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Abstract

The subject of this thesis is modelling and valuation of multi-name credit

derivatives such as basket default swaps and basket CDS tranches. After

a description of the relevant products, models for valuation are presented.

The key idea of modelling correlated default is the usage of copulae. In this

thesis the valuation models are set up with Gaussian normal-, Student t-

and Clayton copulae. Two different methods for valuation are described:

The first is the standard Monte Carlo method for simulating the default

times, with which multi-name credit derivatives can be priced. In the

second approach the correlation structure is simplified by a factor copula

model, in which semi-explicit fomulae for valuation of the multi-name

credit products can be formulated.

In this thesis the Monte Carlo valuation approach is implemented for the

Gaussian normal-, the Student t- and the Clayton copula; the semi-explicit

approach is implemented for the Gaussian normal copula.

The implemented valuation methods are used to price a simple three credit

basket and a real world basket CDS tranche. It is investigated what

influence parameters like correlation and recovery rates have on the spread

of credit products. For the Student t- and Clayton copula correlation

structure the dependence of the spread on the copula parameters ν and α

is examined.
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Chapter 1

Introduction

In recent years the credit derivatives market has grown rapidly in volume and com-

plexity of the products offered. While the biggest part of outstanding notionals is still

found in simple products like credit default swaps, complex products having payoff

profiles depending on a whole credit portfolio are becoming more popular. Examples

of such products are basket default swaps (BDS) and basket CDS tranches. A basket

default swap extends the credit protection, which a simple credit default swap (CDS)

grants for a single underlying, to a portfolio of underlyings with the restriction that

the default of only one underlying is compensated. Depending on the ranking of the

protected default, the product is called 1st-to-default basket, 2nd-to-default basket

or, generally, kth-to-default basket. A basket CDS tranche is a generalization of the

basket default swap in the sense that a certain percentile of the portfolio notional

is protected. The price of such products depends on the joint default probability of

the underlyings in the credit portfolio. Modelling joint default is difficult, as observa-

tions of joint defaults are even scarcer than the already rare event of a single default.

Thus, modelling the joint distribution is the crucial point in pricing multi-name credit

derivatives.

The thesis is structured as follows: The subsequent sections of this chapter contain

an outline of the relevant credit models as well as of the products of interest; these are

single-name and multi-name credit derivatives. Chapter 2 contains a description of

the methods used for valuation of multi-name credit derivatives. The implementation

of the valuation methods is given in Chapter 3. The implemented programs are used

to investigate the influence of different parameters on a simple basket default swap

with an underlying portfolio of three credits and a real world basket CDS tranche.

The results are presented in Chapter 4.
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1.1 Credit Risk Models

Starting in 1974, modelling credit risk has been of central interest to theorists as

well as to practitioners, and different credit risk models have been developed. In the

following sections a short overview over the fundamental ideas of the different models

is given.

1.1.1 Merton’s Structural Approach to Credit Risk

In the structural approach, which was developed by Merton in 1974 [16] and which

is based on the principles of Black and Scholes’ option pricing theory [4], the asset

value V of a company is modelled as Brownian motion where the change in the asset

value dV is given by:

dV = µV dt+ V dW (1.1)

The parameters µ and σ denote the drift and the volatility of the Brownian motion.

The liabilities of a company are summarized in a zero coupon bond with face value F

and maturity T . If the value of the assets V at maturity T is smaller than the value

of the liabilities F , the company cannot meet its obligation to pay the liabilities and

the company defaults. If the value of the assets V is greater than the liabilities F ,

then the company can fulfil its obligation to pay its liabilities at maturity T and no

default occurs;

V > F : No Default
V ≤ F : Default

In this model the firm’s equity can be regarded as an European call option on its

assets with a strike of F and maturity T . In Merton’s model default can occur only

at maturity T of the zero coupon bond. An extension of Merton’s model - that default

can occur before maturity if the asset value V falls below a certain threshold D - was

provided by Black and Cox [3]. A commercial product which follows this approach is

CreditGrades [20]: The value of the assets V (t) is modelled as random walk (1.1) with

zero drift and default occurs if the value of the assets hits a certain lower threshold

RD for the first time (with recovery R and debt per share D). RD follows a lognormal

random walk with mean R̄D and standard deviation Stdev(ln(RD)) = λ.

