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Abstract

This paper analyzes airport congestion when carriers are nonatomistic, showing how the re-
sults of the road-pricing literature are modi¯ed when the economic agents causing congestion
have market power. The analysis shows that when an airport is dominated by a monopolist,
either discriminating or nondiscriminating, congestion is fully internalized, provided that a
separability assumption on travel bene¯ts is satis¯ed. The analysis thus yields no role for
congestion pricing under monopoly conditions. Under a Cournot oligopoly, however, carriers
are shown to internalize only the congestion they impose on themselves. A toll that captures
the uninternalized portion of congestion can then improve the allocation of tra±c. The toll
is equal to the congestion cost from an extra °ight times one minus a carrier's °ight share.
At an airport like Chicago-O'Hare, this rule would imply that United and American would be
charged for only about half of the congestion created by an additional °ight.
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1. Introduction

Air tra±c delays in the U.S. have grown dramatically in the last few years, becoming a

major public policy issue. In Europe, delays have plagued airline tra±c for an even longer

period. A delay occurs when an airline °ight arrives more than 15 minutes late. Under this

de¯nition, U.S. °ights experienced 374,116 delays in 1999, and delays grew to 450,289 in the

year 2000, for a stunning 20.4 percent single-year increase.

Table 1 shows delay data for the 15 U.S. airports with the most delays in 1999.1 While the

delay totals represent delays attributable to local operations at the given airport, the on-time

¯gures also capture the e®ect of delays elsewhere in the system (which a®ect arrivals, as well

as subsequent departures, at the given airport). The poor on-time records of Newark and New

York-La Guardia, which are widely recognized, are clear in the table, but the poor performance

of other airports (Boston, Philadelphia, Washington-Dulles) is also evident.

Table 1 shows that weather is the major reason for delays, accounting for well over half

of the total in most cases. Typically, the second largest source of delays is \volume" (i.e.

tra±c exceeding airport capacity), whose share is also shown in the table. However, because

weather-related delays often arise from restricted airport operations during bad weather, both

sources actually re°ect the same problem: too many °ights attempting to take o® and land

relative to airport capacity.2

Solutions to the delay problem are now widely discussed in policy circles and in the press.

Increasing the size of congested airports by investing in new runways is one remedy, although

the long gestation period of such projects means that the bene¯ts lie far in the future. Im-

provement in air tra±c control technology, which can increase the capacity of the nation's

airspace while also allowing busy airports to handle more °ights, is another remedy that is

slowly being implemented. A third remedy for the delay problem is the imposition of conges-
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tion pricing at U.S. airports. With such a pricing mechanism, the landing fees paid by airlines

would vary with the level of congestion at the airport. This approach stands in sharp contrast

to current practice, where the landing fee incurred by a °ight depends only on the weight of

the aircraft, being unrelated to time of day or airport conditions. Under congestion pricing,

operating costs at peak hours would rise substantially relative to o®-peak costs, encouraging

airlines to shift their °ights away from the peak. With a more-even distribution of tra±c across

time, airport congestion would fall, reducing the number of delays. Although no U.S. airport

has implemented congestion pricing, endorsements of such a system are now frequently heard.

For example, the in°uential 1999 monograph by the Transportation Research Board included

a call for congestion pricing among its host of airline policy recommendations.

The theory of congestion pricing has been developed mainly through analysis of road

pricing (see Small (1992) for a survey). The theory demonstrates that peak usage of a road or

other congested facility is excessive because each user does not take the delays he imposes on

fellow users into account. Peak usage can be appropriately restricted by imposing a congestion

toll equal to the cost of the external delays that each user imposes.

Transportation researchers have long recognized that this principle applies to airports as

well as urban highways. Levine (1969) and Carlin and Park (1970) o®er the earliest discussions

of airport congestion pricing, with later treatments given by Morrison (1983) and Morrison

and Winston (1989). The most sophisticated analysis, however, is provided by Daniel (1995,

2000, 2001), who develops a detailed simulation model that shows the e®ects of congestion

pricing in a realistic setting.

Given the intense current focus on the airport congestion problem and possible remedies,

it is important to ensure that our understanding of the congestion problem is sound on a

theoretical level. However, most of the previous literature can be criticized for simply extrap-

olating the lessons of road-pricing models to the case of airports without recognizing a critical

di®erence between these contexts. In particular, although road users are appropriately viewed

as atomistic, with each user small relative to total tra±c, this view is incorrect in the case

of airlines. As seen in Table 1, one or two airlines operate most of the °ights at the highly

congested U.S. airports. For example, United and American each operate around 40 percent
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of the °ights at Chicago-O'Hare, while Delta operates over 70 percent of Atlanta's °ights. As

a result, an atomistic model of congestion will be inappropriate when applied in an airport

context.

The purpose of the present paper is to show that, when the atomistic model is abandoned,

the verdict on congestion is softened. While atomistic users of a congested facility ignore their

external e®ects, the analysis shows that a nonatomistic airline takes into account a portion of

the congestion caused by each of its °ights. In particular, the airline internalizes the congestion

each °ight imposes on the other °ights it operates. This internalization suggests that the over-

allocation of °ights to peak hours may not be as severe in practice as an atomistic model would

predict. Indeed, in the case where an airport is served by a single monopolistic carrier, the

analysis shows that the peak/o®-peak allocation of °ights may be e±cient. These ¯ndings are

important because they suggest a more-limited role for airport congestion pricing than that

envisioned by many analysts.

Since Daniel (1995) recognizes the possible internalization of airport congestion, this basic

insight has appeared before in the literature. However, an important contribution of the present

paper is to develop the insight in the context of a transparent model (Daniel's simulation

framework is highly complex). Moreover, the current model has an important feature that

is missing from previous work. In particular, the internalization of congestion in the model

occurs partly through congestion's e®ect on airfares.

To see this contribution more clearly, note that two types of costs from airport congestion

are recognized in the model. These are additional passenger time costs, which capture the value

of time lost to delays, and increased airline operating costs, re°ecting the greater crew expenses

and reduced aircraft utilization resulting from congestion. In Daniel's model, the airline is

assumed to allocate its °ights across peak and o®-peak periods so as to minimize the sum of

these costs. While this is a convenient behavioral assumption, its drawback is that passenger

time costs are not actually a direct cost to the airline. Carriers may end up taking such costs

into account, but the proper avenue for such an e®ect must be through airfares. In other words,

the need to o®er a fare discount for travel during a congested period forces the carrier to take

passenger time costs into account. The present model follows this approach, portraying the
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airline as a pro¯t maximizer charging congestion-sensitive fares. When the carrier has market

power, it takes this fare sensitivity into account in allocating °ights between the peak and

o®-peak periods. Relative to a cost-minimizing model, the result is a more-realistic framework

for analyzing internalization of airport congestion.

