study variation.21–25 If meta-analysis is not possible
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or advisable, the review can be limited to a qualitative descriptive analysis
of the diagnostic research available (best evidence synthesis).34

Several meta-analytical methods for diagnostic research have been
published in the last decade.12–20 For the analysis we recommend the
following steps: (1) presentation of the results of individual studies;
(2) searching for the presence of heterogeneity; (3) testing for the presence
of an (implicit) cut-point effect; (4) dealing with heterogeneity;
(5) deciding which model should be used if statistical pooling is
appropriate; and (6) statistical pooling.

Describing the results of individual studies

Reporting the main results of all included studies is an essential part of
each review. It provides the reader with the outcome measures and gives an
insight into their heterogeneity. Each study is presented with some
background information (year of publication, geographical region, number
of diseased and non-diseased patients, selection of the patients,
methodological characteristics) and a summary of the results. In view of the
asymmetrical nature of most diagnostic tests (some tests are good to
exclude a disease, others to confirm it), it is important to report pairs of
complementary outcome measures, that is, both sensitivity and specificity,
positive and negative predictive value, likelihood ratio of a positive and of a
negative test, or a combination of these. The diagnostic odds ratio (DOR)
can be added, but better not alone, as a same odds ratio can relate to
different combinations of sensitivity and specificity. Main outcome
measures should be reported with their 95% confidence intervals (CI).

DOR �
sensitivity/(1�sensitivity)

(1�specificity)/specificity

Searching for heterogeneity

Basically, heterogeneity relates to the input characteristics of each study
(study population, test methods, etc.).When setting inclusion criteria, most
reviewers will try to define a more or less homogeneous set of studies. The
reality, however, is that even then most diagnostic reviews suffer from
considerable heterogeneity. When different studies have largely different
results, this can be because of either random error or heterogeneity.To test
for homogeneity of sensitivity and specificity, a �2 test or an extension of
Fisher’s exact test for small studies35 can be used. This may offer some
guidance, although the power of this test tends to be low. A basic but very
informative method when searching for heterogeneity is to produce a graph
in which the individual study outcomes are plotted, together with their
95% confidence intervals (Figure 8.1).
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Searching for the presence of an (implicit) cut-off point effect

Estimates of diagnostic accuracy differ if not all studies use the same cut-
off point for a positive test result or for the reference standard. The
interpretation of test results often depends on human factors (for example
radiology, pathology, etc.) or on the process of testing (for example clinical
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Figure 8.1 Point estimates (with confidence limits) of, respectively, sensitivity,
specificity, and diagnostic odds ratio of 11 studies on the validity of the test of
Lasègue for the diagnosis of disc hernia in low back pain. Study 6 is an outlier.
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examination). In such cases different studies may use a different implicit
cut-off point.Variation in the parameters of accuracy may be partly due to
variation in cut-off points. One can test for the presence of a cut-off point
effect between studies by calculating a Spearman correlation coefficient
between the sensitivity and the specificity of all included studies. If strongly
negatively correlated (� � �0.4), pairs of parameters represent the same
DOR. A strong correlation between both parameters will usually result in
a homogeneous logarithmic transformed DOR (lnDOR). The test for
homogeneity of the lnDOR is described by Fleiss.35 If the LnDORs of the
included studies are homogeneous, a summary ROC curve can be fitted
based on the pairs of sensitivity and specificity of the individual studies (see
page 159). If sufficient information is available, the pooling of ROC curves
of individual studies will also be possible.

Dealing with heterogeneity

In many cases the interpretation of present heterogeneity is the most
fascinating and productive part of a meta-analysis. The inspection of the
plot of all outcome parameters with their 95% CI may indicate the
presence of outliers. In such cases the reason for this situation should  be
carefully examined.

Example In a review of the diagnostic value of macroscopic haematuria for
the diagnosis of urological cancers in primary care, the positive predictive
values (PPV) indicated a homogeneous series of five studies with a pooled
PPV of 0.19 (95% CI � 0.17–0.23) and one other with a PPV of 0.40.36

The reason for this high PPV was mentioned in the original study: “GPs’
services in the region are extremely good and cases of less serious conditions
are probably adequately shifted out and treated without referral”, leading to
a highly selected study population with a high prior probability.

In such cases an outlier can be excluded and the analysis continued with
the homogeneous group of remaining studies. Deviant results should be
explored and explained. The decision to exclude outliers is complex and
should be handled in the same way as in other fields of research.

Outliers can also be searched by using a Galbraith plot.37 To construct
this plot, the standardised lnDOR � lnDOR/se is plotted (y axis) against
the inverse of the se (1/se) (x axis). A regression line that goes through the
origin is calculated, together with 95% boundaries (starting at �2 and �2
on the y axis). Studies outside these 95% boundaries may be considered as
outliers (Figure 8.2).

Subgroup analyses defined in the protocol could be conducted to detect
homogeneous subgroups. Analysis of variance, with the lnDOR as a
dependent variable and categorical variables for subgroups as factors, can
be used to look for differences among subgroups.
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Example In the dipstick review, sensitivity and specificity were weakly
associated (� � � 0.227) and very heterogeneous. Subgroup analysis
showed significant differences of the lnDOR between six different
populations of participants. In three populations there was a strong
negative association between sensitivity and specificity (� � � 0.539,
�0.559, and �1.00, respectively), yielding homogeneous lnDOR in the
three subgroups. Different SROC curves for each subgroup could be fitted
(see section on statistical pooling) (Figure 8.3).

If many studies are available, a more complex multivariate model can be
built in which a number of study characteristics are entered as possible
covariates. Multivariate models search for the independent effect of study
characteristics, adjusted for the influence of other, more powerful ones.

Deciding on the model to be used for statistical pooling

Models

There are two underlying models that can be used when pooling the results
of individual studies.

A fixed effect model assumes that all studies are a certain random sample
of one large common study, and that differences between study outcomes
only result from random error. Pooling is simple. It consists essentially of
calculating a weighted average of the individual study results. Studies are
weighted by the inverse of the variance of the parameter of test accuracy, or
by the number of participants.
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Figure 8.2 Galbraith plot of 11 studies on the validity of the Lasègue test for the
diagnosis of disc hernia in low back pain. Study 6 is an outlier.
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A random effect model assumes that in addition to the presence of random
error, differences between studies can also result from real differences
between study populations and procedures. The weighting factor is
mathematically more complex, and is based on the work of Der Simonian
and Laird, initially performed and published for the meta-analysis of
trials.38 It includes both within-study and between-study variation.

Homogeneous studies

If the parameters are homogeneous, and if they show no (implicit) cut-
off effect, their results can be pooled and a fixed effect model can be used.
If there is evidence of a cut-off effect, SROC curves can be constructed or
ROC curves can be pooled.

Heterogeneous studies

If heterogeneity is present, the reviewer has the following options:

1. Refrain from pooling and restrict the analysis to a qualitative overview.
2. Subgroup analysis if possible, on prior factors and pooling within

homogeneous subgroups.
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Figure 8.3 Summary ROC curves of nitrites in urine dipsticks for the diagnosis of
bacteriuria and urinary tract infections in various homogeneous subgroups of
patient populations.
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3. As a last resort pooling can be performed, using methods that are based
on a random effect model.

In view of the poor methodological quality of most of the diagnostic studies
that have been carried out, there is a tendency to advise using random
effect models for the pooling of all diagnostic studies, even if there is no
apparent heterogeneity.

Statistical pooling

Pooling of proportions

● Homogeneous sensitivity and/or specificity
If fixed effect pooling can be used, pooled proportions are the average of

all individual study results, weighted for the sample sizes.This is easily done
by adding together all numerators and dividing the total by the sum of all
denominators14 (see Appendix to this chapter).
● Cut-off point effect: SROC curve

The SROC curve is presented with sensitivity on the y axis and
1 � specificity on the x axis (ROC plot), where each study provides one
value of sensitivity and one value of specificity (Figure 8.3). If a SROC
curve can be fitted, a regression model (metaregression) is used, with the
natural logarithm of the DOR (lnDOR) of the studies as dependent
variable and two parameters as independent variables: one for the intercept
(to be interpreted as the mean lnDOR) and one for the slope of the curve
(as an estimate of the variation of the lnDOR across the studies due to
threshold differences). Details and formulae for fitting the curve can be
found in the paper presented by Littenberg and Moses13 (see Appendix).
Covariates representing different study characteristics or pretest
probabilities can be added to the model to examine any possible association
of the diagnostic odds ratio with these variables.39 The pooled lnDOR and
confidence limits have to be back-transformed into a diagnostic odds ratio
and its confidence intervals. Metaregression can be unweighted or
weighted, using the inverse of the variance as the weighting factor. A
problem that is encountered in diagnostic research is the often negative
association of the weighting factor with the lnDOR, giving studies with
lower discriminative diagnostic odds ratios – because of lower sensitivity
and/or specificity – a larger weight. This problem has not yet been
resolved.17,19

Pooling of likelihood ratios

Continuous test results can be transformed into likelihood ratios,
obtained by using different cut-off points. Individual data points from the
selected studies can be used to calculate result specific likelihood ratios,40
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which can be obtained by logistic modelling.The natural log posterior odds
are converted into a log likelihood ratio by adding a constant to the
regression equation. The constant adjusts for the ratio of the number of
“non-diseased” to “diseased” participants in the respective studies17 (see
Appendix).

Pooling of the ROC curves

The results of diagnostic studies with a dichotomous gold standard
outcome, and a test result that is reported on a continuous scale, are
generally presented as an ROC curve with or without the related area under
the curve (AUC) and its 95% CI. To pool such results, the reviewer has
three options: to pool sensitivities and specificities for all relevant cut-off
points; to pool the AUCs; or to model and pool the ROC curves
themselves.

● A pooled ROC curve and its confidence interval can be constructed on
the basis of the pooled sensitivity/specificity values per cut-off point. To
make this possible, sufficient raw data have to be available, which is
seldom the case.

● The AUC, like all one-dimensional measures, provides no information
about the asymmetrical nature of a diagnostic test. It cannot distinguish
between curves with a high sensitivity at moderate values of the specificity
and those with a high specificity at moderate values of the sensitivity.

● As ROC curves are based on ranking, they are robust with respect to
interstudy shifts in the value or meaning of cut-off points. They also
provide information about the asymmetrical nature of the test
information.To enable direct pooling of ROC curves, a method has been
developed that requires only the published curves and the number of
positive and negative participants on the gold standard test as input.41

The ROC curve is scanned into a graphic computer file and then
converted into a series of sensitivity versus specificity data, using
appropiate software or, ultimately, by hand. Subsequently, a model is
fitted for each study, similar to that used for producing SROC curves.

For continuous scale tests, weighted linear regression is used to
estimate the parameters for each curve, including a bootstrap method 
to estimate the standard errors. For ordinal tests, maximum likelihood
estimation yields the parameters and their standard errors.The resulting
estimates are pooled separately, using a random effect model, and the
resulting model is back-transformed into a new pooled curve with its
95% confidence band. In addition to causing calculation problems in
specific situations, pooling published ROC curves also hides the test
values from the picture. Although this is not a problem when evaluating
a test method, or when comparing different methods, it limits the
possible use of the pooled curve for evaluating the diagnostic value of
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each specific test result. Moreover, a published curve can be a fitted
estimate of the real curve based on the initial values, and any bias
resulting from this estimation will be included in the pooled estimates.

Data presentation

A DOR is difficult to interpret because it is a combination of sensitivity
and specificity. However, it is useful to present pooled sensitivity and
specificity estimates, together with the relevant diagnostic odds ratios for
different study characteristics or subgroups. To make this information
accessible to clinicians, the predictive values could be obtained by using the
mean prior (pretest) probabilities of each subgroup. Alternatively,
likelihood ratios could be reported so that users can calculate post-test
probabilities based on the pretest probabilities applicable to their patients.