V (t) > RD(t) : No Default at time t
V (t) ≤ RD(t) : Default at time t

2



The default time τ is given by the first time the condition V (t) ≤ RD(t) is satisfied.

Summarizing the description, the firm is modelled as a “down-and-out” barrier option

with a time dependent knock-out barrier RD. Using the known distributions for the

first stopping time of a Brownian motion, the survival probability S(t) = 1− F (t) =

P(τ > t) is

S(t) = Φ

(
ln(d)

At

− At

2

)
− dΦ

(
− ln(d)

At

− At

2

)
(1.2)

with Φ denoting the cumulative standard normal distribution function, the parame-

ters A2
t = σt + λ2 and d = V (0)

RD
eλ2

(σ denotes the asset volatility and λ the barrier

volatility).

Latent Variable Models Models where the default event depends on the evolu-

tion of a fundamental property of the considered company, are called latent variable

models. The models developed by KMV [11] and CreditMetrics [17] are such la-

tent variable models. In these models the relative change in the latent variables

in a portfolio consisting of m debtors is given by a m-dimensional random vector

X = (X1, ..., Xm)T where the random variables Xi follow the related marginal distri-

butions and the correlations between the latent variables. For each debtor i a lower

threshold Di (of the relative change of the latent variables) is given and when hit this

leads to default of the debtor. As an indicator whether a debtor has defaulted or not,

a default indicator Yi is used which has a value of 1 in case of default and 0 in case

of no default.

Yi = 1 ⇐⇒ Xi ≤ Di (1.3)

The cumulative distribution P(Xi ≤ Di) gives the probability that the random

variable Xi is less or equal to the threshold Di. Given historic time dependent default

probabilities1 the threshold Di can be used to calibrate the cumulative distribution

to the given historic default probabilities; for example, if Xi follows a normal dis-

tribution with a time dependent default probability of Fi(t), the threshold equals

Φ−1(Fi(t)). That is, default occurs if Xi ≤ Φ−1(Fi(t)),
2 where Φ−1 is the inverse

normal cumulative distribution.

1The default probability F (t) is defined as the probability that the default time τ is smaller than
or equal to time t: F (t) = P(τ ≤ t). The condition Xi ≤ Di at time t is equivalent to the condition
τi ≤ t.

2As Xi is normally distributed, the probability for condition Xi ≤ Di is P(Xi ≤ Di) = Φ(Di).
This probability is equal to P(τi ≤ t) = Fi(t) so that Φ(Di) = Fi(t) which provides the sought
threshold Di = Φ−1(Fi(t)).
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This last step of linking the thresholds to default probabilities is not part of

standard Merton’s model. Some authors, like Mashal and Naldi [14], name this

approach “hybrid approach”. The name derives from the fact that this approach

uses typical features of Merton’s approach (default happens if V falls below a certain

threshold D) as well as typical features of the hazard rate model (calibration to

market implied default probabilities).

If the evolution of the asset values of several companies is considered, the asset

values of the companies cannot change independently as each company acts in the

same macroeconomic environment which has influence on the evolution of the asset

values. Thus the Wiener processes W , which determine the random walk of the

asset value V , cannot be independent but have to be correlated. As the value of the

latent variable relative to the threshold determines whether a firm defaults or not,

the dependence structure of default is given by the dependence structure of the latent

variables.

Correlation structure in Merton’s Approach In Merton’s approach it is not

only assumed that the marginal distribution of the latent variables is a normal distri-

bution but also that the probability of several debtors defaulting can be modelled by

a multi-variate Gaussian distribution. For a two debtor universe the probability that

debtor 1 and debtor 2 default is given by the two dimensional Gaussian distribution:

P(X1 ≤ x1, X2 ≤ x2) =

x1∫
−∞

x2∫
−∞

1

2π
√

1− ρ2
12

exp

(
−s

2 − 2ρ12st+ t2

2(1− ρ2
12)

)
ds dt (1.4)

In the equation above ρ12 is the correlation between default of credit 1 and default of

credit 2.

In order to determine in Merton’s model which credits have defaulted at time T ,

correlated random numbers following a standard normal distribution have to be gen-

erated for the change in the latent variables Xi and the relative changes in the latent

variables have to be compared with the lower thresholds.

