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INTRODUCTION

Animal models of neurological disorders are critical for determining
underlying disease mechanisms and developing new therapeutic modalities.
In general, the utility of an animal model for a particular disease is often
dependent on how closely the model replicates all or part of the human
condition. In Parkinson’s disease (PD) and related parkinsonian disorders
there now exists a variety of animal models, each of which makes a unique
contribution to our understanding of the human condition.

These models have been derived in a variety of species (pig, nonhuman
primate, rodent, and cat) using multiple techniques, including (1) surgical
lesioning, (2) pharmacological manipulation, (3) administration of neuro-
toxicants, and (4) genetic alterations. While these models are not identical to
the human condition with respect to behavioral characteristics, brain
anatomy, or disease progression, they have provided significant advance-
ments in our understanding of the underlying mechanisms and treatment of
movement disorders such as PD.
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PD is characterized by bradykinesia, rigidity, postural instability, and
resting tremor. The primary pathological and biochemical features of PD
are the loss of nigrostriatal dopaminergic neurons in the substantia nigra,
the appearance of intracellular inclusions called Lewy bodies, and the
depletion of striatal dopamine. Clinical features are apparent when striatal
dopamine depletion reaches 80% despite the fact that 45–60% of
nigrostriatal dopaminergic neurons still remain (1). Since the destruction
of the nigrostriatal system and consequent depletion of striatal dopamine
are key features in the human condition, attempts have been made in animal
models to disrupt an analogous anatomical area through surgical,
pharmacological, or neurotoxicant manipulation.

The purpose of this chapter is to introduce the many different animal
models utilized in PD research. Each model, when applicable, will be
discussed with respect to its development, behavioral profile, biochemical
and neuropathological alterations, and contribution to the field.

PHARMACOLOGICALLY INDUCED MODELS OF
PARKINSON’S DISEASE

Reserpine

The first animal model for PD was demonstrated by Carlsson in the 1950s
using rabbits treated with reserpine. Reserpine is a catecholamine-depleting
agent that blocks vesicular storage of monoamines. The akinetic state,
resulting from reserpine-induced dopamine depletion in the caudate and
putamen, led Carlsson to speculate that PD was due to striatal dopamine
depletion. This speculation was supported by the discovery of striatal
dopamine depletion in postmortem brain tissue of PD patients and led to
the subsequent use of levodopa (in conjunction with a peripheral dopa-
decarboxylase inhibitor) for symptomatic treatment of PD (2,3). Thus, the
initial observations derived from an animal model led to an important
clinical therapy that remains a gold standard.

Alpha-Methyl-para-Tyrosine

Although less commonly used, alpha-methyl-para-tyrosine (AMPT), like
reserpine, serves as an effective catecholamine-depleting agent (4). By
directly inhibiting tyrosine hydroxylase (the rate-limiting enzyme in
dopamine biosynthesis), the nascent synthesis of dopamine in neurons of
the substantia nigra pars compacta and ventral tegmental area is prevented.

Both reserpine and AMPT have been used to discover new
dopaminomimetics for the treatment of PD, but since their effects are
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transient (hours to days), these models are primarily useful for acute studies.
In addition, neither agent can duplicate the extensive biochemical and
pathological changes seen in PD. Consequently, other models with long-
lasting behavioral alterations have been sought using site-specific neurotox-
icant injury.

NEUROTOXICANT-INDUCED MODELS OF PARKINSON’S
DISEASE

6-Hydroxydopamine

6-Hydroxydopamine (6-OHDA or 2,4,5-trihydroxyphenylethylamine) is a
specific catecholaminergic neurotoxin structurally analogous to both
dopamine and noradrenaline. Acting as a ‘‘false-substrate,’’ 6-OHDA is
rapidly accumulated in catecholaminergic neurons. The mechanism of 6-
OHDA toxicity is complex and involves (1) alkylation, (2) rapid auto-
oxidization (leading to the generation of hydrogen peroxide, superoxide,
and hydroxyl radicals), and (3) impairment of mitochondrial energy
production (5,6). The 6-OHDA–induced rat model of PD was initially
carried out by Ungerstedt in 1968, using stereotactic bilateral intracerebral
injections into the substantia nigra or lateral hypothalamus (medial
forebrain bundle) (7). The bilateral administration of 6-OHDA resulted in
catalepsy, generalized inactivity, aphagia, and adipsia, and a high degree of
animal morbidity and mortality. Consequently, the administration of 6-
OHDA was modified to a unilateral intracerebral lesion (targeting the
substantia nigra and/or medial forebrain bundle). With unilateral lesioning
there was (1) minimal postoperative morbidity, (2) behavioral asymmetry,
and (3) a nonlesioned side to serve as a control (8,9). An additional
modification of 6-OHDA administration was chronic low-dose striatal
injections. This led to progressive dopaminergic cell death that more closely
resembled the human condition (10).