The model assumes that the day consists of two travel periods, a narrow, congestible

peak period and an broader o®-peak period where congestion never arises. Passengers are

represented by a continuum, with the bene¯ts of peak and o®-peak travel di®ering for each

individual, but with both bene¯ts increasing across the continuum. When the two bene¯t

functions satisfy a single-crossing condition, the continuum divides at a critical point between

the peak and o®-peak periods. Fares are set taking travel bene¯ts and the time cost of peak

travel into account, and the airline then maximizes pro¯t.

The analysis begins by characterizing the socially optimal tra±c allocation between the

peak and o®-peak periods. To compare equilibrium outcomes to the social optimum, the dis-

cussion ¯rst considers the benchmark competitive case, where carriers are atomistic. Then, the

analysis turns to the case of a perfectly discriminating monopolist, who can charge a di®erent

fare to each passenger. The more-realistic case where the monopolist cannot discriminate is

then considered, with fares di®ering only between the peak and o®-peak periods. Using the

same assumption on fares, the analysis concludes with a discussion of oligopoly models, con-

sidering both the Cournot and Stackelberg cases. In each of the nonatomistic cases, congestion

is partially or fully internalized, suggesting a limited role for congestion pricing.

2. Basic Analysis

2.1. The model

The analysis is based on the simplest possible model capable of illustrating the relevant

issues. As noted above, the model distinguishes between two travel periods at a given airport,

denoted peak and o®-peak.3 The peak period consists of a relatively short time window

containing the day's most desirable travel times, such as early morning or late afternoon. To

be realistic, the peak could consist of a collection of disjoint time intervals representing these

desirable times. The o®-peak period represents travel times not included in the peak.
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To avoid inessential complications, the o®-peak period is assumed to be uncongested over

the range of passenger allocations examined in the model. In e®ect, the demand for o®-peak

travel is assumed to be small enough relative to airport capacity that o®-peak congestion never

occurs. By contrast, the peak period is always congested over the range of relevant allocations.

Peak congestion depends on the number of °ights operating during the peak period, de-

noted np. Congestion raises an airline's operating costs, with cost per °ight given by c in the

o®-peak period and by c + g(np) in the congested peak period, where g is nondecreasing and

convex. The function g(¢) must be zero for np su±ciently small, but its positive range (where

the function is increasing) is assumed to be relevant. All °ights are assumed to use identical

aircraft with ¯xed seat capacity s, and for simplicity, a 100 percent load factor is assumed, so

that all seats are l̄led.

To characterize the e®ect of congestion on passenger time costs, the demand side of the

model must be developed. First, it is assumed that passengers are represented by a continuum

with index µ. For simplicity, µ is uniformly distributed between zero and one with unit density,

so that the total mass of passengers is unity. Passenger utility is given by the sum of consump-

tion x and travel bene¯ts B, with u = x+B. Since consumption is equal to income minus the

airfare, it follows that travel decisions can be based on the di®erence between bene¯ts B and

the fare.

Travel bene¯ts depend on µ, and they di®er for peak and o®-peak travel. The bene¯ts from

o®-peak travel are given by the function bo(µ). The bene¯ts of peak travel, which are a®ected

by congestion and thus by np, are represented by Bp(µ; np). For most of the analysis, an

important restriction is placed on this function. In particular, the bene¯t function is assumed

to be additively separable in its arguments, with Bp(µ; np) ´ bp(µ) ¡ t(np). The function

bp thus represents the \gross" bene¯t of peak travel, which would apply in the absence of

congestion. The function t represents the additional passenger time costs resulting from travel

during the congested peak period. The key implication of separability is that these time costs

do not depend on µ. Like g, t(¢) is assumed to be nondecreasing and convex, and its positive

range (where the function is increasing) is assumed to be relevant.

As the analysis will demonstrate, the additive separability of Bp yields clearcut conclusions
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regarding internalization of congestion. Once these conclusions are derived, the discussion con-

siders the nonseparable case, showing how the results become less clearcut. It is shown, how-

ever, that the overall lesson of the analysis (substantial internalization of congestion) continues

to apply in this more general case.

In order to make the analysis tractable, the properties of the bene¯t functions bp and bo are

also restricted by imposing a number of simplifying assumptions. The ¯rst assumption is that

no two passengers have the same o®-peak bene¯ts, with the same statement applying to peak

bene¯ts. Exploiting the ¯rst of these properties, let consumers be sorted in increasing order

of bo, so that b0o(µ) > 0 holds for all µ 2 [0; 1]. The second assumption is that peak bene¯ts

are also increasing in µ, with b0p(µ) > 0 also holding over the unit interval. This assumption is

natural because it says that peak and o®-peak travel bene¯ts increase in step with one another

across the passenger continuum. Thus, a high value for peak travel is associated with a high

value for o®-peak travel, indicating a natural linkage in a passenger's valuation of the two

travel periods.

A third assumption is imposed in order to easily characterize the allocation of passengers

between the peak and o®-peak periods. This assumption says that the bene¯t functions bp(µ)

and bo(µ) exhibit a single-crossing property. In particular, one of the following relationships

holds for all µ 2 [0; 1]: b0p(µ) > b0o(µ), b0p(µ) = b0o(µ), or b0p(µ) < b0o(µ). Thus, the peak bene¯t

function is either steeper everywhere than the o®-peak function, has the same slope, or is

°atter everywhere.

It should be noted that, in other continuum-based models of consumer sorting, a single-

crossing property can be generated from primitive assumptions on preferences rather than

being imposed arbitrarily, as is necessary here. Epple and Romer (1991), for example, rely on

a normality assumption to generate single crossing in their local public ¯nance model, which

guarantees a simple pattern of consumer sorting by income across communities.

To make the above single-crossing assumptions more concrete, µ could be viewed as an

index of the passenger's tendency to travel on business. Since business travel, associated with

a high µ, is a crucial job requirement, both peak and o®-peak travel bene¯ts should be high

relative to bene¯ts for a low-µ leisure traveler. As a result, b0p; b0o > 0 should hold. Moreover,
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since business travel must occur during the early and late peak hours to avoid disruption of

the work day, peak travel bene¯ts should increase relative to o®-peak bene¯ts as µ increases,

yielding b0p > b0o.

Note that this single-crossing inequality actually says nothing about the levels of the bene¯t

functions. However, to avoid a degenerate equilibrium, it is shown below that the levels of the

functions must be such that they intersect at an intermediate value of µ. Thus, bp(µ) >

(<) bo(µ) must hold for high (low) µ, indicating that peak bene¯ts are higher (lower) than

o®-peak bene¯ts for business (leisure) passengers.