Pooled DOR (and confidence intervals) of different subgroups can also
be presented graphically on a logarithmic scale to give symmetrical
confidence intervals and to reduce the width of confidence intervals.

Example taken from the straight-leg raising test review. In Figure 8.4 the
DOR and confidence boundaries are plotted on the y axis on a logarithmic
scale. Relevant study characteristics (that is, double blind versus single
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Figure 8.4 Subgroup analyses of the accuracy of Lasègue’s test for the diagnosis
of disc hernia in low back pain. Odds ratios are pooled per subgroup.
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blind studies, studies with or without verification bias) are plotted on the 
x axis.

Discussion

Although the methodology to conduct a systematic review and meta-
analysis of diagnostic research is developed to a certain extent, at least for
dichotomised tests, the exercise itself remains quite a challenge. Systematic
reviews have to meet high methodological standards and the results should
always be interpreted with caution. Several complicating issues need
careful consideration: (1) it is difficult to discover all published evidence,
as diagnostic research is often inadequately indexed in electronic
databases; (2) the studies are often poorly reported and a set of minimal
reporting standards for diagnostic research has only recently been
discussed; (3) the methodological quality and validity of diagnostic
research reports is often limited (that is, no clear definition of “diseased”
participants, no blinding, no independent interpretation of test results,
insufficient description of participants); (4) accuracy estimates are often
very heterogeneous, yet examining heterogeneity is cumbersome and the
process is full of pitfalls; (5) results have to be translated into information
that is clinically relevant, taking into account the clinical reality at different
levels of health care (prevalence of disease, spectrum of disease, available
clinical and other diagnostic information). Even in a state of the art
systematic review, the reviewers have to make many subjective decisions
when deciding on the inclusion or exclusion of studies, on quality
assessment and the interpretation of limited information, on the exclusion
of outliers, and on choosing and conducting subgroup analyses. Subjective
aspects have to be assessed independently by more than one reviewer, with
tracking of disagreements and resolution by consensus or arbitration.
These subjective decisions should be explicitly acknowledged in the report
to allow the readers some insight into the possible consequences of these
decisions on the outcomes of the review and the strength of inference
derived from it.

Whereas some researchers question the usefulness of pooling the results
of poorly designed research or meta-analyses based on limited
information,42–43 we think that examining the effects of validity criteria on
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Example taken from the dipstick review:

DOR Sensitivity Specificity Prior 
Factor (95% CI) (95% CI) (95% CI) probability PPV NPV

Mixed 11 (6–21) 0.50 (0.44–0.58) 0.82 (0.71–0.95) 0.32 0.57 0.78
population

Surgery 34 (25–47) 0.54 (0.39–0.74) 0.96 (0.93–0.99) 0.20 0.76 0.89
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the diagnostic accuracy measures and the analysis of subgroups adds
valuable evidence to the field of diagnostic accuracy studies.The generation
of a pooled estimate – the most likely estimate of the test’s accuracy –
provides clinicians with useful information until better-conducted studies
are published. The reader should remember that evidence about the
influence of validity of studies on diagnostic accuracy is still limited.2,3,6

Consequently, it is difficult to recommend a strict set of methodological
criteria, recognising that any minimum set of methodological criteria is
largely arbitrary. Although we have discussed some practical approaches to
statistical pooling, other methods are available in the literature.18,19

Experience with these methods, however, is limited. The development of
guidelines for systematic reviews of tests with continuous or ordinal
outcomes, reviews of diagnostic strategies of more than one test, and
reviews of the reproducibility of diagnostic tests, remains another
challenge, as the methodology is still limited1 or even non-existent.
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Appendix: statistical formulae

Pooling of proportions

Homogeneous sensitivity and/or specificity

For example, for the sensitivity:

where a � true positives, c � false negatives, i � study number, and, k � total number of studies,
with standard error:

where p � sensitivitypooled, and

Cut-off point effect: SROC curve

Basic meta-regression formula:

where � � intercept, � � regression coefficient, and

With standard error:

Pooling of likelihood ratios

where LR � likelihood ratio

� � i ntercept in logistic regression, � � regression coefficient, and x � test measurement.

� log(number non-diseased/number diseased)

log cN D

ND
d  �  correction factor

log(LR)pooled � log cN D

ND
d � a � bx

SEln(DOR) � B1
a

�
1
b

�
1
c

�
1
d

� 1n c (1 � specificity)
specificity

dS � estimate of cut-off point � ln c sensitivity
(1 � sensitivity)

d

ln(DOR)pooled � a � bS

n � a
k

i�1
 (ai � ci)

SE � Bp(1 � p)
n

Sensitivitypooled � a
k

i�1
ai 
>a (ai � ci)
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9 Diagnostic decision
support: contributions
from medical informatics
JOHAN VAN DER LEI, JAN H VAN BEMMEL

Summary box

● Applying information and communication technology (ICT) to a
given medical domain is not merely adding a new technique, but
has the potential to radically change processes in that domain.

● When introduced into an environment, ICT will initially often
emulate or resemble the existing processes. When workers and
researchers in that domain begin to appreciate the potential of ICT,
this initial stage is followed by more fundamental changes in that
domain that take advantage of the potential of ICT.

● Many researchers argue that the fundamental enabling technology
is the introduction of electronic medical records. The explicit
purpose of automating medical records is to use the data in those
records to support not only the care of individual patients, but also
applications such as decision support, quality control, cost control,
or epidemiology.

● To understand the scope of the potential changes enabled by
electronic records, three principal changes need to be understood.
First, data recorded on computer can readily be retrieved and
reused for a variety of purposes. Second, once data are available on
computer, they can easily be transported. Third, as clinicians (and
patients) are using computers to record medical data, the same
electronic record can be used to introduce other computer
programs that interact with the user.
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Introduction

The term medical informatics dates from the second half of the 1970s
and is based on the French term informatique médicale. Although the term
is now widely used, other names, such as medical computer science,
medical information sciences, or computers in medicine, are sometimes
used. Research in informatics ranges from fundamental computer science
to applied informatics. Several definitions of medical informatics take both
the scientific, fundamental aspect and the applied, pragmatic aspect into
account. Shortliffe, for example, provides the following definition:

“Medical Information Science is the science of using system-analytic
tools … to develop procedures (algorithms) for management, process
control, decision-making and scientific analysis of medical knowledge.”1

and Van Bemmel defines the field as: “Medical Informatics comprises the
theoretical and practical aspects of information processing and
communication, based on knowledge and experience derived from
processes in medicine and health care.”1

Medical informatics is determined by the intersection of the terms
medicine and informatics. Medicine identifies the area of research;
informatics identifies the methodology used. In medical informatics, we
develop and assess methods and systems for the acquisition, processing,
and interpretation of patient data. Computers are the vehicles to realise
these goals. The role of computers in medical informatics, however, varies.
If the medical informatics research is applied, the objective is to develop a
computer system that will be used by healthcare professionals, for example

● As electronic medical records are becoming available, researchers
use them to change medical practice by providing decision support,
and to analyse observational databases to study the delivery of care.
New usage of data, however, generates additional requirements.
Thus the experience in developing decision support systems and
analysing observational databases feeds back into the requirements
for electronic medical records.

● Each patient–doctor encounter, each investigation, each laboratory
test, and each treatment in medical practice constitutes, in
principle, an experiment. Ideally, we learn from each experiment.
Paper as a medium to record data limits our ability to exploit that
potential. Electronic medical records will facilitate research that
relies on data recorded in routine medical practice.The potential of
ICT, however, lies in its ability to close the loop between clinical
practice, research, and education.
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research aimed at the development of electronic medical records. If the
research is more fundamental, the computer plays a role as an experimental
environment for models that are developed; the objective is not to build a
system, but to verify a hypothesis or to investigate the limitations of models.
Some research in the area of artificial intelligence in medicine, for example,
fits this last category.

Applying ICT to a given medical domain is not merely adding a new
technique: ICT has the potential to radically change processes in that
domain. Such change, however, may not be apparent at the beginning.
When introduced into an environment, ICT will initially often emulate or
resemble the already existing processes. Typically, this is only a temporary
stage.When workers and researchers in that domain begin to appreciate the
potential of ICT, this initial stage is followed by more fundamental changes
in that domain that take advantage of the potential of ICT.

Electronic communication, for example, is a relatively simple technology.
The contents of a message may be structured (that is, contain a predefined
set of data) or free text. When introduced into the healthcare process,
electronic communication is used to replace existing paper documents.The
names of the first electronic messages often even carry the names of their
paper counterpart: electronic discharge letter, electronic prescription, etc.
At first glance, little has changed compared to the previous paper based
communication, except the speed of delivery. At this stage, the
infrastructure (for example computers, lines) required for ICT has been
installed, but its impact on the processes is still very limited. Subsequently,
however, the ability to send data using electronic communication is used to
support new forms of collaboration between healthcare professionals. At
present, the emphasis has shifted from replacing paper documents to
sharing data between colleagues. As clinicians increasingly share data,
issues such as the standardisation of the content of medical records are
becoming important areas of research. In addition, the fact that data can be
transferred easily over distances enables clinicians to interpret data while
the patient is located miles away (resulting in, for example, the so-called
“telediagnosis”), or to communicate with patients over longer distances
using, for example, the internet.

In this chapter we will focus on the contribution of medical informatics
to diagnostic decision support. We believe that the use of ICT in the
domain of diagnostic decision support is still in an early stage. Although in
a few specialties (for example radiology), ICT is used extensively for
decision support, most clinicians have little or no experience with decision
support systems. Many researchers argue that the fundamental enabling
technology is the introduction of electronic medical records. Once
electronic medical records are available, they argue, we will witness a rapid
increase in the use of diagnostic decision support systems.2 We will first
discuss the developments with respect to electronic medical records.

DIAGNOSTIC DECISION SUPPORT
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Electronic medical records

In its early stages, the written medical record had the purpose of
documenting the care given to a patient, and thus to facilitate continuity of
that care. The entries in the record enabled the clinician to recall previous
episodes of illness and treatment. In recent years, however, medical records
have been used increasingly for other purposes: they are used as a data
source for purposes ranging from billing the patient to performing
epidemiological studies, and from performing quality control to defending
oneself against legal claims. One of the major barriers for using the data in
such ways is the inaccessible and often unstructured nature of the paper
record. The introduction of computer based medical records to a large
degree, removes that barrier.

Recent decades have seen a rapid increase in the role of computers in
medical record keeping, and professional organisations have started to play
an active role in the introduction of electronic records. For example, in
1978 the first Dutch general practitioners started using personal computers
in their practices. Five years later, in 1983, 35 general practitioners (that is,
0.6% of all Dutch GPs) were using a computer. In 1990, 35% of Dutch
GPs were using one or more computer applications; although the majority
of these are administrative, an increasing number of clinicians use
computer stored medical records.3 Now the electronic medical record has
replaced paper records as the dominant form of record in Dutch primary
care. Other countries, such as the United Kingdom, have also witnessed a
rapid introduction of electronic records into primary care. In secondary
care, although progress has been made, the introduction of electronic
records is slower.