A distinctive behavioral feature of the unilateral lesioned model is
rotation (11,12). This motor feature is due to asymmetry in dopaminergic
neurotransmission between the lesioned and intact sides. Specifically,
animals rotate away from the side of greater dopaminergic activity.
Nomenclature describes the direction of rotation as either ipsilateral or
contralateral to the lesioned side. Initial reports of rotation examined both
spontaneous and pharmacologically manipulated rotation. Spontaneous
rotation consists of ipsilateral rotation (towards the lesioned side), while
pharmacologically induced rotation may be either contra- or ipsilateral
rotation. For example, apomorphine and other dopamine agonists induce
contralateral rotation (away from the lesioned side). This is due to their
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direct action on supersensitized dopaminergic receptors on the lesioned side.
Conversely, d-amphetamine phenylisopropylamine (AMPH) induces ipsi-
lateral rotation by blocking dopamine reuptake and increasing dopamine
receptor activity on the nonlesioned side. In general, a greater than 80%
depletion of dopamine is necessary to manifest rotation in this model (4,13)
Circling behavior can be measured either by observation or by special
devices called rotometers. The rate of rotation correlates with the severity of
the lesion, and animals with more extensive striatal dopamine depletions are
less likely to show behavioral recovery. This simple model of rotation away
from the side with the most dopamine receptor occupancy has recently
proven much more complex and less predictable than previously thought,
especially in the context of various pharmacological treatments and
neuronal transplantation. In addition to rotation, other behavioral
assessments in the 6-OHDA model may include tests of forelimb use,
bilateral tactile stimulation, single limb akinesia, and bracing (for review see
Ref. 14).

The 6-OHDA–lesioned rat model has proven to be a valuable tool in
evaluating (1) the pharmacological action of new drugs on the dopaminergic
system, (2) the mechanisms of motor complications, (3) the neuroplasticity
of the basal ganglia in response to nigrostriatal injury, and (4) the safety and
efficacy of neuronal transplantation in PD. Extensive pharmacological
studies have utilized the 6-OHDA–lesioned rat to investigate the role of
various dopamine receptor (D1–D5) agonists and antagonists and other
neurotransmitter systems (including glutamate, adenosine, nicotine, or
opiods) in modulating dopamine neurotransmission. These studies elucidate
the role of these compounds in electrophysiological, behavioral, and
molecular (signal transduction) properties of the basal ganglia. A review
of the vast amount of pharmacological literature regarding this model is
beyond the scope of this chapter (see Ref. 12).

The 6-OHDA–lesioned rat model has also been an important tool in
elucidating the mechanism(s) underlying motor complications. The chronic
administration of levodopa (over a period of weeks) to the 6-OHDA rat has
been demonstrated to lead to a shortening response similar to the wearing-
off complication in idiopathic PD (15). This altered motor response occurs
when greater than 95% of nigrostriatal cells are lost. Studies using glutamate
antagonists have demonstrated improvement in the wearing-off response
and have implicated the role of glutamate receptor subtypes in the
development of motor complications (16–18). These findings have been
supported by molecular studies that demonstrate alterations in the
phosphorylation state of glutamate receptor subunits of the NMDA
subtype (19). Unlike the wearing-off phenomenon, 6-OHDA lesioned rats
do not develop typical dyskinesias (20).
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In the context of neuroplasticity, the 6-OHDA–lesioned rat model
demonstrates behavioral recovery and has been instrumental in characteriz-
ing the neurochemical, molecular, and morphological alterations within the
basal ganglia in response to nigrostriatal dopamine depletion (21). These
mechanisms of neuroplasticity in surviving dopaminergic neurons and their
striatal terminals include (1) increased turnover of dopamine and its
metabolites, (2) alterations in the expression of tyrosine hydroxylase, the
rate-limiting step in dopamine biosynthesis, (3) decreased dopamine uptake
through altered dopamine transporter expression, (4) alterations in the
electrophysiological phenotype (both pattern and rate of neuronal firing) of
substantia nigra neurons, and (5) sprouting of new striatal dopaminergic
terminals. These molecular mechanisms may provide new targets for novel
therapeutic interventions such as growth factors to enhance the function of
surviving dopaminergic neurons.

The 6-OHDA–lesioned rat model has also been useful for determining
important parameters for successful transplantation. These parameters
include (1) target site (striatum versus substantia nigra), (2) volume of
innervation at the target site, (3) number of cells transplanted, (4) type and
species of cells transplanted including fetal mesencephalon, engineered cell
lines, and stem cells, (5) age of host and donor tissues, (6) pretreatment of
transplant tissue or host with neurotrophic factors, antioxidants, immuno-
suppressive therapy, or neuroprotective pharmacological agents, and (7)
surgical techniques including needle design, cell suspension media, and
transplant cell delivery methods (22,23). The near absence of dopaminergic
neurons and terminals within the striatum due to 6-OHDA lesioning
provide a template for the assessment of sprouting axons and terminals from
the transplant. Measures of transplant success in this model include
reduction in the rotational behavior and the survival, sprouting and
innervation (synapse formation) of dopaminergic fibers within the
denervated striatum. The reduction of rotational behavior suggests
increased striatal dopamine production originating from the transplanted
tissue. Interestingly, not all behavioral measures appear to respond to
transplant. The advancements made in the 6-OHDA–lesioned rat provide a
framework for the further testing of transplantation in nonhuman primates
and future human clinical trials.