1.1.2 Reduced Form or Hazard Rate Approach

In contrast to the structural approach, where the default probability is conditioned

explicitly on the value of the regarded firm, reduced form models use actual credit

prices to extract the required default probabilities. In the model developed by Duffie

and Singleton [6] default events are determined by the hazard rate function h(t). The

4



hazard rate function gives the instantaneous default probability for a certain time t

conditional on no default before time t,

h(t) = P[t < τ ≤ t+ δt|τ > t] =
F (t+ δt)− F (t)

1− F (t)
(1.5)

=
f(t)δt

1− F (t)
(1.6)

= −S
′(t)

S(t)
(1.7)

The distribution function F (t) gives the probability that default happens before or

at time t. The survival function S(t) gives the probability that default happens after

time t. With the equations above the distribution function F (t) = P(τ ≤ t) of τ

(=default time) and the survival function S(t) = P(τ > t) = 1− F (t) can be related

to the hazard rate function h(t) as follows:

S(t) = e
−

t∫
0

h(s)ds
(1.8)

F (t) = 1− e
−

t∫
0

h(s)ds
(1.9)

F (t) is the marginal distribution of the default time for a certain credit; this marginal

distribution can be computed from market-quoted credit default swap spreads or

defaultable bonds [9]. With F (t) given for all credits, the joint distribution function

can be derived from the marginal distributions via a copula approach.

1.2 Single-Name Credit Derivatives

In this chapter single-name derivatives - in the sense that there is only one underlying

product - are introduced. The name is somewhat misleading as even in a single-name

derivative normally there are at least two counterparties involved (e.g. in a credit

default swap there is the reference entity of the underlying and the CDS issuing

party).

1.2.1 Credit Default Swap

A credit default swap (CDS) is a product which gives the protection buyer the right to

demand compensation payments from the protection seller if the underlying defaults.

This protection is guaranteed until the maturity T of the credit default swap. In

return for the guaranteed protection, the protection buyer has to pay a premium to
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Figure 1.1: Schematic picture of a credit default swap (CDS).

the protection buyer until maturity or until the underlying defaults. This premium

payment is called spread payment. The periodic payments of the protection buyer

to the protection seller are the fixed side of the swap and denoted as premium leg.

The compensation payment of the protection seller to the protection buyer in case

of default of the underlying credit is the floating side of the swap and is also called

default leg.

To price a credit default swap the following steps have to be accomplished:

� Determine the default probability until maturity.

� Determine the present value of the fixed leg of the CDS (these are the payments

the protection buyer pays to the protection seller).

� Determine the present value of the float leg of the CDS (this is the payment the

protection buyer receives from the protection seller in case of default).

An elementary way to get the required default probabilities as function of time is to

discount the cashflows of market-quoted bonds of the underlying party to today (with

the risk free rate). The present value calculated in this way does not enclose the credit

risk and is too big compared to the market price. The factors with which the dis-

counted cashflows must be multiplied in order to make their sum equal to the market

price are the default probabilities. To get the term structure of credit default proba-

bilities, a procedure which is comparable to bootstrapping coupon bearing bonds to

get the zero yield curve (for further information see [9]) has to be accomplished:

� Sort bonds with respect to their maturities from small to big maturities.

6



� Compute the present value of the first bond by discounting with the risk free

rate.

� Find the factor with which the present value has to be multiplied to make the

product equal to the market price of the bond.

� Compute the present value of the next bond. Coupons are discounted by multi-

plying with the risk free rate and the corresponding already determined default

probability.

� Find the factor with which the nominal has to be multiplied to make the sum

of all coupons and the nominal equal to the market price.

1.2.2 Pricing Credit Default Swaps

A credit default swap guarantees that the protection buyer receives a compensation

payment from the protection seller if the underlying security defaults before maturity

T . The price of the default protection is the premium s (spread) which has to be

paid from the protection buyer to the protection seller periodically.