The explicit purpose of automating medical records is to use the data in
those records to support not only the care of individual patients, but also
applications such as decision support, quality control, cost control, or
epidemiology.2 The quality of medical record data, however, has often been
lamentable. The reliability of clinical data, for example, has long been
questioned, and tensions between reimbursement schemes and coding
schemes have been discussed. Some researchers argue that the process of
automation may further reduce the reliability of data. Burnum,4 for
example, states: “With the advent of the information era in medicine, we
are pouring out a torrent of medical record misinformation”. Although we
disagree with this pessimistic view, we acknowledge that medical data are
recorded for a specific purpose and that this purpose has an influence on
what data are recorded and how. In developing systems that record medical
data, designers make decisions about how to model those data in order to
perform a given task. For example, in designing the computer based
medical record system Elias,3 the designers focused on issues such as ease
of data entry and emulating existing paper records. The same designers
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subsequently discovered significant limitations in the Elias records when they
developed a decision support system that uses these records as a data source.5

Despite the limitations of the current computer based medical records
and the data contained in them, many researchers believe electronic medical
records will significantly change medical practice.2,6 To understand the
scope of these potential changes, three principles need to be understood.
First, data recorded on computer can be readily retrieved and reused for a
variety of purposes. As a result, databases containing data on millions of
patients are available. Although the subsequent analysis of the data may
prove difficult, both clinicians and researchers are moving from a period of
“data starvation” to “data overload”. Second, once data are available in this
way, they can easily be transported. The result is that processes that
interpret the data (for example diagnosis or consultation) are no longer
closely associated with the physical location where they were collected.
Data can be collected in one place and processed in another (for example
telediagnosis). Third, as clinicians (and patients) are using computers to
record medical data, the same electronic record can be used to introduce
other computer programs that interact with the user. Electronic medical
records require both an extensive ICT infrastructure and clinicians
experienced in using that infrastructure. Once that infrastructure is
operational, other applications (such as decision support or access to
literature) are much easier to introduce.

Electronic medical records will stimulate and enable other developments.
We will discuss two of them: the development and use of integrated decision
support systems, and the creation of observational databases.

Clinical decision support systems

A number of definitions for clinical decision support systems have been
proposed. Shortliffe,1 for example, defines a clinical decision support
system as: “any computer program designed to help health professionals
make clinical decisions”.

The disadvantage of such a broad definition is that it includes any
program that stores, retrieves or displays medical data or knowledge. To
further specify what we mean by the term clinical decision support system,
we use the definition proposed by Wyatt and Spiegelhalter1: “active
knowledge systems that use two or more items of patient data to generate
case specific advice”. This definition captures the main components of a
clinical decision support system: medical knowledge, patient data, and
patient specific advice.

In a clinical decision support system, medical knowledge is modelled.
That is, the designers of the system encode in a formalism the medical
knowledge that is required to make decisions. Such formalisms or models
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have traditionally been divided into two main groups: quantitative and
qualitative. The quantitative models are based on well defined statistical
methods and may rely on training sets of patient data to “train” the model.
Examples of such models are neural networks, fuzzy sets, bayesian models,
or belief nets. Qualitative models are typically less formal and are often
based on perceptions of human reasoning. Examples are truth tables,
decision trees, or clinical algorithms. Increasingly, however, builders of
decision support systems will combine different models in a given system:
a bayesian network may be used to model the diagnostic knowledge and a
decision tree may be used to model treatment decisions, and a 
pharmacokinetic model may be used to calculate dosage regimens.

Clinical decision support systems require patient data. Without them,
patient-specific advice cannot be generated. Some systems may require
interaction between the system and the clinician. The clinician initiates a
dialogue with the system and provides it with data by entering symptoms
or answering questions. Experience has shown that the acceptance of this
type of system by clinicians is relatively low. Other systems are integrated
with electronic medical records, and use the data in them as input. In such
settings, receiving decision support requires little or no additional data
input on the part of the clinician. Finally, some systems are directly
connected to the devices that generate the data, for example systems that
interpret ECGs or laboratory data.

By applying the medical knowledge to the patient data, the system
generates patient-specific advice. Some systems, especially those integrated
with electronic medical records, provide advice independent of a clinician’s
request for it – unsolicited advice. Examples are reminding systems that
continuously screen patient data for conditions that should be brought to
the clinician’s attention (for example the patient’s kidney function is
decreasing, or the patient is eligible for preventive screening). Other systems,
such as critiquing systems, may monitor the decisions of the clinician and
report deviations from guidelines.

Although hundreds of clinical decision support systems have been
reported in the literature, only a few have been the subject of a rigorous
clinical evaluation. Of those that have been evaluated, however, the
majority of the studies showed an impact on clinician performance.7 In
particular, systems integrated with electronic medical records have been
demonstrated to improve the quality of care. In light of the currently
available evidence, clinical decision support systems constitute a possible
method to support the implementation of clinical guidelines in practice.

Observational databases

As a result of the increased use of electronic medical records, large
observational databases containing data on millions of patients have
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become available for researchers. The data contained in these databases is
not of the same quality as the data collected in, for example, a clinical trial.
They are collected in routine practice, and, although most observational
databases attempt to standardise the recording of data and to monitor their
quality, only a few observational databases require the clinician to record
additional information.8

In the absence of a clear study design (for example a randomised controlled
trial to compare the effectiveness of possible treatment regimens) and
specification of the data required for that study, the data in observational
databases are difficult to interpret because of possible confounding. The
advantage of observational databases, however, is that they reflect current
clinical practice. Moreover, the data are readily available and the costs are
not prohibitive. In settings where all the medical data are recorded
electronically, the opportunities for research are similar to studies carried
out using paper charts. Compared to paper charts, these observational
databases provide an environment where the analysis can be performed
faster, the data are legible, “normal” practice can be studied, rare events
can be studied, longitudinal follow up of patients is possible, and subgroups
for further study (such as additional data collection, or patients eligible for
prospective trails) can be identified. In cases where a rapid analysis is
required (for example a suspected side effect of a drug), observational
databases provide a setting for a quick assessment of the question.

Researchers in medical informatics use these observational databases to
assess the behaviour of a decision support system prior to introducing that
system into clinical practice. Such an analysis allows the researchers to
determine, for example, the frequency of advice (for example the frequency
of reminders) and to study the trade off between false positive and false
negative alerts.When the clinical decision support system relies on a model
that uses patient data to train that model, observational databases allow the
tuning of that model to the population in which it will be used.

Observational databases that rely on electronic records have limitations.
Analysis of the contents of the records shows that information important
for a researcher is often not recorded. Medical records typically contain
data describing the patient’s state (for example the results of laboratory
tests) and the actions of the clinician (such as prescribing medication).
Relationships between data are often not recorded. The medical record
mainly reflects what is done, rather than why. A further complicating factor
is that when data in the medical record describe the relationship between
observations (or findings) and actions (for example treatment), the
information is often recorded in the form of free text. The clinician’s first
and most important objective in keeping automated medical records is to
document with the purpose of ensuring the quality and continuity of
medical care. From the clinician’s perspective, free text is often an ideal
method for expressing the patient’s condition. Researchers, on the other
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hand, prefer coded data to facilitate the automatic processing of large
numbers of patients. It is unrealistic, however, to expect clinicians to code
all relevant data: the time required to do so would render it impractical. In
addition, coding is in essence a process of reducing the rich presentation of
the patient–doctor encounter to a limited set of predefined terms.The data
available in an observational database may therefore not be sufficient to
answer a specific research question validly. The completeness of data can
only be discussed in the context of a specific study. It is not possible to
predict all possible data that would be required for all possible studies. As
a result, data in observational databases will be incomplete. Depending on
the study question and the impact of incomplete information, additional
data may need to be collected.

Confounding by indication

To illustrate the caveats when analysing observational databases, we discuss
the problem of confounding by indication. In essence, confounding by
indication is often “confounding by diagnosis”, since diagnostic assessment is
the starting point for any treatment. As an example we will use an
observational database used by Dutch GPs: the so-called IPCI database.8 In
this database, we will study the use of long-acting � agonists (LBA). LBA,
introduced into the Dutch market in 1992, are long-acting bronchodilators
that are used in the treatment of asthma. Dutch guidelines emphasise that
LBA are primarily a chronic medication and should be combined with
inhaled corticosteroids (IC). We focus on the use of long-acting �2 agonists
and their concomitant use with corticosteroids in general practice.

We conducted a retrospective cohort study during the period 1992–1999
among patients in the Netherlands receiving at least one prescription for
one of the long-acting �2 agonists (LBA) or the short-acting inhaled �2
agonists.We assessed the indication for the prescription, the characteristics
of recipients, the daily dose, and the treatment duration of long-acting �2
agonists. In addition, we assessed the concomitant use of inhaled
corticosteroids, and the incidence of episodes of oral corticosteroid use
prior to and during treatment. In the setting of this study, we used the oral
corticosteroids as a marker for exacerbations.

We found that the use of LBA among all inhaled �2 agonist users increased
from 3.0% in 1992 to 14.4% in 1999. Of the users, 61% were treated
exclusively by the GP and not referred to a specialist. The most common
indication for use of LBA was asthma (44%), followed by emphysema (36%)
and chronic bronchitis (7%). Only 1.5% of the LBA prescriptions were issued
on an “if needed” basis; the most frequent dosing regimen was two puffs per
day (78%). Only 67% of the LBA users received inhaled corticosteroids
concomitantly. LBA were used for short periods: 32% of the users received
only a single prescription, and 49% were treated for less than 90 days.
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As shown in Table 9.1, among asthma patients who received LBA for at
least 1 year the episodes of oral corticosteroid use decreased from 1.6
prescriptions/1000 patient-days (PD) prior to starting LBA, to 0.9/1000
PD during the use of LBA. The rate of corticosteroid use prior to and
during LBA use increased in patients with a duration of LBA treatment
from 90 to 180 days (from 1.3 to 1.8 per 1000 person-days).

We conclude that the short duration of use of LBAs, and the fact that 33%
of patients do not use LBA and IC concomitantly, shows that the use of LBA
by Dutch GPs is not in agreement with Dutch guidelines for the treatment
of asthma. The interpretation of the use of oral corticosteroids, however, is
difficult. The fact that oral corticosteroid use in the patients treated
continuously with LBA decreased during treatment, seems to indicate that
use of LBA has a positive effect in reducing the number of exacerbations. On
the other hand, a comparison of the incidence of exacerbations prior to and
during treatment among patients treated with LBA from 90 to 180 days
shows that the incidence increases during treatment. It would be dangerous
to conclude, based on these crude data, that LBA treatment causes
exacerbations in this group of patients. Patients who receive short-term LBA
may be different from those with strong fluctuations in asthma severity, for
example. The reason (indication) for prescription in this group of patients
may be a diagnosed temporary worsening of asthma (increasing severity)
that in itself would lead to a higher incidence of exacerbations. Diagnosing
severity of the underlying disease that changes over time may therefore, have
caused this result: confounded by indication.

In order to be able to adjust for confounding during the analysis of
observational studies, we would need an accurate indicator of the severity
of the disease over time. For diseases such as asthma it is difficult reliably to
assess changing severity by using data collected during routine care. In the
absence of a reliable severity indicator any interpretation can be flawed by
the potential (residual) confounding. In case of inability to assess severity,
the only method to counter confounding would be the randomisation of
patients to different treatment arms in order to make both arms similar as
to the spectrum of severity. Currently, however, this option is not feasible
in “naturalistic” circumstances.

Table 9.1 For different durations of treatment of patients with asthma with long-
acting �2 agonists (LBA), the frequency of oral corticosteroid use (in prescriptions
per 1000 person-days) in the 12 months before the start of the treatment with LBA
and during the treatment with LBA.