While the 6-OHDA–lesioned rat model has many advantages, it serves
primarily as a model of dopamine dysfunction. Lesioning with 6-OHDA is
highly specific for catecholaminergic neurons and does not replicate many of
the behavioral, neurochemical, and pathological features of human PD. For
example, the 6-OHDA–lesioned rat does not manifest alterations in the
cholinergic and serotonergic neurotransmitter systems, which are commonly
affected in PD. Stereotactic injections of 6-OHDA to precise targets does
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not replicate the extensive pathology of PD where other anatomical regions
of the brain (including the locus coeruleus, nucleus basalis of Meynert, and
raphe nuclei) are affected. In addition, Lewy body formation, a pathological
hallmark of PD, has not been reported in this model. Interestingly, a recent
report using a regimen of chronic administration of 6-OHDA into the third
ventricle did show a more extensive lesioning pattern reminiscent of human
PD (24). In addition to the rat, other species including the nonhuman
primate have served as models for 6-OHDA lesioning (25). Lesioning in
nonhuman primates provides for the analysis of behaviors not observed in
the rat, such as targeting and retrieval tasks of the arm and hand.

Overall, lesioning with 6-OHDA has provided a rich source of
information regarding the consequences of precise dopamine depletion and
its effects on rotational behavior, dopamine biosynthesis, biochemical and
morphological aspects of recovery, and serves as an excellent template to
study both pharmacological and transplantation treatment modalities for
PD.

The Neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

The inadvertent self-administration of 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) by heroin addicts in the 1980s induced an acute form
of parkinsonism, whose clinical and biochemical features were indistin-
guishable from idiopathic PD (26,27). Like PD, this MPTP cohort
demonstrated an excellent response to levodopa and dopamine agonist
treatment but developed motor complications within a short period of time
(over weeks). The rapidity with which these motor complications appeared
presumably reflected the severity of substantia nigra neuronal degeneration
induced by MPTP. Given the above similarities between the human model
of MPTP-induced parkinsonism and PD, it became evident that MPTP
could be used to develop animal models of PD.

The subsequent administration of MPTP to a number of different
animals has demonstrated a wide variety of sensitivity to the toxic effects of
MPTP. These differences were shown to be species, strain, and age
dependent. For example, the nonhuman primate is the most sensitive to the
toxic effects of MPTP. The mouse, cat, dog, and guinea pig are less sensitive,
and the rat is the least sensitive. Even within species there are strain
differences. For example, the C57BL/6 mouse is the most sensitive of all
mouse strains tested, while strains such as CD-1 appear almost resistant
(28,29). Some differences amongst strains may also depend on the supplier;
this may account for differences seen with the Swiss Webster mouse (30). In
addition to strain, animal sensitivity to the neurotoxicant effects of MPTP
may be influenced by the animal’s age, with older mice, for example, being
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more sensitive (31,32). Studies suggest that age-dependent differences may
be due to differences in MPTP metabolism (33).

The mechanism of MPTP toxicity has been thoroughly investigated.
The meperidine analog 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) is converted to 1-methyl-4-pyridinium (MPPþ) by monoamine
oxidase B. MPPþ acts as a substrate of the dopamine transporter (DAT),
leading to the inhibition of mitochondrial complex I, the depletion of
adenosine triphosphate (ATP), and cell death of dopaminergic neurons.
MPTP administration to mice and nonhuman primates selectively destroys
dopaminergic neurons of the substantia nigra pars compacta (SNpc), the
same neurons affected in PD (34). Similar to PD, other catecholaminergic
neurons, such as those in the ventral tegmental area (VTA) and locus
coeruleus, may be affected to a lesser degree. In addition, dopamine
depletion occurs in both the putamen and caudate nucleus. The preferential
lesioning of either the putamen or caudate nucleus may depend on animal
species and regimen of MPTP administration (35–37). Unlike PD, Lewy
bodies have not been reported, but eosinophilic inclusions (reminiscent of
Lewy bodies) have been described in aged nonhuman primates (38). The
time course of MPTP-induced neurodegeneration is rapid and therefore
represents a major difference from idiopathic PD, which is a chronic
progressive disease. Interestingly, data from humans exposed to MPTP
indicate that the toxic effects of MPTP may be more protracted than
initially believed (39). Details of MPTP toxicity and utility are described in
Refs. 40 and 41.

The MPTP-Lesioned Mouse Model

The administration of MPTP to mice results in behavioral alterations that
may resemble human parkinsonism. For example hypokinesia, bradykine-
sia, and akinesia can be observed through various behavioral analyses
including open field activity monitoring, swim test, pole test, grip
coordination, and rotorod. Whole body tremor and postural abnormalities
have also been reported, but primarily in the acute phase (42). In general,
these behavioral alterations tend to be highly variable, with some mice
showing severe deficits while others show little or no behavioral change (for
review see Ref. 42). This behavioral variability may be due to a number of
factors, including the degree of lesioning, mouse strain, time course after
lesioning, and the reliability and validity of the behavioral analysis.

The MPTP-lesioned mouse model has proven valuable to investigate
potential mechanisms of neurotoxic induced dopaminergic cell death. For
example, mechanisms under investigation have included mitochondrial
dysfunction, energy (ATP) depletion, free-radical production, apoptosis,
and glutamate excitotoxicity (41). In addition to its utility in studying acute
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cell death, the MPTP-lesioned model also provides an opportunity to study
injury-induced neuroplasticity. The MPTP-lesioned mouse displays the
return of striatal dopamine several weeks to months after lesioning
(35,37,43). The molecular mechanism of this neuroplasticity of the injured
basal ganglia is an area of investigation in our laboratory and in others and
appears to encompass both neurochemical and morphological components.
In addition, work in our laboratory has shown that this plasticity may be
facilitated through activity-dependent processes using treadmill training.