The other two single-crossing cases are less easily rationalized in the business-leisure con-

text. If b0p ´ b0o, then the di®erential between peak and o®-peak bene¯ts is constant across

passenger types, which would be true if the leisure passenger shared the business passenger's

preference for peak hours. If b0p < b0o holds, on the other hand, then peak bene¯ts decline

relative to o®-peak bene¯ts as the tendency for business travel rises, a counterintuitive pat-

tern. Because of the lower plausibility of these latter cases, the bulk of the analysis is carried

out under the assumption that the ¯rst single-crossing case, where b0p > b0o holds, is relevant.

However, recognizing that the alternate cases may be appropriate under some other scenario,

the discussion shows how they e®ect the results of the analysis.

It should be noted that, under the business-leisure interpretation of the passenger con-

tinuum, the separability assumption for peak bene¯ts may be unrealistic. In particular, the

higher time valuation of business passengers would suggest that, rather than depending on

np alone, time cost t should be an increasing function of µ. In this case, the bene¯t func-

tion Bp(µ; np) cannot be expressed in a separable fashion, an outcome whose consequences are

explored below.

2.2. The social optimum

The social optimum consists of an allocation of passengers to the peak and o®-peak periods

that maximizes welfare, measured as the di®erence between travel bene¯ts for passengers

and airline costs. Given the single-crossing assumption, the optimal allocation will have the

property that high-µ passengers use the peak period, with low-µ passengers traveling o®-peak.

The problem then involves choosing the critical point µ¤ that separates the two groups of
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passengers. In addition, a lower bound µ is chosen, below which consumers do not travel.

To show that passengers are allocated as claimed between the peak and o®-peak, suppose

to the contrary that a high-µ passenger with µ = µh were allocated to the o®-peak period, while

a low-µ passenger with µ = µl < µh were allocated to the peak. Combined travel bene¯ts for

the two passengers is then bo(µh) + bp(µl)¡ t(np). Now consider switching the assignments of

the two passengers, which would yield the new bene¯t expression bo(µl) + bp(µh)¡ t(np). Note

that since the number of peak and o®-peak passengers is una®ected, t(np) as well as airline

costs are unchanged. Subtracting the ¯rst expression above from the second, the change in

travel bene¯ts is equal to [bp(µh) ¡ bp(µl)] ¡ [bo(µh) ¡ bo(µl)]. Since b0p exceeds b0o over the

interval [µl; µh], this expression is positive, implying that the initial assignment of passengers

was not optimal.

With high-µ passengers assigned to the peak, the welfare measure (travel bene¯ts minus

airline costs) can be written

W =
Z µ¤

µ
bo(µ)dµ +

Z 1

µ¤
[bp(µ)¡ t(np)]dµ ¡ noc ¡ np[c + g(np)]; (1)

where no is the number of o®-peak °ights (recall that the density of µ is unitary). The

discreteness of peak and o®-peak °ights is ignored, with both np and no chosen in a continuous

fashion to satisfy the relations snp = 1 ¡ µ¤ and sno = µ¤ ¡ µ (recall that s gives seats per

°ight). Substituting in (1), W can then be rewritten as

Z µ¤

µ
bo(µ)dµ +

Z 1

µ¤
fbp(µ)¡ t[(1 ¡ µ¤)=s]gdµ ¡ c(1¡ µ)=s ¡ [(1¡ µ¤)=s]g[(1¡ µ¤)=s)]: (2)

Di®erentiating (2), the ¯rst-order condition for choice of µ is

bo(µ) ¸ c=s; (3)

with equality holding if µ > 0. This condition says that, for the lowest-µ consumer who travels,

bene¯ts are at least as large as the cost an airline seat (cost per °ight divided by seats per

8



°ight). If bo(0) > c=s, so that bene¯ts for the consumer at the bottom of the continuum exceed

the seat cost, then (3) is satis¯ed as an inequality, and all consumers travel. If the reverse

inequality holds, then (3) is satis¯ed as an equality at some positive µ, and consumers at the

bottom of the continuum do not travel.

Assuming an interior solution, the ¯rst-order condition for choice of µ¤ is given by

[bp(µ¤)¡ t(np)¡ bo(µ¤)] ¡ npt0(np) ¡ (1=s)[g(np) + npg0(np)] = 0; (4)

where np = (1¡µ¤)=s. It can be shown that, for an interior µ¤ to emerge, the bene¯t functions

bp and bo must intersect between µ and µ = 1, as noted above.4 To interpret (4), note that

the ¯rst expression gives the change in travel bene¯ts for a passenger who is switched from the

o®-peak to the peak period. As a result of this switch, which corresponds to a reduction in µ¤,

the passenger gains bp(µ¤)¡ t(np) in peak bene¯ts while losing bo(µ¤) in o®-peak bene¯ts. The

extra peak passenger also generates a congestion e®ect. His presence requires a 1=s increase in

peak °ights, yielding (1=s)t0(np) in additional time cost for each peak passenger. Since there

are 1¡ µ¤ such passengers, the total e®ect is given by the product of the last two expressions,

or npt0(np) (the second term in (4)). The congestion caused by higher peak tra±c also raises

operating costs for existing °ights. This e®ect is captured by (1=s)npg0(np) in (4), which

equals the increase in cost per °ight ((1=s)g0) times the number of °ights a®ected. Finally,

the need to o®er more peak °ights also raises airline costs. While the o®setting reduction in

o®-peak °ights means that the part of the cost expression involving c is unchanged, the extra

peak-period °ights generate additional costs of (1=s)g(np). Note that this term is not part of

the congestion e®ect, which equals npt0(np) + (1=s)npg0(np). With all these e®ects taken into

account, the optimal µ¤ thus balances the individual gain in travel bene¯ts against incremental

congestion and operating costs as passengers switch to the peak period.5 This rule is similar

to those emerging from the road-pricing literature.

Under the maintained assumptions on the functions bp, bo, t and g, the second partial

derivatives Wµ¤µ¤ and Wµµ from (3) are both negative, and the cross partial is zero. As a result,

the second-order condition for the optimization problem is satis¯ed. For future reference, note
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that since the LHS of (4) equals ¡Wµ¤, this expression is increasing rather than decreasing in

µ¤.