Duration of treatment Corticosteroids 12 months Corticosteroids 
with LBA before LBA treatment during LBA treatment

From 90 to 180 days 1.3 1.8
From 180 days to 1 year 1.5 1.3
The full year 1.6 0.9
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Closing the loop

One of the fundamental changes when conventional paper based medical
records are replaced with computerised records involves the ability to
process the data in those records for different purposes. As electronic
medical records are becoming available, researchers use them to change
medical practice by providing decision support, and analyse observational
databases to study the delivery of care. New usage of data, however,
generates additional requirements. Thus the experience in developing
decision support systems and analysing observational databases feeds back
into the requirements for electronic medical records. And as new requirements
for the electronic record are formulated, the record itself begins to change.

In the area of decision support systems, researchers are combining
reminder systems that rely solely on recorded data with systems that
request additional information from clinicians. The resulting systems rely
on the one hand on data already available in the electronic record to
determine eligible patients, and subsequently interact with the clinician
to assess, for example, whether the patient should be treated according to
a certain protocol. The results of that interaction are recorded in the
medical record. Researchers working on the development of observational
databases are beginning to combine retrospective research with
prospective research. Trials are translated into software, distributed
electronically, and added to an electronic medical record. Based on the
data in that record, the system automatically detects patients eligible for
a trial. It then informs the clinician that the patient is eligible, and requests
permission to include them in the trial.The system subsequently performs
the randomisation between treatment arms during patient consultation,
and the electronic record supports subsequent data collection. As a result,
the boundaries between an electronic record, a decision support system,
and systems for clinical trials are beginning to fade.

Each patient–doctor encounter, each investigation, each laboratory test,
and each treatment in medical practice constitutes, in principle, an
experiment. Ideally, we learn from each experiment. Paper as a medium to
record data limits our ability to exploit that potential. Electronic medical
records will facilitate research that relies on data recorded in routine
medical practice. The potential of ICT, however, lies in its ability to close
the loop between clinical practice, research, and education.
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10 Clinical problem solving
and diagnostic decision
making: a selective review
of the cognitive research
literature
ARTHUR S ELSTEIN, ALAN SCHWARTZ

Summary box

● Research on clinical diagnostic reasoning has been conducted
chiefly within two research paradigms, problem solving and
decision making.

● The key steps in the problem solving paradigm are hypothesis
generation, the interpretation of clinical data to test hypotheses,
pattern recognition, and categorisation.

● The controversy about whether rapid pattern recognition is
accomplished via retrieval of specific instances or by matching to a
more abstract prototype can be resolved by recognising that the
method selected depends upon the characteristics of the problem.

● Diagnostic performance can be influenced by errors in hypothesis
generation and restructuring.

● The decision making paradigm views diagnosis as updating opinion
with imperfect information; the normative rule for this process is
Bayes’ theorem.

● Well documented errors in probability estimation and revision
include acquiring redundant evidence, neglecting the role of 
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Introduction

This chapter reviews the cognitive processes involved in diagnostic
reasoning in clinical medicine and sketches our current understanding of
these principles. It describes and analyses the psychological processes and
mental structures employed in identifying and solving diagnostic problems
of varying degrees of complexity, and reviews common errors and pitfalls in
diagnostic reasoning. It does not consider a parallel set of issues in selecting
a treatment or developing a management plan. For theoretical background
we draw upon two approaches that have been particularly influential in
research in this field: problem solving1–6 and decision making.7–11

Problem-solving research has usually focused on how an ill-structured
problem situation is defined and structured (as by generating a set of
diagnostic hypotheses). Psychological decision research has typically looked
at factors affecting diagnosis or treatment choice in well defined, tightly
controlled problems. Despite a common theme of limited rationality,
the problem-solving paradigm focuses on the wisdom of practice by
concentrating on identifying the strategies of experts in a field to help
learners acquire them more efficiently. Research in this tradition has aimed
at providing students with some guidelines on how to develop their skills in
clinical reasoning. Consequently, it has emphasised how experts generally
function effectively despite limits on their rational capacities. Behavioural
decision research, on the other hand, contrasts human performance with a
normative statistical model of reasoning under uncertainty, Bayes’ theorem.
This research tradition emphasises positive standards for reasoning about
uncertainty, demonstrates that even experts in a domain do not always meet

disease prevalence in estimating a post-test probability, under-
estimating the strength of the evidence, the effect of order of
presentation of clinical information on final diagnostic conclusions,
and the tendency to overestimate the probability of serious but
treatable diseases to avoid missing them.

● Problem based learning and ambulatory clinical experiences make
sense from the viewpoint of cognitive theory because students
generalise less from specific clinical experiences than educators
have traditionally hoped.

● A formal quantitative approach to the evidence might have greater
generalisability. In residency training, both practice guidelines and
evidence-based medicine are seen as responses to the psychological
limitations of unaided clinical judgement.
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these standards, and thus raises the case for some type of decision support.
Behavioural decision research implies that contrasting intuitive diagnostic
conclusions with those that would be reached by the formal application of
Bayes’ theorem would give us greater insight into both clinical reasoning
and the probable underlying state of the patient.

Problem solving: diagnosis as hypothesis selection

To solve a clinical diagnostic problem means, first, to recognise a
malfunction and then to set about tracing or identifying its causes. The
diagnosis is ideally an explanation of disordered function – where possible, a
causal explanation. The level of causal explanation changes as fundamental
scientific understanding of disease mechanisms evolves. In many instances a
diagnosis is a category for which no causal explanation has yet been found.

In most cases, not all of the information needed to identify and explain
the situation is available early in the clinical encounter, and so the clinician
must decide what information to collect, what aspects of the situation need
attention, and what can be safely set aside. Thus, data collection is both
sequential and selective. Experienced clinicians execute this task rapidly,
almost automatically; novices struggle to develop a plan.

The hypothetico-deductive method

Early hypothesis generation and selective data collection

Difficult diagnostic problems are solved by a process of generating a
limited number of hypotheses or problem formulations early in the work up
and using them to guide subsequent data collection.2 Each hypothesis can
be used to predict what additional findings ought to be present, if it were
true, and then the work up is a guided search for these findings; hence, the
method is hypothetico-deductive. The process of problem structuring via
hypothesis generation begins with a very limited dataset and occurs rapidly
and automatically, even when clinicians are explicitly instructed not to
generate hypotheses. Given the complexity of the clinical situation and the
limited capacity of working memory, hypothesis generation is a psychological
necessity. It structures the problem by generating a small set of possible
solutions – a very efficient way to solve diagnostic problems.The content of
experienced clinicians’ hypotheses are of higher quality; some novices have
difficulty in moving beyond data collection to considering possibilities.3

Data interpretation

To what extent do the data strengthen or weaken belief in the correctness
of a particular diagnostic hypothesis? A bayesian approach to answering
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these questions is strongly advocated in much recent writing (for
example 12,13), and is clearly a pillar of the decision making approach to
interpreting clinical findings.Yet it is likely that only a minority of clinicians
employ it in daily practice, and that informal methods of opinion revision
still predominate. In our experience, clinicians trained in methods of
evidence-based medicine14 are more likely to use a bayesian approach to
interpreting findings than are other clinicians.

Accuracy of data interpretation and thoroughness of data collection are
separate issues. A clinician could collect data thoroughly but nevertheless
ignore, misunderstand, or misinterpret some findings. In contrast, a clinician
might be overly economical in data collection, but could interpret whatever
is available accurately. Elstein et al.2 found no significant association between
thoroughness of data collection and accuracy of data interpretation. This
finding led to an increased emphasis upon data interpretation in research and
education, and argued for studying clinical judgement while controlling the
database. This strategy is currently the most widely used in research on
clinical reasoning. Sometimes clinical information is presented sequentially:
the case unfolds in a simulation of real time, but the subject is given few or
no options in data collection (for example15–17). The analysis may focus on
memory organisation, knowledge utilisation, data interpretation, or problem
representation (for example3,17,18). In other studies, clinicians are given all
the data simultaneously and asked to make a diagnosis.19,20

Pattern recognition or categorisation

Problem-solving expertise varies greatly across cases and is highly
dependent on the clinician’s mastery of the particular domain. Clinicians
differ more in their understanding of problems and their problem
representations than in the reasoning strategies employed.2 From this point
of view, it makes more sense to consider reasons for success and failure in
a particular case, than generic traits or strategies of expert diagnosticians.

This finding of case specificity challenged the hypothetico-deductive
model of clinical reasoning for several reasons: both successful and
unsuccessful diagnosticians used hypothesis testing, and so it was argued
that diagnostic accuracy did not depend as much on strategy as on mastery
of domain content. The clinical reasoning of experts in familiar situations
frequently does not display explicit hypothesis testing,5,21–23 but is instead
rapid, automatic, and often non-verbal.The speed, efficiency, and accuracy
of experienced clinicians suggests that they might not even use the same
reasoning processes as novices, and that experience itself might make
hypothesis testing unnecessary.5 It is likely that experienced clinicians use
a hypothetico-deductive strategy only with difficult cases.24,25 Much of the
daily practice of experienced clinicians consists of seeing new cases that
strongly resemble those seen previously, and their reasoning in these
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situations looks more like pattern recognition or direct automatic retrieval.
The question then becomes, what is retrieved? What are the patterns?

Pattern recognition implies that clinical reasoning is rapid, difficult to
verbalise, and has a perceptual component.Thinking of diagnosis as fitting
a case into a category brings some other issues into clearer view. How is a
new case categorised? Two somewhat competing accounts have been
offered, and research evidence supports both. Category assignment can be
based on matching the case either to a specific instance – so-called instance
based or exemplar based recognition – or to a more abstract prototype. In
instance based recognition a new case is categorised by its resemblance to
memories of instances previously seen.5,22,26,27 For example, acute
myocardial infarction (AMI) is rapidly hypothesised in a 50-year-old male
heavy smoker with severe crushing, substernal chest pain because the
clinician has seen previous instances of similar men with very similar
symptoms who proved to have AMI. This model is supported by the fact
that clinical diagnosis is strongly affected by context (for example the
location of a skin rash on the body), even when this context is normatively
irrelevant.27 These context effects suggest that clinicians are matching a
new case to a previous one, not to an abstraction from several cases,
because an abstraction should not include irrelevant features.

The prototype model holds that clinical experience – augmented by
teaching, discussion, and the entire round of training – facilitates the
construction of abstractions or prototypes.4,28 Differences between
stronger and weaker diagnosticians are explained by variations in the
content and complexity of their prototypes. Better diagnosticians have
constructed more diversified and abstract sets of semantic relations to
represent the links between clinical features or aspects of the problem.3,29

Support for this view is found in the fact that experts in a domain are more
able to relate findings to each other and to potential diagnoses, and to
identify the additional findings needed to complete a picture.24 These
capabilities suggest that experts utilise abstract representations and do not
merely match a new case to a previous instance.

The controversy about the methods used in diagnostic reasoning can be
resolved by recognising that clinicians, like people generally, are flexible in
approaching problems: the method selected depends upon the perceived
characteristics of the problem.There is an interaction between the clinician’s
level of skill and the perceived difficulty of the task.30 Easy cases can be
solved by pattern recognition or by going directly from data to diagnostic
classification (forward reasoning).21 Difficult cases need systematic
hypothesis generation and testing. Whether a diagnostic problem is easy or
difficult is a function of the knowledge and experience of the clinician who
is trying to solve it. When we say that a diagnostic problem is difficult, we
really mean that a significant fraction of the clinicians who encounter this
problem will find it difficult, although for some it may be quite easy.
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Errors in hypothesis generation and restructuring

Neither pattern recognition nor hypothesis testing is an error-proof
strategy, nor are they always consistent with statistical rules of inference.
Errors that can occur in difficult cases in internal medicine are illustrated
and discussed by Kassirer and Kopelman.17 Another classification of
diagnostic errors is found in Bordage.31 The frequency of errors in actual
practice is unknown, and studies to better establish the prevalence of
various errors are much needed.