MPTP-Lesioned Nonhuman Primate

Administration of MPTP to nonhuman primates results in parkinsonian
symptoms including bradykinesia, postural instability, and rigidity. In some
species resting or action/postural tremor has been observed (44). Similar to
PD, the MPTP-lesioned nonhuman primate responds to traditional
antiparkinsonian therapies such as levodopa and dopamine receptor
agonists. Following the administration of MPTP, the nonhuman primate
progresses through acute (hours), subacute (days), and chronic (weeks)
behavioral phases of toxicity that are due to the peripheral and central
effects of MPTP. The acute phase is characterized by sedation, and a
hyperadrenergic state, the subacute phase by the development of varying
degrees of parkinsonian features, and the chronic phase by initial recovery
(by some, but not all animals) followed by the stabilization of motor deficits
(45). In general, the behavioral response to MPTP lesioning may vary at
both the inter- and intraspecies levels. Variability may be due to age and
species phylogeny. For example, older animals and Old World monkeys
(such as rhesus Macaca mulatta, or African Green Cercopithecus aethiops)
tend to be more sensitive than young and New World monkeys (such as the
squirrel monkey, Saimiri sciureus, or marmoset, Callithrix jacchus) (46–48).

Behavioral recovery after MPTP-induced parkinsonism has been
reported in most species of nonhuman primates. The degree and time course
of behavioral recovery is dependent on age, species, and mode of MPTP
administration (45). In general the more severely affected animal is less
likely to recover (44). The molecular mechanisms underlying behavioral
recovery of the nonhuman primate is a major focus of our laboratory.
Results of our work and others have identified that the mechanisms
underlying recovery may include (1) alterations in dopamine biosynthesis
(increased tyrosine hydroxylase protein and mRNA expression) and
turnover, (2) downregulation of dopamine transporter, (3) increased
dopamine metabolism, (4) sprouting and branching of tyrosine hydroxylase
fibers, (5) alterations of other neurotransmitter systems, including glutamate
and serotonin, and (6) alterations of signal transduction pathways in both
the direct (D1) and indirect (D2) pathways (49).
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The administration of MPTP through a number of different dosing
regimens has led to the development of several distinct models of
parkinsonism in the nonhuman primate. Each model is characterized by
unique behavioral and neurochemical parameters. As a result, numerous
studies addressing a variety of hypotheses have been conducted. These
studies consist of new pharmacological treatments, transplantation,
mechanisms of motor complications, deep brain stimulation, behavioral
recovery, cognitive impairment, and the development of novel neuropro-
tective and restorative therapies. For example, in some models there is
profound striatal dopamine depletion and denervation with little or no
dopaminergic axons or terminals remaining. This model provides an
optimal setting to test fetal tissue grafting since the presence of any tyrosine
hydroxylase positive axons or sprouting cells would be due to transplanted
tissue survival. Other models have less extensive dopamine depletion and
only partial denervation with a modest to moderate degree of dopaminergic
axons and terminals remaining. This partially denervated model best
resembles mild to moderately affected PD patients. Therefore, sufficient
dopaminergic neurons and axons as well as compensatory mechanisms are
likely to be present. The effects of growth factors (inducing sprouting) or
neuroprotective factors (promoting cell survival) are best evaluated in this
situation. The following section reviews the most commonly used MPTP-
lesioned nonhuman primate models.

In the systemic lesioned model, MPTP may be administered via
intramuscular, intravenous, intraperitoneal, or subcutaneous injection (50–
53). This leads to bilateral depletion of striatal dopamine and nigrostriatal
cell death. A feature of this model is that the degree of lesioning can be
titrated, resulting in a range (mild to severe) of parkinsonian symptoms. The
presence of clinical asymmetry is common, with one side more severely
affected. Levodopa administration leads to the reversal of all behavioral
signs of parkinsonism in a dose-dependent fashion. After several days to
weeks of levodopa administration, animals develop reproducible motor
complications, both wearing-off and dyskinesia. Animal behavior in this
model and others may be assessed using (1) cage-side or video-based
observation, (2) automated activity measurements in the cage through
infrared based motion detectors or accelerometers, and (3) examination of
hand-reaching movement tasks. The principal advantage of this model is
that the behavioral syndrome closely resembles the clinical features of
idiopathic PD. The systemic model has partial dopaminergic denervation
bilaterally and probably best represents the degree of loss seen in all stages
of PD, including end-stage disease where some dopaminergic neurons are
still present. This model is well suited for therapeutics that interact with
remaining dopaminergic neurons, including growth factors, neuroprotective
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agents, and dopamine modulation. The easily reproducible dyskinesia in this
model allows for extensive investigation of its underlying mechanism and
treatment. Disadvantages of this model include spontaneous recovery in
mildly affected animals. Alternatively, bilaterally severely affected animals
may require extensive veterinary care and dopamine supplementation.

Administration of MPTP via unilateral intracarotid infusion has been
used to induce a hemiparkinsonian state in the primate, called the hemi-
lesioned model (54). The rapid metabolism of MPTP to MPPþ in the brain
may account for the localized toxicity to the hemisphere ipsilateral to the
infusion. Motor impairments appear primarily on the contralateral side.
Hemi-neglect, manifested by a delayed motor reaction time, also develops
on the contralateral side. In addition, spontaneous ipsilateral rotation may
develop. Levodopa administration reverses the parkinsonian symptoms and
induces contralateral rotation. Substantia nigra neurodegeneration and
striatal dopamine depletion (>99%) on the ipsilateral side to the injection is
more extensive than seen in the systemic model. The degree of unilateral
lesioning in this model is dose dependent.