3. Analysis of Equilibria

3.1. The competitive case

To analyze equilibria under di®erent market structures, it is useful to begin by considering

the competitive case, where carriers are atomistic. In this case, each carrier operates a single

°ight, and fares just cover operating costs. Thus, peak and o®-peak fares are given by

fp = [c+ g(np)]=s (5)

fo = c=s: (6)

To determine the allocation of passengers in the competitive case, the ¯rst step is to note

that, at the point where the continuum divides between the peak and o®-peak, the relevant

passenger (whose type is again denoted µ¤) is indi®erent between travel in the two periods. In

other words, µ¤ must satisfy bp(µ¤)¡t(np)¡fp = bo(µ¤)¡fo, indicating that travel bene¯ts net

of the fare are equal across periods. Then, note that since b0p > b0o holds, all passengers with

µ > µ¤ strictly prefer the peak while all passengers with µ < µ¤ strictly prefer the o®-peak.

The minimum µ value among o®-peak passengers satis¯es bo(µ)¡ fo ¸ 0, indicating that the

gain from travel is nonnegative.

Rearranging the last condition and substituting fo from (6), the resulting condition is

the same as (3). Therefore, the margin separating travelers from non-travelers is determined

e±ciently in the competitive case. However, the former group is divided ine±ciently between

the peak and o®-peak periods. To see this, the above indi®erence condition can be rewritten

to read bp(µ¤)¡ t(np) ¡ bo(µ¤)¡ fp + fo = 0. After substituting the fare expressions from (5)

and (6), the condition determining µ¤ then reduces to

[bp(µ¤)¡ t(np)¡ bo(µ¤)] ¡ (1=s)g(np) = 0; (7)

where np again equals (1¡ µ¤)=s.
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A comparison of (7) and (4) shows that the terms npt0(np) + (1=s)npg0(np), which capture

the congestion e®ect, are absent from the equilibrium condition. As a result, in determining

µ¤, competitive carriers do not take into account the congestion caused by adding an extra

passenger to the peak period. Since the congestion terms are subtracted in (4), it follows

that the LHS is negative at the equilibrium µ¤ value, where (7) equals zero. This fact implies

that µ¤ must be raised from the equilibrium to reach the optimum (recall that the LHS of (4)

is increasing in µ¤). Thus, moving from the competitive equilibrium to the optimum means

reallocating passengers from the peak to the o®-peak period, indicating that the peak period

is over-used in equilibrium.

To limit this over-use, the solution is to impose congestion pricing. The peak-period

congestion toll, which depends on np, equals the congestion cost imposed by an additional

°ight, and it is given by

R(np) = snpt0(np) + npg0(np): (8)

When the carriers are charged R(np) per °ight, fp in (5) is augmented to include the additional

expression R(np)=s. Eq. (7) is then modi¯ed to include the missing congestion terms npt0(np)+

(1=s)npg0(np), and the new equilibrium coincides with the social optimum.6 The congestion toll

achieves this outcome by putting upward pressure on the peak fare, which diverts passengers

to the o®-peak period. It can be shown that, once µ¤ has adjusted to the new equilibrium, the

peak fare remains higher than prior to imposition of the toll.

3.2. The case of a perfectly discriminating monopolist

Having developed the competitive benchmark, the discussion now turns to alternate cases

where carriers have market power. The natural starting point is the case of a perfectly discrim-

inating monopolist, who can charge a di®erent fare to each passenger. Although such behavior

on the part of ¯rms is usually thought to be implausible, the extensive price discrimination

practiced by the airline industry suggests that a perfectly discriminating model is far from

outlandish (see, for example, Borenstein and Rose (1994)).

Letting fp(µ) and fo(µ) denote the peak and o®-peak fares charged to a type-µ passenger,

the monopolist sets these fares so as to make the passenger indi®erent between traveling and
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not traveling. Thus, the fares are set so as to exhaust travel bene¯ts, satisfying

fp(µ) = bp(µ) ¡ t(np) (9)

fo(µ) = bo(µ): (10)

Using the previous argument along with (9) and (10), it is easily seen that the monopolist

maximizes revenue by allocating high-µ passengers to the peak and low-µ passengers to the

o®-peak.7 Pro¯t is then given by
R µ¤
µ fo(µ)dµ +

R 1
µ¤ fp(µ)dµ minus airline costs. However,

after substituting for the fares using (9) and (10), the resulting objective function is identical to

the social welfare measure W in (1). Thus, in maximizing pro¯t, the perfectly discriminating

monopolist replicates the social optimum, generating optimal values of µ and µ¤.

While this conclusion is not especially surprising, it is important from a policy perspective.

In particular, the conclusion suggests that airport congestion is fully internalized under condi-

tions that are not particularly unrealistic. This outcome occurs when a carrier has substantial

ability to price discriminate, and when it controls virtually all of an airport's tra±c, as is the

case at a number of dominated hubs (see Table 1). The analysis suggests that congestion

levels at such airports may not be far from optimal, conditional on airport capacity. While

capacity growth itself may be desirable, the analysis implies that there may be little or no role

for government intervention in reallocating tra±c away from peak periods. Indeed, imposition

of a congestion toll under these conditions would lead to a suboptimal level of peak congestion,

with ine±cient under-use of the peak period.

Interestingly, Daniel's (1995) ¯ndings undermine this conclusion. Daniel found that his

simulation results replicated existing Minneapolis tra±c patterns better when the dominant

hub carrier (Northwest) was assumed to behave atomistically, ignoring the congestion it im-

posed on itself, than when it took such congestion into account. While this ¯nding sounds a

note of caution in using the present model to draw policy conclusions, the ¯nding is troublesome

in that it seems inconsistent with optimizing behavior on the part of the airlines.
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3.3. The case of a nondiscriminating monopolist

Recognizing that perfect price discrimination may not occur, it is useful to analyze the

monopoly equilibrium when the ¯rm cannot discriminate, charging uniform peak and o®-peak

fares (again denoted fp and fo). In this case, the distribution of passengers is governed by

conditions analogous to those in the competitive case. The previous indi®erence condition

for the type-µ¤ passenger again applies, and this condition can be rearranged to read fp =

bp(µ¤) ¡ t(np) ¡ bo(µ¤) + fo. In contrast to (6), the monopolist raises fo to exhaust travel

bene¯ts for the lowest-µ passenger, so that µ satis¯es fo = bo(µ).