Many diagnostic problems are so complex that the correct solution is not
contained within the initial set of hypotheses. Restructuring and
reformulating occur as data are obtained and the clinical picture evolves.
However, as any problem solver works with a particular set of hypotheses,
psychological commitment takes place and it becomes more difficult to
restructure the problem.32

A related problem is that knowledge stored in long-term memory may
not be activated unless triggered by a hypothesis or some other cognitive
structure that provides an access channel to the contents of memory. This
phenomenon has been demonstrated experimentally in a non-clinical
context: recall of the details of the layout of a house varies depending on
whether one takes the perspective of a burglar or a potential buyer.33 We
are unaware of an experimental demonstration of this effect in medical
education, presumably because of the difficulty of ensuring that an
experimental trigger has been effective. However, the complaint of many
medical educators that students who can solve problems in the classroom
setting appear to be unable to do so in the clinic with real patients,
illustrates the role of social context in facilitating or hampering access to
the memory store. On the other side of this equation there are students
who struggle academically but are competent clinicians, presumably
because the clinical context facilitates their thinking. These observations
are all consistent with Bartlett’s34 classic proposal that memory is
organised schematically, not in the storage of unconnected bits. Stories
help us to remember the details and also provide guidance as to what
details “must be there”. This phenomenon has been demonstrated in
medical students.6

Decision making: diagnosis as opinion revision

Bayes’ theorem

From the point of view of decision theory, reaching a diagnosis involves
updating an opinion with imperfect information (the clinical evidence). 10–12,35

The normative mathematical rule for this task is Bayes’ theorem. The
pretest probability is either the known prevalence of the disease or the
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clinician’s subjective probability of disease before new information is
acquired. As new information is obtained, the probability of each
diagnostic possibility is continuously revised.The post-test probability – the
probability of each disease given the information – is a function of two
variables, pretest probability and the strength of the evidence. The latter is
measured by a “likelihood ratio”, the ratio of the probabilities of observing
a particular finding in patients with and without the disease of interest.*

If the data are conditionally independent† each post-test probability
becomes the pretest probability for the next stage of the inference process.
Using Bayes’ theorem becomes hopelessly complicated and impractical
when this assumption is violated and more than two correlated cues are
involved in a diagnostic judgement, as is often the case in clinical medicine.
In these situations, linear and logistic regression techniques are commonly
used to derive an equation or clinical prediction rule. A review of these
methods is beyond the scope of this chapter. We simply point out that the
coefficients (weights) in a regression equation depend on the composition
of the derivation sample. Bayes’ theorem distinguishes the effect of disease
prevalence and the strength of the evidence on the diagnostic judgement,
but ordinary regression analytical methods confound these variables in the
regression coefficients. (For alternative regression approaches that address
this problem, see36). If the index disease is overrepresented in the
derivation sample, a prediction rule should be applied cautiously to
populations where the prevalence of that disease is different. Despite this
limitation, these rules are useful. Clinical applications of statistically
derived prediction rules can outperform human judgement37; this is the
rationale for a range of clinical prediction rules that have been developed
during the past two decades. Reports of the accuracy of such rules and the
reasons for their success have been available in the psychological literature
on judgement for over 40 years,38 but application in clinical practice has
been slow because of continuing concerns about:

● whether a rule derived from a particular population generalises
accurately to another

● eroding the professional authority and responsibility of clinicians, and
● whether guidelines (at least in the United States) are intended more to

ration care and contain costs than to improve quality.39

Both evidence-based medicine (EBM) and decision analysis are efforts
to introduce quantification into the diagnostic process and still leave a

* Formally, LR� � Sensitivity/(1�Specificity) and LR� � (1�Sensitivity)/Specificity.
† Two tests are conditionally independent if the sensitivity and specificity of each test is the
same whether the other is positive or negative. Formally, if T1 and T2 are conditionally
independent tests for a disease D, then:
p(T2�|D� and T1�) � p(T2�|D�) and
p(T2�|D� and T1�) � p(T2�|D�)
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substantial role for clinical judgement.40,41 EBM leaves the application of
research results, including a clinical guideline, up to the clinical judgement
of the clinician, who should be guided by canons for interpreting the
literature. Decision analysis proposes to offer the clinician insight into the
crucial variables in a decision problem, together with a recommended
strategy that maximises expected utility (for example, see42). Both attempt
to avoid quasimandatory prescriptive guidelines and to leave room for
professional discretion.

Bayes’ theorem is a normative rule for diagnostic reasoning: it tells us
how we should reason, but it does not claim that we use it to revise opinion.
It directs attention to two major classes of error in clinical reasoning: in the
assessment of either pretest probability or the strength of the evidence.The
psychological study of diagnostic reasoning from the bayesian viewpoint
has focused on errors in both components.

Errors in probability estimation

Availability

People are prone to overestimate the frequency of vivid or easily recalled
events and to underestimate the frequency of events that are either very
ordinary or difficult to recall.43,44 Diseases or injuries that receive considerable
media attention (for example injuries due to shark attacks) are often
considered more probable than their true prevalence. This psychological
principle is exemplified clinically in overemphasising rare conditions. Unusual
cases are more memorable than routine problems. The clinical aphorism
“When you hear hoofbeats, think horses, not zebras” calls attention to this bias.

Representativeness

Earlier, clinical diagnosis was viewed as a categorisation process. The
strategy of estimating the probability of disease by judging how similar a case
is to a diagnostic category or prototype can lead to an overestimation of the
probability of a disease in two ways. First, post-test probability can be
confused with test sensitivity.45,46 For example, although fever is a typical
finding in meningitis, the probability of meningitis given fever alone as a
symptom is quite low. Second, representativeness neglects base rates and
implicitly considers all hypotheses as equally likely.This is an error, because if
a case resembles disease A and disease B equally well, and there are 10 times
as many cases of A as of B, then the case is more likely an instance of A.This
heuristic drives the “conjunction fallacy”: incorrectly concluding that the
probability of a joint event (such as the combination of multiple symptoms to
form a typical clinical picture) is greater than the probability of any one of
those events alone.The joint event may be more representative (typical) of the
diagnostic category, but it cannot be more probable than a single component.
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Probability distortions

Normative decision theory assumes that probabilities are mentally
processed linearly, that is, they are not transformed from the ordinary
probability scale. Because behavioural decision research has demonstrated
several violations of this principle, it has been necessary to formulate
descriptive theories of risky choice that will better account for choice
behaviour in a wide range of situations involving uncertainty. One of the
earliest of these theories is prospect theory (PT),47 which was formulated
explicitly to account for choices involving two-outcome gambles (or one
two-outcome gamble and a certain outcome). Cumulative prospect theory
(CPT)48 extends the theory to the multioutcome case. Both PT and CPT
propose that decision makers first edit the decision stimulus in some way,
and then evaluate the edited stimulus. Options are evaluated by using an
expected-utility-like rule, except that a transformation of the probabilities,
called decision weights, are multiplied by subjective values and summed to
yield the valuation of a lottery. Probabilities are transformed by a function
that is sensitive to both the magnitude of each probability and its rank 
in the cumulative probability distribution. Hence, it is a rank-dependent
utility theory. In general, small probabilities are overweighted and large
probabilities underweighted. This “compression error”49 results in
discontinuities at probabilities of 0 and 1, and permits this model to predict
“certainty effect” violations of expected utility theory (in which the
difference between 99% and 100% is psychologically much greater than
the difference between, say, 60% and 61%). Cumulative prospect theory
and similar rank-dependent utility theories provide formal descriptions of
how probabilities are distorted in risky decision making.The distortions are
exacerbated when the probabilities are not precisely known,50 a situation
that is fairly common in clinical medicine. It should be stressed that
cumulative prospect theory does not assert that individuals are in fact
carrying out mentally a set of calculations which are even more complex
than those required to calculate expected utility. Rather, the theory claims
that observed choices (that is, behaviour) can be better modelled by this
complex function than by the simpler expected-utility rule.

Support theory

Several probability estimation biases are captured by support theory,51–53

which posits that subjective estimates of the frequency or probability of an
event are influenced by how detailed the description is. More explicit
descriptions yield higher probability estimates than compact, condensed
descriptions, even when the two refer to exactly the same events (such as
“probability of death due to a car accident, train accident, plane accident,
or other moving vehicle accident” versus “probability of death due to a
moving vehicle accident”). This theory can explain availability (when
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memories of an available event include more detailed descriptions than
those of less available events) and representativeness (when a typical case
description includes a cluster of details that “fit”, whereas a less typical case
lacks some of these features). Clinically, support theory implies that a
longer, more detailed case description will be assigned a higher subjective
probability of the index disease than a brief abstract of the same case, even
if they contain the same information about that disease. Thus, subjective
assessments of events, although often necessary in clinical practice, can be
affected by factors unrelated to true prevalence.53

Errors in probability revision

Errors in interpreting the diagnostic value of clinical information have
been found by several research teams.2,6,54,55

Conservatism

In clinical case discussions data are commonly presented sequentially,
and diagnostic probabilities are not revised as much as is implied by Bayes’
theorem. This “stickiness” has been called “conservatism”, and was one of
the earliest cognitive biases identified.56

Anchoring and adjustment

One explanation of conservatism is that diagnostic opinions are revised
up or down from an initial anchor, which is either given in the problem or
formed subjectively. Anchoring and adjustment means that final opinions
are sensitive to the starting point (the “anchor”), that the shift
(“adjustment”) from it is typically insufficient, and so the final judgement
is closer to the anchor than is implied by Bayes’ theorem.43 Both of these
biases will lead to the collection of more information than is normatively
necessary to reach a desired level of diagnostic certainty. The common
complaint that clinicians overuse laboratory tests is indirect evidence that
these biases operate in clinical practice.

Confounding the probability and value of an outcome

It is difficult for everyday judgement to keep separate accounts of the
probability of a particular disease and the benefits that accrue from
detecting it. Probability revision errors that are systematically linked to the
perceived cost of mistakes demonstrate the difficulties experienced in
separating assessments of probability from values.57,58 For example, there
is a tendency to overestimate the probability of more serious but treatable
diseases, because a clinician would hate to miss one.57
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Acquiring redundant evidence

“Pseudodiagnosticity”59 or “confirmation bias”54 is the tendency to seek
information that confirms a hypothesis rather than the data that facilitate
efficient testing of competing hypotheses. For example, in one study,
residents in internal medicine preferred about 25% of the time to order
findings that would give a more detailed clinical picture of one disease,
rather than findings that would allow them to test between two potential
diagnoses.54 Here, the problem is knowing what information would be
useful, rather than overestimating the value (likelihood ratio) of the
information, or failing to combine it optimally with other data.55

Incorrect interpretation

A common error is interpreting findings as consistent with hypotheses
already under consideration.2,6,60 Where findings are distorted in recall, it
is generally in the direction of making the facts more consistent with typical
clinical pictures.2 Positive findings are overemphasised and negative
findings tend to be discounted.2,61 From a bayesian standpoint these are all
errors in assessing the diagnostic value of information, that is, errors in
subjectively assessing the likelihood ratio. Even when clinicians agree on
the presence of certain clinical findings, wide variations have been found in
the weights assigned in interpreting cues,20 and this variation may be due
partly to the effect of the hypotheses being considered.60

Order effects

Bayes’ theorem implies that clinicians given identical information should
reach the same diagnostic opinion, regardless of the order in which the
information is presented. However, final opinions are also affected by the
order of presentation: information presented later in a case is given more
weight than that presented earlier.15,62 This may partly explain why it is
difficult to get medical students to pay as much attention to history and the
physical examination as their teachers would wish. Modern diagnostic
studies tend to have very high likelihood ratios, and they also are obtained
late in the diagnostic work up.