Major advantages of the hemi-lesioned model include (1) the ability for
animals to feed and maintain themselves without supportive care, (2) the
availability of the unaffected limb on the ipsilateral side to serve as a
control, and (3) the utility of the dopamine-induced rotation for
pharmacological testing. In addition, due to the absence of dopaminergic
innervation in the striatum, the hemi-lesioned model is well suited for
examining neuronal sprouting of transplanted tissue. A disadvantage of this
model is that only a subset of parkinsonian features is evident, which are
restricted to one side of the body, a situation never seen in advanced PD.

The bilateral intracarotid model employs an intracarotid injection of
MPTP followed several months later by another intracarotid injection on
the opposite side (55). This model combines the less debilitating features of
the carotid model as well as creating bilateral clinical features, a situation
more closely resembling idiopathic PD. The advantage of this model is its
prolonged stability and limited inter-animal variability. Similar to the hemi-
lesioned model, where there is extensive striatal dopamine depletion and
denervation, the bilateral intracarotid model is well suited for evaluation of
transplanted tissue. However, levodopa administration may result in only
partial improvement of parkinsonian motor features and food retrieval
tasks. This can be a disadvantage since high doses of test drug may be
needed to demonstrate efficacy, increasing the risk for medication related
adverse effects.

A novel approach to MPTP lesioning is the administration of MPTP
via intracarotid infusion followed by a systemic injection. This overlesioned
model is characterized by severe dopamine depletion ipsilateral to the
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MPTP-carotid infusion and a partial depletion on the contralateral side due
to the systemic MPTP injection. Consequently, animals are still able to
maintain themselves due to a relatively intact side. The behavioral deficits
consist of asymmetrical parkinsonian features. The more severely affected
side is contralateral to the intracarotid injection (56). Levodopa produces a
dose-dependent improvement in behavioral features, but the complications
of levodopa therapy such as dyskinesia have not been as consistently
observed. This model combines some of the advantages of both the systemic
and intracarotid MPTP models, including stability. This model is suitable
for both transplant studies, utilizing the more depleted side, and
neuroregeneration with growth factors, utilizing the partially depleted side
where dopaminergic neurons still remain.

Finally, the chronic low-dose model consists of intravenous injections
of a low dose of MPTP administration over a 5- to 13-month period (57).
This model is characterized by cognitive deficits consistent with frontal lobe
dysfunction reminiscent of PD or normal aged monkeys. These animals
have impaired attention and short-term memory processes and perform
poorly in tasks of delayed response or delayed alternation. Since gross
parkinsonian motor symptoms are essentially absent, at least in early stages,
this model is well adapted for studying cognitive deficits analogous to those
that accompany idiopathic PD.

The MPTP-lesioned nonhuman primate has provided a valuable tool
for investigating potential mechanisms underlying motor complications
related to long-term levodopa use in human idiopathic PD. The MPTP-
lesioned nonhuman primate has been shown to demonstrate both wearing-
off and dyskinesia. Although the etiology of dyskinesia is unknown,
electrophysiological, neurochemical, molecular, and neuroimaging studies
in the nonhuman primate models suggest that the pulsatile delivery of
levodopa may lead to (1) changes in the neuronal firing rate and pattern of
the globus pallidus and subthalamic nucleus, (2) enhancement of D1- and/or
D2-receptor–mediated signal transduction pathways, (3) super-sensitivity of
the D2 receptor; (4) alterations in the phosphorylation state and subcellular
localization of glutamate (NMDA subtype) receptors, (5) modifications in
the functional links between dopamine receptor subtypes (D1 and D2, and
D1 and D3), (6) changes in glutamate receptors (AMPA and NMDA
receptor subtypes), and (7) enhancement of opiod-peptide–mediated
neurotransmission (58–62).

While the presence of a nigral lesion has long been considered an
important prerequisite for the development of dyskinesia in the MPTP
model, recent studies demonstrate that even normal nonhuman primates
when given sufficiently large doses of levodopa (with a peripheral
decarboxylase inhibitor) over 2–8 weeks may develop peak-dose dyskinesia
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(63). The high levels of plasma levodopa in this dosing regimen may serve to
exhaust the buffering capacity within the striatum of the normal animal and
therefore lead to pulsatile delivery of levodopa and priming of postsynaptic
dopaminergic sites for dyskinesia.

In addition to its central effects, the administration of MPTP may lead
to systemic effects, which may prove detrimental to any animal during the
induction of a parkinsonian state. For example, the peripheral conversion of
MPTP to MPPþ in the liver could lead to toxic injury of the liver and heart.
To address these potential peripheral effects of MPTP, squirrel monkeys
were administered MPTP (a series of 6 subcutaneous injections of 2mg/kg,
free-base, 2 weeks apart) and were given a comprehensive exam 1, 4, and 10
days after each injection. This exam included measurements of body weight,
core body temperature, heart rate, blood pressure, liver and kidney
function, and white blood cell count. Biochemical markers of hepatocellular
toxicity were evident within days of MPTP lesioning and persisted for
several weeks after the last injection. In addition, animals had significant
hypothermia within 48 hours after lesioning that persisted for up to 10 days
after the last MPTP injection. The pathophysiology of these effects may be
directly related to MPTP itself and/or its metabolites. The systemic effects of
MPTP on animal models should be taken into consideration during the
design of any pharmacological study.