The monopolist's revenue is given by fp(1 ¡ µ¤) + fo(µ¤ ¡ µ). Substituting for the fares

using the above relationships, and subtracting costs, pro¯t equals

[bp(µ¤)¡ t(np)¡bo(µ¤)](1¡µ¤) + bo(µ)(1¡ µ) ¡ c(1¡µ)=s ¡ [(1¡µ¤)=s]g[(1¡ µ¤)=s]: (11)

Di®erentiating (11), the ¯rst-order condition for choice of µ is

bo(µ) ¡ (1¡ µ)b0o(µ) ¸ c=s; (12)

with equality holding if µ > 0. Since bo(µ) > c=s holds at an interior monopoly equilibrium, it

follows that µ exceeds the optimal value, which either satis¯es bo(µ) = c=s or is zero (recall that

b0o > 0). The higher µ means the monopolist sets fo high enough so that some consumers who

would have traveled under the social optimum choose not to do so. The monopolist is exploiting

market power, recognizing that a higher fare excludes some consumers while generating more

revenue from inframarginal passengers.

Di®erentiating (11), the ¯rst-order condition for µ¤ is given by

[bp(µ¤)¡ t(np)¡ bo(µ¤)] ¡ npt0(np) ¡ (1=s)[g(np) + npg 0(np)]

¡ (1¡ µ¤)[b0p(µ¤)¡ b0o(µ¤)] = 0; (13)

where np again equals (1¡ µ¤)=s. This condition di®ers from the optimality condition (4) only

in the appearance of the last term involving the bene¯t derivatives. Because the congestion
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terms continue to appear in (13), it follows that the nondiscriminating monopolist, like his

discriminating counterpart, fully internalizes the congestion e®ect.8

Even though congestion is again internalized, the extra term in (13) means that the al-

location of passengers between the peak and o®-peak periods is not optimal. Because the

single-crossing assumption implies b0p ¡ b0o > 0, the extra term is negative, so that the LHS of

(4) is positive at the equilibrium. It follows that µ¤ must be decreased from the equilibrium

to reach the optimum, implying that the monopolist allocates too few passengers to the peak

period, relative to the social optimum.

Exploitation of market power accounts for the monopolist's internalization of congestion,

while also explaining the appearance of the last term in (13). To see this, note that in adjusting

µ¤, the monopolist must alter the peak fare to maintain the indi®erence condition, ensuring

that passengers divide between the periods as intended. Because higher congestion reduces

peak bene¯ts, the monopolist must cut fp as additional passengers are allocated to the peak

period, an adjustment that maintains the indi®erence condition. This market-power e®ect is

bene¯cial, causing the monopolist to restrict peak tra±c.

A \residual" market-power e®ect, which is not bene¯cial, is captured by the last term

in (13). This residual e®ect arises because lower-bene¯t passengers are added as peak tra±c

is raised, altering the di®erence between bp and bo for the type-µ¤ passenger. Since b0p > b0o
holds, peak bene¯ts fall by more than o®-peak bene¯ts as µ¤ declines, which requires a further

reduction in fp to maintain the indi®erence condition. This fare reduction leads to a further

restriction of peak tra±c, generating under-use of the peak period.

The sign of the residual market-power e®ect, which underlies this result, obviously depends

on the relationship between the bene¯t derivatives, a relationship that would be altered under

a di®erent single-crossing assumption. To see the e®ect of changing this assumption, suppose

that the bene¯t slopes were identically equal, with b0p ´ b0o. Then, the pattern of passenger

assignments to the peak and o®-peak periods would be a matter of indi®erence to both the

social planner and the monopolist, so that the current assignment (high-µ passengers in the

peak) could be retained. All the previous analysis is then una®ected, but the extra term in (13)

is now identically zero. As a result, the nondiscriminating monopoly equilibrium coincides with
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the social optimum. In this case, residual market-power e®ect does not distort the allocation

of passengers between the two periods.

The remaining single-crossing case, where b0p < b0o holds, is considered in the appendix.

In this case, passenger assignments are reversed, with the peak period used by low-µ, rather

than high-µ, passengers. The analysis shows that, for the competitive case and the perfectly

discriminating monopolist, the previous e±ciency verdicts are una®ected. While the nondis-

criminating monopolist continues to internalize congestion, the residual market-power e®ect

may now lead to the assignment of too many, rather than too few, passengers to the peak

period. Thus, the direction of the distortion in the nondiscriminating case depends on the

form of the single-crossing condition.

Summarizing the analysis up to this point yields

Proposition 1. While competitive carriers fail to internalize the congestion e®ect,
leading to over-use of the peak period, congestion is fully internalized by a perfectly
discriminating monopolist, who replicates the social optimum. A nondiscriminating
monopolist again internalizes the congestion e®ect, but a residual market-power e®ect
may distort the allocation of passengers, yielding over- or under-use of the peak period.

The important implication of this result is that, even in the more-realistic nondiscrimi-

nating case, there appears to be no role for congestion pricing at an airport dominated by a

monopolistic carrier. The airport's tra±c allocation may not be optimal, but the culprit is not

a failure to internalize the e®ects of congestion.

3.4. The case of Cournot oligopoly

Consider now the oligopoly case, where each of k identical ¯rms behaves in Cournot fashion.

While a monopolist can be portrayed as choosing µ¤ and µ, each oligopoly ¯rm can only choose

the number of its own °ights, with the aggregation of all °ights determining µ¤ and µ. Letting

nip and nio give peak and o®-peak °ights for carrier i, µ¤ and µ satisfy 1 ¡ µ¤ = s
Pk

i=1 n
i
p

and µ¤ ¡ µ = s
Pk

i=1 n
i
o. Rearranging, these relationships yield µ¤ = 1 ¡ s

Pk
i=1 n

i
p and

µ = 1¡sPk
i=1(nio+nip). After substitution, the relations fo = bo(µ) and fp = bp(µ¤)¡ t(np)¡
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bo(µ¤) + bo(µ) can then be written as

fo = bo[1¡ s§(nio + nip)] (14)

fp = bp(1¡ s§nip) ¡ bo(1¡ s§nip)¡ t(§nip) + bo[1¡ s§(nio + nip)]: (15)

Carrier j's pro¯t is then written

fosnjo + fpsnjp ¡ c(njo + njp) ¡ njpg(§ nip): (16)

Carrier j chooses njo and njp to maximize (16) subject to (14) and (15), viewing other carriers'

°ight choices as parametric. Letting np denote
Pk

i=1 n
i
p, total peak °ights, the resulting ¯rst-

order condition for njp reduces to

[bp(µ¤)¡ t(np)¡ bo(µ¤)] ¡ njpt
0(np) ¡ (1=s)[g(np) + njpg

0(np)]

¡ snjp[b
0
p(µ
¤)¡ b0o(µ¤)] = 0; (17)

This condition di®ers from monopoly condition (13) in two ways. First, the congestion e®ect

is only partly internalized. Rather than being multiplied by total °ights np, t0 and (1=s)g 0 are

multiplied by njp, carrier j's °ights. Thus in choosing the number of °ights, carrier j considers

only the congestion it imposes on itself, which consists of additional time costs for its own

passengers and extra own-operating costs. The second di®erence relative to (13) is that the

residual market-power e®ect represented by the last term applies only to a subset of passengers,

those using carrier j.