Educational implications

Two recent innovations in undergraduate medical education and
residency training, problem based learning and evidence-based medicine,
are consistent with the educational implications of this research.

Problem based learning (PBL)63–65 can be understood as an effort to
introduce formulating and testing clinical hypotheses into a preclinical
curriculum dominated by biological sciences. The cognitive–instructional
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theory behind this reform was that, because experienced clinicians use this
strategy with difficult problems, and as practically any clinical situation
selected for instructional purposes will be difficult for students, it makes
sense to call this strategy to their attention and to provide opportunities to
practise it, first using case simulations and then with real patients.

The finding of case specificity showed the limits of a focus on teaching a
general problem solving strategy. Problem solving expertise can be
separated from content analytically, but not in practice. This realisation
shifted the emphasis toward helping students acquire a functional
organisation of content with clinically usable schemata. This became the
new rationale for problem based learning.66,67

Because transfer from one context to another is limited, clinical
experience is needed in contexts closely related to future practice. The
instance-based model of problem solving supports providing more
experience in outpatient care because it implies that students do not
generalise as much from one training setting to another as has traditionally
been thought. But a clinician overly dependent on context sees every case
as unique, as all of the circumstances are never exactly replicated. The
unwanted intrusion of irrelevant context effects implies that an important
educational goal is to reduce inappropriate dependence on context. In our
opinion, there are two ways to do this:

1. Emphasise that students should strive to develop prototypes and
abstractions from their clinical experience. Clinical experience that is
not subject to reflection and review is not enough. It must be reviewed
and analysed so that the correct general models and principles are
abstracted. Most students do this, but some struggle, and medical
educators ought not to count upon its spontaneous occurrence. Well
designed educational experiences to facilitate the development of the
desired cognitive structures should include extensive focused practice
and feedback with a variety of problems.5,68 The current climate, with
its emphasis on seeing more patients to compensate for declining
patient care revenues, threatens medical education at this level because
it makes it more difficult for clinical preceptors to provide the needed
critique and feedback, and for students to have time for the necessary
reflection.69

2. A practical bayesian approach to diagnosis can be introduced. EBM14,70

may be viewed as the most recent – and, by most standards, the most
successful – effort to date to apply these methods to clinical diagnosis.
EBM uses likelihood ratios to quantify the strength of the clinical
evidence, and shows how this measure should be combined with disease
prevalence (or prior probability) to yield a post-test probability. This is
Bayes’ theorem offered to clinicians in a practical, useful format! Its
strengths are in stressing the role of data in clinical reasoning, and in
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encouraging clinicians to rely on their judgement to apply the results
of a particular study to their patients. Its weaknesses, in our view, are that
it does not deal systematically with the role of patient preferences in
these decisions, or with methods for quantifying preferences, and that it
blurs the distinction between probability driven and utility driven
decisions.

In our experience teaching EBM, residents soon learn how to interpret
studies of diagnostic tests and how to use a nomogram70,71 to compute
post-test probabilities. The nomogram, or a 2 � 2 table, combines their
prior index of suspicion (a subjective probability) and the test
characteristics reported in the clinical literature. It has been more difficult
to introduce concepts of decision thresholds (at what probability should
management change?) and the expected value of information (should a test
that cannot result in a change in action be performed at all?).

Methodological guidelines

1. Psychological research on clinical reasoning began in a thinking-aloud
tradition, which remains attractive to many investigators. It seems quite
natural to ask a clinician to articulate and discuss the reasoning involved in
a particular case, and to record these verbalisations for later analysis.
Whatever its shortcomings, this research strategy has high face validity.
Because the clinicians involved in these studies frequently discuss real cases
(for example2,17), content validity on the clinical side is not a problem.

The problems of this approach are easily summarised: first, it is labour
intensive, and therefore most studies have used small samples of both
clinicians and cases. Therefore, they lack statistical power and are best
suited for exploratory analysis. But to demonstrate statistically significant
differences between experts (senior attending clinicians) and novices
(medical students or junior house officers), researchers must take into
account two facts: (1) within any group of clinicians at any level of clinical
experience, or within any speciality, there is a great amount of variation,
both in reasoning and in practice. With small samples, within-group
variance will make it difficult to demonstrate significant between-group
differences; and (2) the performance of clinicians varies considerably across
cases.These two features imply that research on diagnostic reasoning must
use adequate samples of both clinicians and cases if there is to be any hope
of reaching generalisable conclusions. Most research to date has not paid
adequate attention to issues of sample size (of both cases and research
participants) and statistical power.

2. Many important cognitive processes are not available to
consciousness and are not verbalised. Indeed, the more automatic and
overlearned a mental process is, the less likely is it that one can verbalise
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how the process works. Once a person has lived for some time at a given
address, it becomes impossible to tell how one knows that address: it is
simply “known”. Closer to our concerns, participants do not report that a
subjective probability is overestimated because of the availability bias: the
existence of the bias is inferred by comparing estimates with known
frequencies. For these reasons, much recent work has shifted toward a
research paradigm that owes much to experimental cognitive psychology:
research participants are presented with a task and their responses are
recorded. Their verbalisations are one more source of data, but are not
treated as a true account of internal mental processes. This research has
yielded many of the findings summarised in this chapter, but it is at times
criticised for using artificial tasks (lack of face validity) and, consequently,
not motivating the participants adequately. The generalisability of the
results to real clinical settings is then questioned.

3. Selection bias is a potential threat to the validity of both types of
studies of clinical reasoning. Senior clinicians in any clinical domain can
decline to participate in research far more easily than can medical students
or house officers in the same domain. Therefore, the more experienced
participants in a study are usually volunteers. Attention should be paid to
issues of selection bias and response rate as potential limitations; thought
should be given to their possible effects on the validity and generalisability
of the results of the study.

4. Behavioural decision research conducted to date has been concerned
primarily with demonstrating that a particular phenomenon exists, for
example demonstrating biases in probability estimation, such as availability
and representativeness. Statistical tests of significance are used to demonstrate
the phenomena. From an educational standpoint, we ought to be more
interested in identifying how prevalent these biases are and which are most
likely to affect treatment and management.Thus, more research is needed to
assess the prevalence of these errors and to determine how often treatment
choices are affected by diagnostic errors caused by these biases. If these facts
were known, a more rational, systematic curriculum could be developed.

Conclusion

This chapter has selectively reviewed 30 years of psychological research
on clinical diagnostic reasoning, focusing on problem solving and decision
making as the dominant paradigms of the field.This research demonstrates
the limitations of human judgement, although the research designs
employed make it difficult to estimate their prevalence. Problem based
learning and evidence-based medicine are both justified by the
psychological research about judgement limitations, violations of bayesian
principles in everyday clinical reasoning, and the finding of limited transfer
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across clinical situations, although we do not believe that these innovations
were initially directed by an awareness of cognitive limitations. Within
graduate medical education (residency training), the introduction of
practice guidelines based on evidence has been controversial because
guidelines may be perceived as efforts to restrict the authority of clinicians
and to ration care. The psychological research helps to explain why formal
statistical decision supports are both needed and likely to evoke
controversy.

Preparation of this review was supported in part by grant RO1 LM5630
from the National Library of Medicine.
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11 Improving test ordering
and diagnostic cost
effectiveness in clinical
practice – bridging the gap
between clinical research
and routine health care
RON AG WINKENS, GEERT-JAN DINANT

Summary box

● In recent decades the number of diagnostic tests ordered by
doctors has increased enormously, despite the often absent or
disappointing results from studies into their accuracy.

● Contradictions between scientific evidence and daily practice can
be obstacles to improving test ordering behaviour.

● Evidence-based clinical guidelines are needed to formalise optimal
diagnostic performance, but will not work unless implemented
properly.

● There is no “one and only ideal implementation strategy”. Often, a
combination of supportive interventions is the best approach.

● Interventions should provide both knowledge on what to do and
insight into one’s own performance. Such interventions are audit,
individual feedback, peer review, and computer reminders.

● From a viewpoint of cost effectiveness, computer interventions
look promising.
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Introduction

An important part of making a proper diagnosis is using diagnostic tests,
such as blood and radiographic investigations. In recent decades the total
number of diagnostic tests ordered by doctors has increased substantially,
despite the often disappointing results from studies into their diagnostic
accuracy. Apparently, arguments other than scientific ones for test ordering
are relevant. Furthermore, it might be questioned to what extent current
knowledge, insights into the correct use of diagnostic tests, and results from
research have been properly and adequately implemented in daily practice.
This chapter will discuss how to bridge the gap between evidence from
clinical research and routine health care.

The need to change

For several reasons there is a need to improve test ordering behaviour.
The use of medical resources in western countries is growing annually and
consistently. In the Netherlands, for example, there is a relatively stable
growth in nationwide expenditures for health care of approximately 7% per
year. The growth in expenditure for diagnostic tests is similar. However,
whereas expenditure increases, health status does not seem to improve
accordingly. This at least suggests that there is a widespread and general
overuse of diagnostic tests.

The following factors may be responsible for the increasing use of
diagnostic tests. First, the mere availability and technological imperative of
more test facilities is an important determinant. In view of the interaction
between supply and demand in health care, the simple fact that tests can be
ordered will lead to their actual ordering. This applies especially to new
tests, which are sometimes used primarily out of curiosity. Another factor
is the increasing demand for care, caused partly by the ageing of the

● More attention must be paid to the perpetuation of interventions
once they have been started, and to the measurement and scientific
evaluation of their effects over time.

● Although the randomised controlled trial remains the “gold
standard” for evaluation studies, inherent methodological
challenges, such as the required randomisation of doctors, need
special attention.

● More research into the ways to improve test ordering is urgently
needed, in particular for patients suffering from recurrent non-
specific or unexplained complaints.
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population and an increasing number of chronically ill people. Also, new
insights from scientific evidence and guidelines often provide recomm-
endations for additional diagnostic testing.

Doctors might wish to perform additional testing once an abnormal test
result is found, even in the absence of clinical suspicion, while ignoring that
a test result outside reference ranges may generally be found in 50% of a
healthy population. A cascade of testing may then be the result.

Furthermore, over the years, higher standards of care (adopted by the
public, patients, and healthcare professionals) and defensive behaviours
from doctors have contributed to the increased use of healthcare services,
one of them being diagnostic testing.

In summary, despite the introduction of guidelines focusing on rational
use of diagnostic tests, in daily practice reasons for ignoring evidence-based
recommendations (such as fear of patients, and the doctor’s wish to gain
time) are numerous and hard to grasp.

Altogether, the ensuing problem is threefold. First, there are reasons to
believe that some of the tests requested are non-rational. Second, contra-
dictions between scientific evidence and daily practice can be ultimate
obstacles to changing test ordering behaviour. And third, there is an
increasing tension between volume growth and financial constraints. With
this in mind, it is clear that there is a need to achieve a more efficient use
of diagnostic tests. If interventions meant to put a stop to the unbridled
growth in the number of tests ordered were to focus especially on situations
where their use is clearly inappropriate, healthcare expenditure might be
reduced and the quality of care might even improve.

Can we make the change?

In terms of quality improvement and cost containment there are sufficient
arguments for attempting to change test ordering behaviour. To do so, it is
recommended that certain steps be taken, from orientation to perpetuation.
The individual steps are described in the implementation cycle1 (Figure 11.1).