Methamphetamine

Amphetamine and its derivatives (including methamphetamine) lead to
long-lasting depletion of both dopamine and serotonin when administered
to rodents and nonhuman primates (64,65). Methamphetamine (METH),
one of the most potent of these derivatives, leads to terminal degeneration of
dopaminergic neurons in the caudate-putamen, nucleus accumbens, and
neocortex. In contrast to MPTP, the axonal trunks and soma of SNpc and
VTA neurons are spared (66). However, there have been occasional reports
of METH-induced cell death in the substantia nigra (67). In general, the
effects of severe METH lesioning are long-lasting. There is evidence of
recovery of dopaminergic innervation depending on the METH regimen
and species used (68). Despite the severe depletion of striatal dopamine, the
motor behavioral alterations seen in rodents and nonhuman primates are
subtle (69).

The neurotoxic effects of METH are dependent on the efflux of
dopamine since agents that deplete dopamine or block its uptake are
neuroprotective (70,71). The metabolic mechanisms underlying METH-
induced neurotoxicity involve the perturbation of antioxidant enzymes such
as glutathione peroxidase or catalase, leading to the formation of reactive
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oxygen/nitrogen species including H2O2, superoxide, and hydroxyl radicals
(72–76). The administration of antioxidant therapies or overexpression of
superoxide dismutase (SOD) in transgenic mice models is neuroprotective
against METH toxicity (77,78). In addition, both glutamate receptors and
nitric oxide synthase (NOS) are important to METH-induced neurotoxicity
since the administration of either NMDA receptor antagonists or NOS
inhibitors are also neuroprotective (79). Other factors important to METH-
induced neurotoxicity include the inhibition of both tyrosine hydroxylase
and dopamine transporter activity and METH-induced hyperthermia (75).

The administration of METH to adult animals has played an
important role in testing the molecular and biochemical mechanisms
underlying dopaminergic and serotonergic neuronal axonal degeneration,
especially the role of free radicals and glutamate neurotransmission.
Understanding these mechanisms has led to testing different neuroprotective
therapeutic modalities. An advantage of the METH model over MPTP is
that the serotonergic and dopaminergic systems can be lesioned in utero
during the early stages of the development of these neurotransmitter
systems. Such studies have indicated that there is a tremendous degree of
architectural rearrangement that occurs within the dopaminergic and
serotonergic systems of injured animals as they develop. These changes
may lead to altered behavior in the adult animal (80).

In light of the toxic nature of these compounds in animals, studies in
humans have suggested that abusers of METH and substituted ampheta-
mines (including MDMA, ‘‘ecstasy’’) may suffer from the long-lasting
effects of these drugs (81,82). Specifically, these individuals may be prone to
develop parkinsonism (83).

Rotenone

Epidemiological studies have suggested that environmental factors such as
pesticides may increase the risk for PD (84). The demonstration of specific
neurochemical and pathological damage to dopaminergic neurons by the
application of various pesticides such as rotenone (an inhibitor of
mitochondrial complex I) have supported these epidemiological findings.
For example, using a chronic rotenone infusion paradigm, Greenamyre and
colleagues reported degeneration of a subset of nigrostriatal dopaminergic
neurons, the formation of cytoplasmic inclusions, and the development of
parkinsonian behavioral features (including hunched posture, rigidity,
unsteady movement, and paw tremor) in the rat (85). Studies examining
the effects of various pesticide applications in animal models may lead to
insights into the mechanisms of neuronal death in PD (86).
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GENETIC MODELS OF PARKINSON’S DISEASE

In addition to pharmacological and neurotoxicant models of PD, there are
spontaneous rodent (such as the weaver mouse and AS/AGU rat) and
transgenic mouse (including parkin, a-synuclein) models that provide
important avenues to investigate the basal ganglia.

Spontaneous Rodent Models for Parkinson’s Disease

There are several naturally occurring spontaneous mutations in rodents that
are of particular interest in PD. Spontaneous rodent models include the
weaver, lurcher, reeler, Tshrhyt, tottering, coloboma mice and the AS/AGU
and circling (ci) rat. These models possess unique characteristics that may
provide insight into neurodegenerative processes of PD and related
disorders. Several of these spontaneous rodent models display altered
dopaminergic function or neurodegeneration and have deficits in motor
behavior (87). For example, the weaver mouse displays cell death of
dopaminergic neurons while the tottering mouse displays tyrosine hydro-
xylase hyperinnervation. The AS/AGU rat is a spontaneous model
characterized by progressive rigidity, staggering gait, tremor, and difficulty
in initiating movements (88). Microdialysis in the AS/AGU rat model has
revealed that even prior to dopaminergic neuronal cell death, there is
dysfunction in dopaminergic neurotransmission that correlates with
behavioral deficits. Another potentially interesting rodent model is the
circling (ci) rat (89). This animal model displays spontaneous rotational
behavior as a result of an imbalance in dopaminergic neurotransmission
despite the absence of asymmetrical nigral cell death.