Symmetry of the equilibrium can be used to rewrite (17) as

[bp(µ¤)¡ t(np)¡ bo(µ¤)] ¡ (np=k)t0(np) ¡ (1=s)[g(np) + (np=k)g0(np)]

¡ [(1¡ µ¤)=k][b0p(µ
¤)¡ b0o(µ¤)] = 0; (18)
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Written in this way, the ¯rst-order condition shows that each carrier internalizes a fraction

1=k of the congestion e®ect, accounting only for the congestion it imposes on itself. Note that

as k becomes large, (17) converges to the competitive condition (7), verifying for the present

model the usual conclusion that perfect competition is the limiting case of oligopoly.9

Although the residual market-power e®ect continues to distort the allocation of tra±c, the

distortion due to uninternalized congestion, which creates a tendency for over-use of the peak

period, can be remedied by a congestion toll. To eliminate this distortion, the toll per °ight

should be set at

eR(np) =
µ

1¡ 1
k

¶
[snpt0(np) + npg0(np)]; (19)

As in the competitive case, imposition of the toll moves µ¤ and np toward the social optimum,

while raising the peak-period fare. Note that, because of the residual market-power e®ect, the

equilibrium generated by the toll in (19) will not be exactly optimal unless b0p ´ b0o.10

The analysis thus demonstrates that each airline is charged for congestion that it fails to

internalize, with the toll equal to the congestion cost from an extra °ight times one minus

the carrier's °ight share. In the case of a duopoly airport, roughly approximated by Chicago-

O'Hare, each of the duopolists would be charged for half of the congestion associated with an

additional °ight.11

If this principle were extrapolated to an asymmetric model, it would imply that small

airlines should be charged a larger toll per °ight than large airlines, re°ecting their limited

internalization of congestion. Unfortunately, such a rule might have undesirable competitive

e®ects, given that ability-to-pay may be lower for small than for large carriers. However,

since e±ciency analysis is problematic in an asymmetric setting, the basis for this rule may

be questionable. To see this, note that one way of generating an asymmetric equilibrium is

to assume cost di®erences across ¯rms. But in such a setting, a planner would allocate all

passengers to the e±cient (large) ¯rms, so that small, ine±cient ¯rms would disappear in the

social optimum. Evidently, to generate a social optimum that resembles observed asymmetric

equilibria, a richer model is needed. Only in the context of such a model would statements

about asymmetric congestion tolls be reliable.
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Summarizing the preceding analysis yields

Proposition 2. In a Cournot oligopoly, each carrier internalizes only the congestion
it imposes on itself, allowing a role for congestion pricing. In the symmetric model,
the toll per °ight equals the congestion cost from an extra °ight times one minus a
carrier's airport °ight share. Imposition of such a toll, however, cannot eliminate any
remaining tra±c misallocation due to the residual market-power e®ect.

3.5. The case of a Stackelberg oligopoly

It is interesting to explore how the oligopoly results change if Cournot behavior is replaced

by the assumption that one carrier is a Stackelberg leader. Because a general analysis of this

case is infeasible, additional simplifying assumptions are imposed. First, attention is restricted

to a model with just two carriers, with carrier 1 being the leader and 2 the follower. Because

of the problematic nature of models with asymmetric costs (see above), the two carriers are

assumed to have identical costs. As a result, the realistic case where a large leader interacts

with a group of small, fringe followers is not considered. In addition, all the functions in the

model are assumed to be linear, with t0 ´ ¿ , g0 ´ °, and b0p = b0o ´ ¯ (the bene¯t functions

thus have a common slope).

Under these assumptions, the ¯rst-order conditions for carrier 2 are derived, using (14)-

(16), and these conditions are di®erentiated to yield reaction functions, which show how the

follower's decision variables, n2
o and n2

p, change in response to the leader's variables, n1
o and

n1
p. Taking the follower's reactions into account, the equations (14)-(16) are again used to

derive the ¯rst-order conditions for the leader. Then, combining the follower's and the leader's

conditions, which constitute a linear equation system, the Stackelberg equilibrium is computed

algebraically. The Cournot equilibrium is also computed, and the results are compared.

Before discussing the solutions, it is important to note how the leader's ¯rst-order con-

ditions change relative to the Cournot case. Because @n2
p=@n1

p = ¡1=2, the follower reduces

his peak °ights by half in response to a unit increase in the leader's °ights. As a result,

the additional congestion generated by an increase in the leader's °ights is partly mitigated.

This e®ect is manifested in the leader's ¯rst-order condition by a 50 percent reduction in

the amount of his own congestion that is internalized. In other words, the congestion terms
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n1
pt0(np)+(1=s)n1

pg0(np) from (17), which reduce to n1
p¿+(1=s)n1

p° under linearity, are replaced

by [n1
p¿ + (1=s)n1

p°]=2.

Although the residual market-power term in (17) is zero given equal bene¯t slopes, new

market-power e®ects emerge in both of the leader's ¯rst-order conditions. As a result, it is

di±cult to predict the net e®ect of the reduced internalization of congestion. However, the

solutions show that n1
p is larger in the Stackelberg than in the Cournot equilibrium, indicating

that carrier 1's peak °ights increase when it becomes a leader. Conversely, n2
p is smaller in

the Stackelberg equilibrium, so that carrier 2's peak °ights fall when it becomes a follower.

Moreover, the increase in n1
p dominates the decline in n2

p, so that the total number of peak

°ights, np = n1
p + n2

p, is larger in the Stackelberg equilibrium. By contrast, the change in total

o®-peak °ights is ambiguous. Because the details of this analysis are tedious and complex,

they are not presented. Summarizing yields

Proposition 3. In a linear duopoly model with symmetric ¯rm costs, the tendency
toward over-use of the peak period due to uninternalized congestion is exacerbated under
Stackelberg behavior (relative to the Cournot case).

3.6. The e®ects of nonseparability

The previous results have been derived under separability of the peak travel bene¯t func-

tion, and it is important to appraise the e®ects of eliminating this restriction. With nonsepara-

bility of Bp(µ; np), the second integral in the welfare function (2) becomes
R 1
µ¤ Bp[µ; (1¡µ¤)=s]dµ.