Following the implementation cycle, several things need to be done.
First, insight into the problem is needed. The problem needs to be well
defined and must be made clear to those whose performance we wish to
change. Next, the optimal – “gold standard” – situation should be deter-
mined, and communicated as such. Usually this means the development
and dissemination of guidelines. Also, an assessment of actual performance
(the level of actual care) is needed. Then, the desired changes need to be
determined and an implementation strategy set up to achieve the actual
change. After this, the results should be monitored. The outcome of this
monitoring can be used as new input for further improvement and for
defining new goals for quality assurance, thereby re-entering the
implementation cycle. It should be noted that these general rules apply 
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not only to test ordering behaviour, but also to other actions (such as
prescribing drugs and referring to hospital care).The following highlights a
number of steps in the implementation cycle.

If we are to change the test ordering behaviour of clinicians the first move
is to assess and establish what the desired optimal situation would be and
how the actual performance should look. Guidelines, protocols and
standards are needed to formalise this optimal situation. In the past there
have been various moves toward guideline development. By and large, these
guidelines are problem oriented and address clinical problems as a whole,
such as taking care of diabetes patients, or diagnosing and managing
dyspepsia. The diagnostic work up of a clinical problem and the resulting
recommendations for specific tests – if necessary – are then important
aspects to be dealt with. A good example of a comprehensive set of

Development of
guidelines or goals

for good care

Planning and
implementation

of changes

Set desired
changes

Follow up: evaluation
of the result Implementation cycle

Analysis of
bottlenecks for

change

Introduction and
organisation
of changes

Develop strategies
to implement

desired changes

Analysis of
possible
quality

problems

Selection of
relevant topics

Assessment of
actual care

Figure 11.1 The implementation cycle.1
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guidelines is the development of standards for Dutch GPs by the Dutch
College of General Practitioners.2 Starting in 1989, the College has set up
almost 70 guidelines on a variety of common clinical problems. In the
meantime, many of these standards have been revised in line with new
evidence from scientific research. One of the guidelines specifically
addresses the principles of rational ordering of blood tests.3

The development of guidelines does not automatically lead to the desired
behavioural change, especially when their dissemination is limited to the
distribution of written material. In other words, simply publishing and
mailing the guidelines does not make clinicians act accordingly.
Implementation strategies are needed to bring about actual change.
Implementation actually includes a whole range of activities to stimulate
the use of guidelines. Such activities may include communication and
information, giving insight into the problem and the need to change, and
specific activities to achieve the actual change in behaviour.

One of the oldest and most frequently used interventions is
postgraduate continuous medical education (CME), varying from
lectures to comprehensive courses and training sessions. Nowadays, CME
is increasingly connected to (re)certification. Another intervention that
can be considered an implementation strategy is written material through
books, papers in the literature, and protocol manuals. Although part of
the written material is intended as a way to distribute research findings
and to increase the level of up to date scientific knowledge, among
clinicians it is often also focused as improving clinical performance.There
is a range of interventions that combine the provision of knowledge with
giving more specific insight into one’s own performance. Such inter-
ventions include audit, individual feedback, peer review, and computer
reminders.

Audit represents a monitoring system on specific aspects of care. It is
often a rather formal system, set up and organised by colleges and regional
or national committees.4 The subject of an audit system may vary strongly,
and the same applies for the intensity of the related interventions. Feedback
resembles audit in many ways, although it tends to be less formal and its
development is often dependent on local or even personal initiatives. In
peer review, actual performance is reviewed by expert colleagues. Peer
review is used not only to improve aspects of clinical care, but also to
improve organisational aspects such as practice management. An
intervention that needs special attention is the provision of computer
reminders. Having the same background and intentions as audit and
feedback, these do not generally involve the monitoring of the performance
of specific groups or individual doctors. Here the computer may take over,
but the intention is still to provide knowledge and give insight into one’s
own performance. From the viewpoint of the observed clinician,
“anonymised” computer reminder systems may appear less threatening:
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there are no peers directly involved who must review the actions of those
whose behaviour is monitored.

Organisational interventions are focused on facilitating or reducing
certain (diagnostic) actions. Examples are changing test ordering forms by
restricting the number of tests that can be ordered, and introducing specific
prerequisites or criteria that must be met before a test is ordered.There are
two structural implementation strategies that can be used to change test
ordering. Regulations include interventions where financial incentives or
penalties can be easily introduced. Reimbursement systems by health 
insurance companies or the government may act as a stimulus to urge
clinicians to move in the desired direction. Combinations of regulatory steps
and financial changes are also conceivable. In several western countries the
healthcare system includes payment for tests ordered by doctors, even if 
the tests are performed by another professional or institution. Adaptation of
the healthcare regulations could change this payment system, which might
reduce the ordering of too many tests, thereby directly increasing clinicians’
income. Even negative incentives for non-rational test ordering can be built
in, acting more or less as a financial penalty.

For obvious reasons we should seek and apply methods that both
improve the rationality of test ordering and can stop the increase in the use
of tests. Ideally, such instruments combine a more rational test ordering
behaviour with a reduction in requests.To determine these, a closer look at
the performance of the specific implementation strategies is needed.
However, not all of these instruments have been used on a regular basis.
Some have been regularly applied on a variety of topics (such as changing
test ordering), whereas others have been used only incidentally. Most
implementation strategies try to change clinicians’ behaviour. Although
evidence showing relevant effects is required to justify their implementation
in practice, because of the nature of the intervention it is not always
possible to perform a proper effect evaluation. Especially in large-scale
interventions, such as changes in the law or healthcare regulations
(nationwide), it is virtually impossible to obtain a concurrent control
group. Nevertheless, a number of (randomised) trials have been performed,
albeit predominantly on relatively small-scale implementation strategies.
The next section gives an overview of the experience so far with most of the
aforementioned instruments.

Is a change feasible?

Implementation strategies

As shown above, a variety of implementation strategies is available.
However, not all of them are successful: some strategies have proved to be
effective, but others have been disappointing. This section gives a review
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of the literature to assess which implementation strategies are potentially
successful and which are not. There have been a number of published
reviews focusing on the effectiveness of implementation strategies.
Although their conclusions vary, some general consensus can be observed:
there are some implementation strategies that on the whole seem to fail and
some that are at least promising.

One of the reasons for the increasing use of tests is the simple fact that tests
are both available and accessible. Consequently, a simple strategy would be
to reduce the availability of tests on forms, or to request an explicit
justification for the test(s) ordered. Such interventions have by and large
proved to be effective, with a low input of additional costs and effort: Zaat
and Smithuis5,6 found reductions of 20–50%. A drawback of these
interventions, however, is that they risk a possible underuse of tests when the
test order form is reduced too extensively and unselectively. Therefore, the
changes to the form should be selected and designed very carefully.

Among the implementation strategies that have been used and studied
regularly in the past are audit and feedback. To that end, tests ordered are
reviewed and discussed by (expert) peers or audit panels.Within this group
of interventions there is a huge variation in what is reviewed and discussed,
in how often and to whom it is directed, and in the way the review is
presented. It may not be surprising that the evaluation of various types of
peer review does not allow a uniform conclusion. An intervention with
substantial effects, also proven in a randomised trial, was feedback given to
individual general practitioners, focusing on the rationality of tests
ordered.7 After 9 years there was a clear and constant reduction in test use,
mainly due to a decrease in non-rational requests. Not all interventions are
so successful. In studies by Wones8 and Everett,9 feedback was restricted to
information about the costs of tests ordered; it did not show any effect.
Nevertheless, there is evidence suggesting that feedback under specific
conditions is an effective method to bring about change. Feedback is more
effective when the information provided can be used directly in daily
practice, when the doctor is individually addressed, and when the expert
peer is generally respected and accepted.

An increasingly popular implementation strategy is the use of computer
reminders. This is stimulated by the explosive growth in the use of
computer technology in health care, especially in the last decade. The
results of computer reminders are promising. It appears to be a potentially
effective method requiring relatively little effort. Reminders have significant
but variable effects in reducing unnecessary tests, and seem to improve
adherence to guidelines.10 To date, there are relatively few studies on
computer reminders. It may be expected, however, that in the near future
more interventions on the basis of computer reminders will be performed
as a direct spin-off of the growing use of computer-supported communi-
cation facilities in health care.
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For one implementation strategy in regular use it is clear that the effects
on test ordering behaviour are only marginal, if not absent. For many years
much effort has been put into postgraduate education courses and in
writing papers for clinical journals. The goal of both is to improve the
clinical competence of a large target group. Nowadays there is evidence that
the direct effects of these methods are disappointing. In a recently published
systematic Cochrane Review, Davis et al.11 concluded that “didactic
sessions do not appear to be effective in changing physician performance”.
In another Cochrane Review by van der Weijden et al.,12 it was found that
the effects of written material on test ordering was small.

Perpetuation and continuation

One aspect that needs more attention in the future is the perpetuation of
interventions once they have been started. It is by no means assured that
effects, when achieved, will continue when the intervention itself is
stopped. In most studies, the effects after stopping the intervention are not
monitored. As one of the exceptions,Tierney13 performed a follow up after
ending his intervention through computer reminders on test ordering.The
effects of the intervention disappeared 6 months after it was stopped. On
the other hand,Winkens7 found that feedback was still effective after being
continued over a 9-year period. This argues in favour of a continuation of
an implementation strategy once it is started.

Evaluating the effects

There is a growing awareness that the effects of interventions are by no
means guaranteed. Consequently, to discriminate between interventions
that are successful and those that are not, we need evidence from scientific
evaluations. However, after a series of decades where many scientific
evaluations of implementation strategies have been performed and a
number of reviews have been published, many questions remain and final
conclusions cannot yet be drawn. In a dynamic environment such as the
(para)medical profession, it is almost inevitable that the effects of
interventions are dynamic and variable over time too. Hence there will
always be a need for scientific evaluation.

As is the case with all scientific evaluations, there are quality criteria that
studies should meet.14 Regarding these criteria, evaluation studies on
implementation strategies do not essentially differ from other evaluations.
The randomised controlled trial still remains the “gold standard”.
However, there are some circumstances that need special attention.15 A
striking one is the following. In most studies on improving test ordering
behaviour, the doctor is the one whose decisions are to be influenced.This
automatically means that the unit of randomisation, and hence the unit of
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analysis, is the individual doctor. As the number of doctors participating in
a study is often limited, this may have a considerably negative effect on the
power of the study. A potential solution to this problem may be found in
multilevel analyses.16

Cost effectiveness of implementation

As far as the cost effectiveness of intervention strategies is concerned,
those that combine good effects with the least effort and lowest costs are to
be preferred. On the other hand, we may question whether strategies that
so far have not proved to be effective should be continued. Should we
continue to put much effort into CME, especially in single training courses
or lectures? Who should we try to reach through scientific and didactic
papers: the clinicians in daily practice, or only the scientist and policy
maker with special interest? Should we have to choose the most effective
intervention method, regardless of the effort that is needed? If we start an
intervention to change test ordering, does this mean it has to be continued
for years? There is no general answer to these questions, although the
various reviews that have been published argue in favour of combined,
tailormade interventions. How such a combination is composed depends
on the specific situation (such as local needs and healthcare routines, and
the availability of experts and facilities). Generalisable recommendations
for specific combinations are therefore not possible or useful. However, if
we look at costs in the long term, computer interventions look quite
promising.