Transgenic Mouse Models

The development of transgenic animal models is dependent on identifying
genes of interest. A transgenic mouse is an animal in which a specific gene of
interest has been altered through one of several techniques including: (1) the
excision of the host gene (knock-out), (2) the introduction of a mutant gene
(knock-in), and (3) the alteration of gene expression (knock-down). In PD,
one source of transgenic targeting is derived from genes identified through
epidemiological and linkage analysis studies. a-Synuclein and parkin are
examples of genes that have been identified through linkage analysis. Other
transgenic animals have been developed based on the identification of genes
important for normal basal ganglia and dopaminergic function. These
transgenic mouse lines target several genes, including superoxide dismutase
(SOD), glutathione reductase, monoamine oxidase (MAO), dopamine
receptors (D1, D2), dopamine transporter (DAT), caspases, neurotrophic
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factors (BDNF and GDNF), and neurotransmitter receptors (NMDA and
AMPA). Once the transgene has been constructed, the degree of its
expression and its impact on the phenotype of the animal depends on many
factors, including the selection of sequence (mutant versus wild-type), site of
integration, number of copies recombined, selection of transcription
promoter, and upstream controlling elements (enhancers). Other important
factors may include the background strain and age of the animal. These
different features may account for some of the biochemical and pathological
variations observed among transgenic mouse lines. Two examples of recent
transgenic mouse lines are discussed.

Parkin

An autosomal recessive form of juvenile parkinsonism (AR-JP) led to the
identification of a gene on chromosome 6q27 called parkin (90,91).
Mutations in parkin may account for the majority of autosomal recessive
familial cases of PD. Parkin protein has a large N-terminal ubiquitin-like
domain and C-terminal cysteine ring structure and is expressed in the brain
(92–94). Recent biochemical studies indicate that Parkin protein may play a
critical role in mediating interactions with a number of different proteins
involved in the proteasome-mediated degradation pathway, including a-
synuclein (95,96). Mutations of the parkin gene have been introduced into
transgenic mice. At present there is very little known about pathological or
behavioral alterations due to mutations in Parkin protein. However, parkin
transgenic models enable investigation of the ubiquitin-mediated protein
degradation pathways and their relationship to neurodegenerative disease.

a-Synuclein

Rare cases of autosomal dominant familial forms of PD (the Contursi and
German kindreds) have been linked to point mutations in the gene encoding
a-synuclein (97). The normal function of a-synuclein is unknown, but its
localization and developmental expression suggests a role in neuroplasticity
(98,99). The disruption of normal neuronal function may lead to the loss of
synaptic maintenance and subsequent degeneration. It is interesting that
mice with knockout of a-synuclein are viable, suggesting that a ‘‘gain-in-
function’’ phenotype or other protein-protein interactions may contribute to
neurodegeneration. Although no mutant forms of a-synuclein have been
identified in idiopathic PD, its localization to Lewy bodies (including PD
and related disorders) has suggested a patho-physiological link between a-
synuclein aggregation and neurodegenerative disease. To investigate these
potential mechanisms, several groups have developed transgenic mouse
models. An interesting caveat is that the mutant allele of a-synuclein in the
Contursi kindred is identical to the wild-type mouse, suggesting that protein
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expression and/or protein-protein interactions may be more important than
loss of function due to missense mutation. Therefore, transgenic mouse
models developed for a-synuclein focus on altered protein expression
through the use of different promoters and gene cassette constructs. Some
transgenic mouse lines show pathological changes in dopaminergic neurons
(including inclusions, decreased striatal dopamine, and loss of striatal
tyrosine hydroxylase immunoreactivity), behavioral deficits (rotorod and
attenuation of dopamine-dependent locomotor response to amphetamine),
while other lines show no deficits (100–102). No group has reported the loss
of substantia nigra dopaminergic neurons. This range of results with
different a-synuclein constructs from different laboratories underscores the
important link between protein expression (mutant vs. wild-type alleles) and
pathological and behavioral outcome. Important applications of a-synuclein
transgenic mice are occurring at the level of understanding the role of this
protein in basal ganglia function. For example, the response of a-synuclein
expression to neurotoxic injury as well as interactions with other proteins,
including parkin, will provide valuable insights into mechanisms important
to neurodegeneration (95).

Invertebrate Models

Recent developments of invertebrate transgenic models (such as in
Drosophila melanogaster) for a-synuclein, parkin, and other genes of interest
provide another avenue to investigate the function of proteins of interest in
PD. In addition, the application of dopaminergic-specific toxins, such as 6-
OHDA to Caenorhabditis elegans, may provide another tool for under-
standing mechanisms of cell death (103). Unlike mammalian animal models,
invertebrate models tend to be less expensive and greater numbers can be
generated in shorter periods of time. These advantages offer a means for
high-volume screening of pharmacological agents for the treatment of PD
(104,105).

MODELS OF PD VARIANTS

While the models discussed in the above sections provide insights into PD as
well as related disorders such as multisystem atrophy (MSA) and
progressive supranuclear palsy (PSP), other models have been developed
that share a greater similarity with these variants.

Multisystem Atrophy and Striatonigral Degeneration

Multisystem atrophy (MSA) is a variant of PD characterized by a
combination of clinical symptoms involving cerebellar, extrapyramidal,
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and autonomic systems. The predominant subtype of MSA is striatonigral
degeneration (SND), a form of levodopa-unresponsive parkinsonism.
Neuropathological changes of SND include degeneration of the nigros-
triatal pathway, medium spiny striatal GABAergic projection pathways
(putamen greater than caudate), as well as other regions of the brain stem,
cerebellum, and spinal cord. Inclusion-like aggregates that immuno-stain for
ubiquitin and a-synuclein are seen in oligodendrocytes and neurons.