The bene¯t-di®erential term in the optimality condition (4) is then written Bp(µ¤; np)¡bo(µ¤),
while the ¡npt0 term is replaced by np

R 1
µ¤ B

n
p (µ;np)dµ=(1 ¡ µ¤) < 0, where the n superscript

denotes Bp's negative partial derivative with respect to np.12

Although nonseparability has no e®ect on the conclusions of the competitive and discrim-

inating-monopoly analysis, the results on internalization of congestion for the other market

structures are altered. To see this, observe that the form of the equilibrium condition (13) for

the nondiscriminating monopolist is unchanged aside from notation. The bene¯t-di®erential

term is modi¯ed as above, the residual market-power e®ect involves Bµ
p instead of b0p, and ¡npt0

is replaced by npBn
p (µ¤;np). Because this latter term di®ers from the expression replacing¡npt0
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in (4) (the above integral), congestion may not be exactly internalized by the nondiscriminating

monopolist. The outcome depends on the direction of the following inequality:

Bn
p (µ¤;np) · (>)

1
1¡ µ¤

Z 1

µ¤
Bn
p (µ; np)dµ: (20)

To evaluate (20) under the business-leisure interpretation of the passenger continuum, note

that Bnp in this case should become more negative as µ increases, re°ecting the greater value

of the time lost to congestion for high-µ passengers. The integral in (20), which represents

the average value of Bn
p between µ¤ and 1, is then more negative than Bn

p (µ¤; np) (for a given

np). Because the integral appears in the social optimality condition while the latter expression

appears in the equilibrium condition, it follows that the monopolist does not fully internalize

congestion. Under other scenarios, of course, the inequality in (20) could be reversed, implying

over-internalization of congestion.

These discrepancies arise because, in focusing on the type-µ¤ passenger via the indi®erence

condition, the monopolist does not consider congestion e®ects felt by inframarginal passengers.

In the case where Bp is separable, the marginal, type-µ¤ individual turns out to be a perfect

representative for inframarginal passengers, and congestion is properly internalized. Otherwise,

internalization is not exact.

Similar conclusions apply in the oligopoly case. Rather than exactly internalizing the

congestion it imposes on itself, an oligopoly carrier may internalize a smaller or larger share

when bene¯ts are nonseparable. It is important to recognize that, as in the monopoly case, this

conclusion tempers the results of the analysis without overturning its main lesson. This lesson

is that the exercise of market power leads carriers to internalize a portion of the congestion

they generate, with this portion rising as market power grows.

4. Conclusion

This paper has analyzed airport congestion when carriers are nonatomistic, showing how

the results of the road-pricing literature are modi¯ed when the economic agents causing con-

gestion have market power. The analysis shows that when an airport is dominated by a
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monopolist, either discriminating or nondiscriminating, congestion is fully internalized, pro-

vided that a separability assumption on travel bene¯ts is satis¯ed. In allocating tra±c between

the peak and o®-peak periods, the monopolist fully accounts for the passenger time cost as-

sociated with peak congestion (which alters fares), while also taking account of its impact

on his own operating costs. The analysis thus suggests no role for congestion pricing under

monopoly conditions. This conclusion is quali¯ed in the absence of separability. Although the

nondiscriminating monopolist may not exactly internalize congestion in this case, substantial

internalization still occurs.

Under a Cournot oligopoly, carriers are shown to internalize only the congestion they

impose on themselves (assuming separability). A toll that captures the uninternalized portion

of congestion can then improve the allocation of tra±c. The toll is equal to the congestion

cost from an extra °ight times one minus a carrier's °ight share.

This result shows the °aw in a simple extrapolation of results from the road-pricing lit-

erature to the airport setting. Instead of being charged for all the congestion an added °ight

causes, as would occur if airlines were treated like road users, the toll should re°ect only the

costs imposed on other carriers. At an airport like Chicago-O'Hare, this rule would imply that

United and American would be charged for only about half of the congestion created by an

additional °ight. At a monopoly airport, the rule implies a zero toll since all congestion is

internalized. Given the likelihood that some form of congestion pricing will be implemented

at U.S. airports, awareness of such results may be valuable.
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Appendix

This appendix demonstrates that over-use of the peak period may occur when the alternate

single-crossing assumption b0p < b0o holds. Under this assumption, low-µ passengers are assigned

to the peak period, necessitating changes in the welfare measure (2). The integrands must be

switched in the two integrals, and 1 ¡ µ¤ must be replaced by µ ¡ µ¤ in each instance. The

social optimality condition (4) still governs choice of µ¤, although np is given by (µ ¡ µ¤)=s.

However, since the choice of µ now a®ects tra±c in the congested peak period, the relevant

optimality condition has a more-complex form than (3).13

As before, the perfectly discriminating monopolist satis¯es both social optimality condi-

tions, while the peak period is again over-used in the competitive case.14 For the nondis-

criminating monopolist, a market-power e®ect again distorts the choice of µ in an upward

direction.15 As for the choice of µ¤, the monopolist's optimality condition is again given by

(13), with np = (µ¤¡µ)=s, so that congestion is once again internalized. However, since b0p < b0o

now holds, the modi¯ed expression in (4) is negative when evaluated at the equilibrium. Since

this expression is now decreasing rather than increasing in µ¤, it follows that µ¤ must once

again be reduced from its equilibrium value to reach the optimum. Recalling that the peak

period now contains low-µ passengers, this fact means that the residual market-power e®ect

tends to allocate too many passengers to the peak. However, since the reverse e®ect occurs

at the bottom of the continuum, with µ too large in equilibrium, the net e®ect on peak usage

relative to the optimum is ambiguous. The conclusion is that peak usage may be larger than

optimal under the given single-crossing assumption, although this outcome is not assured.

22



Table 1.
Delays in 1999 at Major U.S. Airports¤

Percent on Time Carrier and % Flight Share

Airport Delays % Weather % Volume Arrival Departure 1st Carrier 2nd Carrier 3rd Carrier

Chicago-O'Hare 49,202 73.8 12.7 66.4 70.1 United (44.5) American (38.9) Northwest (2.2)

Newark 36,553 76.4 9.1 61.6 69.0 Continental (57.2) United (7.9) Delta (5.7)

Atlanta 32,737 79.8 9.4 69.1 73.2 Delta (73.5) Air Tran (10.9) US Airways (2.3)

NY-La Guardia 28,474 56.1 13.0 59.9 71.1 US Airways (37.6) Delta (18.8) American (16.8)

San Francisco 21,187 82.5 8.3 67.9 78.5 United (58.2) American (7.4) Delta (4.8)

Dallas-Ft. Worth 16,731 75.5 15.8 78.3 76.3 American (68.5) Delta (17.3) United (1.9)

Boston 14,989 76.0 1.2 62.3 70.7 US Airways (25.9) American (25.7) Delta (15.3)