From scientific evidence to daily practice

An important objective in influencing test ordering behaviour is the
change in the rationality and volume of orders, thereby reducing costs or
achieving a better (so-called) cost–benefit ratio. However, the ultimate
goal is to improve the quality of care for the individual patient. It might be
asked to what extent patients are willing to pay for expensive diagnostic
activities, weighing the possibility of achieving better health through doing
(and paying) the diagnostics, versus the risk of not diagnosing the disease
and staying ill (or getting worse) because of not doing so. In other words,
how is the cost–utility ratio of diagnostic testing assessed by the patient?
In this context the specific positive or negative (side) effects of (not)
testing on the health status of the individual patient are difficult to assess
independently of other influences. On the other hand, a reduced use in
unnecessary, non-rational tests is not likely to cause adverse effects for the
individual.
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Despite the increasing research evidence showing the need for changes
in test ordering behaviour, doctors will always decide on more than merely
scientific evidence when the question whether or not to order a test for a
certain patient is at stake.17 Low diagnostic accuracy or high costs of testing
may conflict with a patient’s explicit wish to have tests ordered, or with the
doctor’s wish to gain time, the fear of missing an important diagnosis, his
or her feeling insecure, and the wish of both patient and doctor to be
reassured.These dilemmas are influenced by a variety of doctor and patient
related aspects. Regarding the doctor, one could think of the way in which
they were trained, how long they have been active in patient care, the
number of patients on their list, their relationship with their patients, and
their personal experience with “missing” relevant diseases in the past. The
patient might suffer from a chronic disease, or from recurrent vague or
unexplained complaints, making them question the skills of the doctor. For
this latter category of patients in particular, doctors might order more tests
than are strictly necessary. Research into the ways of improving test
ordering in these situations is urgently needed.
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12 Epilogue: overview of
evaluation strategy and
challenges
J ANDRÉ KNOTTNERUS

Summary box

● The first phase in the evaluation of diagnostic procedures consists
of (1), specifying the clinical problem, the diagnostic procedures(s),
and the research question; (2), a systematic search and review of the
literature, to decide whether the question can already be answered
or whether a new clinical study is necessary.

● In preparing a new clinical study, the investigator must decide
about the need for (1), evaluation of test accuracy in circumstances
of maximum contrast or, as a further step, in the “indicated”
clinical population; (2), evaluation of the impact of the test on
clinical decision making or prognosis. The answers to these
questions are decisive for the study design.

● Systematic reviews and meta-analysis, clinical decision analysis,
cost effectiveness analysis, and expert panels can help to construct
and update clinical guidelines.

● Implementation of guidelines should be professionally supported
and evaluated, in view of what is known about how clinicians
approach diagnostic problems.

● Further developments in three fields are especially important:
innovation of (bio)medical knowledge relevant for diagnostic testing;
the development of information and communication technology in
relation to clinical research and practice; and, further exploration of
methodological challenges in research on diagnostic problems.
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Introduction

The chapters in this book speak for themselves and there is no need to
repeat them or summarise their contents. However, a compact overview of
important steps in the evaluation of diagnostic procedures may be useful.
In addition, challenges for future work are outlined.

Important steps

The most important steps are represented in a flow diagram of the
evaluation strategy (Figure 12.1), with reference to chapters in the book.

The first step is to specify the clinical problem and the diagnostic
procedure(s) to be evaluated, and the aim of the study. Are we looking for the
(added) diagnostic value of the procedure, the impact of the procedure on
clinical management or on the patient’s prognosis, or its cost effectiveness?
After having formulated the research question accordingly, we should search
and systematically review the literature and decide whether sufficient research
data are already available. If not, a new clinical study should be considered.

In preparing a clinical study, to choose the appropriate design the
following questions need to be answered: (1) is evaluation of accuracy of the
test procedure in ideal circumstances of maximum contrast (still) necessary?
(2) has this already been successfully achieved, and should accuracy still be
established in the “indicated” clinical population? (3) is the impact of the
diagnostic procedure on clinical decision making or prognosis yet unknown?
The answers to these questions are decisive for the study design, as 
shown in Figure 12.1. It is sometimes possible to include more than one
type of design in one study. For example, test accuracy can sometimes be
determined in the context of a randomised trial or a before–after study.

In preparing and reporting the results of a clinical study, the
generalisability or external (clinical) validity should be carefully considered.
If the study is unique with regard to clinical applicability, the results
represent an important evidence base themselves. More often they
contribute to a broader knowledge base and can be included in a systematic
review or meta-analysis. Clinical decision analysis, cost effectiveness
analysis, and expert panels are helpful in constructing or updating clinical
guidelines. The implementation of guidelines in clinical practice should be
professionally supported and evaluated, in view of the acquired insights
into the way clinicians approach diagnostic problems.

Challenges

Throughout this book a comprehensive range (“architecture”) of
methodological options have been described. At the same time, it has
become clear that there are important challenges for future work.
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Specify clinical problem and diagnostic procedure(s) to be evaluated

Formulate the research question

Search and systematic review of the literature (Chapters 1, 8)

Yes Sufficient data to answer research question?

Perform Phase I/II
study (Chapters 2, 7)

Perform Phase III study
(Chapters 2, 3, 6, 7, 9)

No

No

No

No

Evaluation of accuracy of test
procedure in ideal circumstances of
maximum contrast (still) necessary?

Evaluation of accuracy of test
procedure in “indicated” clinical

population (still) necessary?

Diagnostic RCT (still)
appropriate and possible?

Evaluation of impact of test
procedure on prognosis or clinical
decision making (still) necessary?

Yes

Perform Phase IV study:
Diagnostic Randomised trial
(Chapter 2, 4)

Report results of clinical study, and consider external
(clinical) validity (Chapters 1–7)

Systematic review,
meta-analysis,
(Chapters 1, 8)

Clinical decision analysis, cost effectiveness analysis,
expert consensus, (re)construction of clinical guidelines,
ICT support, (evaluation of) implementation,  guided by

insight in clinical problem solving (Chapters 1, 9–11)

Yes RCT still relevant, and possible?

Observational study: before–
after study, cohort study,case–
control study (Chapters 1, 5, 9)

No: → clinical study

Specify aim(s) of the evaluation study: evaluation of
•  (added) diagnostic value of the procedure
•  impact of the procedure on clinical management
•  impact of the procedure on prognosis/patient’s health
•  cost effectiveness of the procedure

No

Yes

Yes

Yes

Figure 12.1 Important steps in the evaluation of diagnostic procedures.
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Developments in three fields are especially important. First, (bio)medical
knowledge will continue to be innovated, cumulated and refined. Second,
information and communication technology will further develop and its
use in daily practice will be more and more facilitated. Third, in research
on diagnostic problems, methodological requirements and limitations are
to be increasingly explored.

Innovation of biomedical knowledge and understanding of
pathophysiological processes are the principal requirements for the
development and evaluation of better diagnostic tests. A clear example is
the current work to develop DNA tests in various clinical fields. In future
these will not only be supportive of genetic counselling and prenatal
screening, but also for clinical diagnostic and prognostic purposes. In
addition, the ambition is to use DNA testing to improve the targeting and
dosing of therapeutic and preventive interventions (“diagnostic effect
modification”). Much work in this field is being done, for example, in
cardiovascular medicine,1 oncology,2,3 and psychiatry.4 However, it will be
quite some time before these promises will really have an impact on daily
patient care. Considerable efforts are still needed, both in the laboratory
and in clinical epidemiological research. It was recently shown that the
clinical epidemiological quality of many molecular genetic studies was
poor: of 40 evaluated research papers, 35 failed to comply with one or more
of seven essential methodologic criteria.5 Furthermore, long-term follow
up to clinically validate diagnostic and prognostic predictions needs more
attention. In view of the ambition to develop a more tailormade, perhaps
even individualised, diagnostic process, population oriented validations will
be increasingly unsatisfactory. Also, ethical issues regarding the privacy of
genetic information and the right to (not) know have to be dealt with.
Doctors and patients, traditionally struggling to reduce diagnostic and
prognostic uncertainty, must now learn to cope with approaching certainty.

Although until now computer decision support systems seem to have had
more impact on the quality of drug dosing and preventive care than on
diagnosis,6 the growing body and complexity of knowledge enhances the
need for (online) diagnostic support systems. The development and
evaluation of such systems will therefore remain an important challenge.
The same applies to the provision of appropriate input, that is, valid
diagnostic and prognostic knowledge. However, performing individual
studies in large study populations is very expensive and will always cover
only a limited part of diagnostic management. Moreover, such studies may
produce results with rather limited generalisability in place and time.
Consequently, ways are sought to more efficiently and permanently harvest
clinical knowledge and experience. It is therefore worth considering
whether and under what conditions accuracy studies, RCTs, quasi-
experimental studies, and before–after studies can be more embedded in
routine health care.7 In view of continuity, up to date results, and (external)
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clinical validity, much is expected from standardised clinical databases,
with international connections, to be used as sampling frames for research.
As these databases will be closely related to or even integrated into routine
health care, additional efforts are required to meet basic quality and
methodological standards and to avoid biases, as discussed in Chapter 10.8

In the context of such an integrated approach, the implementation of new
findings can be studied and monitored in real practice.9–11

Diagnostic research should be refined with respect to strategy, spectrum
and selection effects, prognostic reference standards,12 and the assessment
of the clinical impact of testing. Data analysis needs progress with regard
to “diagnostic effect modification”, multiple test and disease outcome
categories, and estimation of sample size for multivariate problems. In
addition, more flexible modelling is needed to identify alternative but
clinically and pathophysiologically equivalent models, appropriate to
classify subgroups with varying sets of clinical characteristics with a
maximum of predictive power.13,14 Better methods to improve and evaluate
external clinical validity are also required. Furthermore, one must neither
forget nor underestimate the diagnostic power of “real life doctors”: at
least, the performance of proposed diagnostic innovations should be
compared with the achievements of experienced clinicians, before they are
recommended as bringing new possibilities. We also need more
understanding of the “doctor’s black box” of diagnostic decision making,
using cognitive psychological methods. This can help in more efficient
diagnostic reasoning, and in the development of custom-made support
systems.15 Efficiency and speed in the evaluation of the impact of
diagnostic procedures can be gained if new data on a specific aspect (for
example a diagnostic test) can be inserted into the mosaic of available
evidence on a clinical problem, rather than studying the whole problem
again whenever one element has changed. For this purpose, flexible
scenario models of current clinical knowledge are needed.

Systematic review and meta-analysis of diagnostic studies16,17 must become
a permanent routine activity of professional organisations producing and
updating clinical guidelines. Meta-analysis should not only be performed
on already reported data, but increasingly also on original and even
prospectively developing databases. Such databases can originate from
specific (collaborative) research projects, but sometimes also from health
care (for example clinics where systematic work ups for patients with
similar clinical presentations are routine, and where the population
denominator is well defined). Accordingly, meta-analysis, evaluation
research, and health care can become more integrated.

The role of the patient in diagnostic management is becoming more
active. People want to be involved in the decision as to what diagnostics are
performed, and want to know what the outcome means to them. Patient
decision support facilities, at the doctor’s office and at home, using e-mail
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or internet services, are receiving increasing attention. Clinicians have to
think about their possible future role in sifting, explaining, and integrating
information via these facilities. The question as to which level of certainty
is worth which diagnostic procedures, is not always similarly answered by
patients and doctors. Patients’ perceptions, preferences, and responsibilities
should be respected and supported, not excluded, in diagnostic research
and guidelines.18 Sometimes, however, these features are not easily
measurable and show substantial inter- and intrasubject variability. A good
patient–doctor dialogue therefore remains the core instrument of
individual decision making.19

Last but not least, formal standards for the evaluation of diagnostics 
are needed to control acceptance, maintenance, and substitution in the
healthcare market. This also requires high quality and transparency of
evaluation reports. The initiative to reach international agreement on
Standards for Reporting Diagnostic Accuracy (STARD) therefore deserves
full support from the scientific and healthcare community.20
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