The basis for developing an animal model for SND emerged from
established animal models for both parkinsonian (having SNpc pathology)
and Huntington’s disease (HD) (having striatal pathology). For example,
rodent models for SND have been generated through sequential stereotactic
injections of 6-OHDA and quinolinic acid (QA) into the medial forebrain
bundle and striatum, respectively, or striatal injections of MPPþ and 3-
nitropropionic acid (3-NP)(106–108). These double-lesioning models are
characterized morphologically by neuronal degeneration in the SNpc and
ipsilateral striatum. The order of neurotoxic lesioning may influence the
degree of nigral or striatal pathology. For example, animals receiving 6-
OHDA prior to QA exhibit predominantly nigral pathology, while animals
receiving QA prior to 6-OHDA show predominantly striatal pathology.
This may be due to QA-induced terminal damage or other complex
interactions after lesioning that reduce terminal uptake of 6-OHDA. Glial
inclusions have not been reported in any of these models indicating a
significant difference compared with the human condition.

Motor deficits in models for MSA and SND are assessed by ipsilateral
and contralateral motor tasks (including stepping response, impaired paw
reaching, and balance) and drug-induced circling behavior. As described
earlier, characteristic drug-induced circling behavior occurs after 6-OHDA
lesioning resulting in ipsilateral rotation in response to amphetamine and
contralateral rotation in response to apomorphine. The subsequent striatal
lesioning with QA diminishes (or has no effect on) amphetamine-induced
ipsilateral rotation and reduces (or abolishes) apomorphine-induced
contralateral rotation. This observation may be mediated by dopamine
release on the intact side (in response to amphetamine) and/or the loss of
dopamine receptor activation on the lesioned side (in response to
apomorphine). The lack of response to apomorphine has been shown to
correlate with the volume of the striatal lesion and is analogous to the
diminished efficacy of levodopa therapy observed in the majority of SND
patients.

A nonhuman primate (Macaca fasicularis) model of SND has been
generated through the sequential systemic administration of MPTP and 3-
NP (106,109). The parkinsonian features after MPTP lesioning are levodopa
responsive, but subsequent administration of 3-NP worsens motor
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symptoms and nearly eliminates the levodopa response. Levodopa
occasionally induces facial dyskinesia as sometimes seen in human MSA.
Similar to SND morphological changes include cell loss in the SNpc (typical
of MPTP-lesioning) and severe circumscribed degeneration of striatal
GABAergic projection neurons (typical of 3-NP lesioning). Despite the
similarities with the human condition, the MSA model is characterized by
an equal degree of lesioning in the putamen and caudate nucleus, while in
human SND the putamen is more affected. In addition, inclusion bodies
that may underlie the pathogenesis of SND have not been reported in the
nonhuman primate model.

The Tauopathies Including Progressive Supranuclear Palsy
and Other Tau-Related Disorders

The low molecular weight microtubule-associated protein tau has been
implicated in a number of neurodegenerative diseases, including Alzheimer’s
disease, progressive supranuclear palsy (PSP), Pick’s disease, frontotem-
poral dementia with parkinsonism (FTDP), and amyotrophic lateral
sclerosis/parkinsonism-dementia complex (ALS/PDC) of Guam. Together
these neurodegenerative diseases comprise what is referred to as tauopa-
thies, since they share common neuropathological features including
abnormal hyperphosphorylation and filamentous accumulation of aggre-
gated tau proteins. Reports in the literature have implicated either
alternative RNA splicing (generating different isoforms) or missense
mutations as mechanisms underlying many of the tauopathies. Therefore,
transgenic mice have been generated that overexpress specific splice variants
or missense mutations of tau (110). One such transgenic line has been
developed to overexpress the shortest human tau isoform (111). These mice
showed progressive motor weakness, intraneuronal and intra-axonal
inclusions (detectable by 1-month postnatal), and reduced axonal transport.
Fibrillary tau inclusions developed in the neocortical neurons after 18
months of age implicating age-specific processes in the pathogenesis of
fibrous tau inclusions. An interesting tau transgenic line has been developed
in Drosophila melanogaster, where expression of a tau missense mutation
showed no evidence of large filamentous aggregates (neurofibrillary tangles).
However, aged flies showed evidence of vacuolization and degeneration of
cortical neurons (112). These observations suggest that tau-mediated
neurodegeneration is age-dependent and may take place independent of
protein aggregation.
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CONCLUSIONS

Our understanding of Parkinson’s disease and related disorders has been
advanced through animal models using surgical, pharmacological, and
neurotoxicant manipulation. The nonhuman primate, rodent, cat, and pig
models have contributed to the development of symptomatic (dopamine
modulation), neuroprotective (antioxidants, free-radical scavengers), and
restorative (growth factors, transplantation) therapies. In addition, these
animal models have furthered our understanding of motor complications
(wearing off and dyskinesia), neuronal cell death, and neuroplasticity of the
basal ganglia. Future direction in PD research is through the continued
development of animal models with altered genes and proteins of interest. In
conjunction with existing models, these genetic-based models may lead to
the eventual cure of PD and related disorders.
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