Philadelphia 14,516 72.6 6.4 59.6 62.1 US Airways (65.8) Delta (6.1) American (6.0)

NY-Kennedy 13,547 74.6 8.5 72.0 81.0 American (27.8) Delta (20.4) TWA (15.8)

Phoenix 11,919 35.2 46.2 70.4 69.2 America West (48.4) Southwest (26.2) United (5.4)

Detroit 11,522 46.1 21.4 75.4 73.7 Northwest (79.8) Delta (3.3) Southwest (2.8)

Los Angeles 10,646 84.5 1.2 73.9 79.2 United (36.3) American (17.2) Southwest (11.5)

St. Louis 9,631 85.5 1.3 78.0 74.1 TWA (73.2) Southwest (12.9) Delta (2.5)

Houston 9,524 84.8 4.8 71.2 75.4 Continental (81.6) Delta (3.3) American (2.9)

Washington-Dulles 9,248 63.9 17.1 63.6 70.1 United (62.4) US Airways (19.2) Delta (4.4)

¤1999 is the most recent year for which the data in the ¯rst three columns are available at the airport level. The ¯gures in these columns
are taken from the FAA web site (http://www.faa.gov/newsroom.htm). The on-time percentages, which pertain to July 1999, are taken from
DOT's Air Travel Consumer Report (http://www.dot.gov/airconsumer/). The °ight-share data are from Baker (2000).
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Footnotes

¤I thank Hadi Esfahani, Kangoh Lee and Eric Verhoef for helpful comments. Any errors or
shortcomings in the paper, however, are my responsibility.

11999 is the most recent year for which the data in the ¯rst three columns of Table 1 are
available at the airport level. The ¯gures in these columns (as well as the numbers in the
text) are taken from the FAA web site (http://www.faa.gov/newsroom.htm). The on-time
percentages, which pertain to July 1999, are taken from DOT's Air Travel Consumer Report
(http://www.dot.gov/airconsumer/). The °ight-share data are from Baker (2000).

2Weather conditions far from an airport can also create delays by blocking air-tra±c corridors,
reducing the capacity of the air space.

3By focusing on a single airport, the analysis does not consider the link between congestion
at the given airport and congestion at other airports that are connected to it. If each such
airport is uncongested, this omission would appear to have little consequence. However, if
the other airports are congested, then altering the peak/o®-peak tra±c allocation at the
given airport would a®ect their congestion levels by changing the time pattern of tra±c to
and from that airport. By ignoring such interrelationships, the present analysis follows the
prior literature. However, analysis of airport congestion in a network context would be a
useful avenue for future research.

4Recognizing that the LHS of (4) equals ¡Wµ¤ , necessary conditions for an interior solution
are as follows. For µ¤ to be less than unity (so that the peak period is indeed used),
bp(1) > bo(1) must hold, indicating that passengers at the top of the continuum prefer peak
travel. Otherwise, W is increasing in µ¤ at µ¤ = 1 (i.e., the LHS of (4) is negative). Similarly,
for µ¤ to be greater than µ (so that the o®-peak period is used), bp(µ) < bo(µ) must hold,
indicating that a type-µ passenger (where µ satis¯es (3)) prefers o®-peak travel. Otherwise,
W is decreasing in µ¤ at µ¤ = µ (with the LHS of (4) positive). These two inequalities imply
that the bene¯t functions must intersect at an intermediate value of µ.

5As stated earlier, it is assumed that the solution to (4) involves positive values for t(¢) and
g(¢).

6Alternatively, a ¯xed congestion toll (independent of np), which is equal to (8) evaluated at
the socially optimal np, can be charged. While this toll also generates the optimum, the
expression in (8), which constitutes a schedule giving the toll as a function of the current
number of peak °ights, does not require the planner to compute the social optimum.

25



7Passengers can be directed to such an allocation if they are charged more than the amount
in (9) or (10) in the period where the monopolist does not want them to travel.

8It is assumed that the second-order conditions for the monopolist's optimization problem
are satis¯ed. These conditions involve b00p and b00o , which have no natural sign.

9Once symmetry is imposed, the ¯rst-order condition for choice of njo reduces to bo(µ)¡ [(1¡
µ)=k]b0o(µ) ¸ c=s, indicating that the market-power e®ect in the choice of µ applies only to
a carrier's own passengers.

10With the maintained single-crossing assumption, the peak-period will be under-used, as in
the nondiscriminating monopoly case. As before, this conclusion could be reversed under an
alternate assumption.

11It is interesting to note that this conclusion overturns the well-known self-¯nancing rule for
congested facilities, which says that toll revenue exactly covers the construction cost of a
congested facility built with constant returns to scale (see Small (1992)). To see this, let
the t and g functions depend on airport capacity H, and assume that the congestion-cost
expression is appropriately homogeneous of degree zero in H and np. Then, the optimality
condition for H can be written np[snptn(np; H) + npgn(np; H)] = HF 0(H), where F is the
cost function for capacity and the n superscripts denote derivatives with respect to np. Using
(19), congestion-toll revenue is equal to the LHS of the previous expression times (1¡ 1=k),
while the RHS equals F (H) under constant returns. Thus, toll revenue fails to cover the
cost of the optimal-size airport.

12To avoid complications, the modi¯ed single-crossing inequalty Bµ
p(µ; np) > b0o(µ) must hold

for all values of np as well as for all µ (the µ superscript denotes partial derivative).

13The optimality condition is [bp(µ) ¡ t(np)] ¡ c=s ¡ npt0(np) ¡ (1=s)[g(np) + npg0(np)] ¸ 0,
with equality holding if np > 0.

14Since µ now satis¯es bp(µ)¡t(np) ¸ c=s in the competitive case, it follows that the expression
in footnote 13 is negative at the competitive equilibrium. Since that expression is increasing
in µ, it follows that µ must be raised above the equilibrium value to reach the optimum.
Similarly, since (7) again holds at the competitive equilibrium, the LHS of the optimality
condition (4) is negative at the equilibrium. Because that expression is now decreasing in
µ¤, it follows that µ¤ must be reduced from the equilibrium to reach the optimum. With the
optimum having a higher µ and lower µ¤ than the equilibrium, it follows that equilibrium
involves over-use of the peak period.
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15The equilibrium condition consists of the optimality condition from footnote 13 with the
term ¡(1¡ µ)b0p(µ) added. At an interior equilibrium, where the modi¯ed expression equals
zero, the expression in footnote 13 is positive. Since that expression is increasing in µ, it
follows that the optimal value (which makes the expression zero or is itself zero) is less than
the equilibrium value.
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