The following properties are required to compute the present value of the fixed

and float leg of credit default swaps:

T Maturity of the credit default swap
N Nominal of the credit default swap
tj Time of the jth premium payment
∆j−1,j Time between payment j − 1 and payment j in years
τ Default time of the underlying credit
P(τ ≤ tj) Risk neutral probability that underlying defaults before or at time tj
R Recovery Rate
B(0, tj) Discount factor
s Spread

With the properties given above, the present value of the fixed leg (=premium leg)

can be computed by:

PVPremium = sN
∑

j

B(0, tj)∆j−1,j(1− P(τ ≤ tj)) (1.10)

This is the present value of the payments the protection seller receives from the

protection buyer. The present value of the payments the protection buyer receives in

7



case of default is:

PVDefault = N

T∫
0

B(0, t)(1−R)P(τ = t)dt (1.11)

As the present values of the two legs have to be equal at initiation of a fair CDS, the

spread to be paid on the nominal from the protection buyer to the protection seller

is given by:

s =

T∫
0

B(0, t)(1−R)P(τ = t)dt∑
j

B(0, tj)∆j−1,j(1− P(τ ≤ tj))
(1.12)

1.3 Multi-Name Credit Derivatives

In this section multi-name credit products such as

� Credit default swap3

� Basket default swap

� Basket CDS tranche or Collateralized Debt Obligation (CDO)

are introduced.

1.3.1 Credit Default Swap

As already mentioned in the section about single-name credit derivatives, in reality

there is nothing like a single-name credit derivative. Even for a credit default swap

there are two parties to be taken into account: The first is the party of the referenced

underlying, and the second is the issuer of the credit default swap. If the issuer

defaults before maturity, the credit default swap is worthless to the protection buyer

as he will receive no compensation payments in case of default of the referenced

underlying. Thus, to be exact, one has to regard the credit default swap as a credit

product with two underlying parties and therefore one cannot neglect the correlation

between the party of the referenced underlying and the issuer of the credit default

swap. For an exact treatment refer to [10].

3If one pays attention to the fact that the counterparty in the credit default swap is also prone
to default, the CDS also has to be regarded as multi-name credit derivative.
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1.3.2 Basket Default Swap

A basket default swap (BDS) is a product that, like a plain vanilla credit default swap,

guarantees protection against loss in case of default. In contrast to a credit default

swap that gives protection against losses in one underlying, a basket credit default

swap guarantees protection against losses in all underlying credits that are contained

in the basket. There are different kinds of basket default swaps - the most popular

one is the 1st-to-default BDS, which gives the protection buyer the right to claim

compensation for the losses in the first credit defaulted. Similarly, a 2nd-to-default

BDS covers the losses of the second underlying defaulted. In general these products

are called kth-to-default basket default swap.

 

Premium 

Compensation 

Pool of Underlying 
Credits 

Protection Buyer Protection Seller 

Figure 1.2: Schematic picture of a basket default swap (BDS).

1.3.3 Basket CDS Tranche or CDO

A basket CDS tranche is constructed as slice of a credit portfolio containing a large

number n of credits. The basket CDS tranche is defined by its lower boundary a and

its upper boundary b. The tranche notional at time t is not affected by a default if

the total portfolio loss before default is bigger than b or if the total portfolio after

loss is smaller than a. The tranche notional of a basket CDS tranche has the same

profile as a put spread (Figure 1.3).

In general there are at least three tranches:

� Equity tranche: This tranche starts from a = 0 and covers the very first losses

in the portfolio.
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Figure 1.3: Tranche notional of a basket CDS tranche with lower boundary a and
upper boundary b.

� Mezzanine tranche: If the portfolio losses have already consumed the complete

Equity tranche notional, subsequent defaults are compensated with the Mezza-

nine tranche notional. Expressed in fractions of the total nominal this tranche

is characterized by a > 0 and b < 100%.

� Senior tranche: The senior tranche notional is affected by credit defaults only

if the notional of all other tranches has already be consumed to cover losses.

The buyer of the tranche can also be called protection seller as he compensates the

seller of the tranche for all losses in the tranche (the tranche notional decreases).

In return the buyer of the tranche receives periodic payments from the seller of the

tranche on the remaining tranche notional.

Like a credit default swap the basket CDS tranche consists of two sides: The

regular payments of the protection buyer (tranche seller) are the fixed side. The

payment of the protection seller (tranche buyer) in case of default is the float side.

For each side there are two ways a default can influence the notional:

� Binary: In case of default the notional decreases with the full amount of the

credit. Recovered parts of the credit are not taken into account.

� Recovery: In case of default the decrease in the notional is given by the part of

the credit that cannot be recovered.

It is not necessary that the way a default affects the notional is the same for both

sides. For example, the effect of a default on the fixed side (premium payments) can

be of binary-type (the amount, the fixed side notional decreases, is the notional of

10



the defaulted credit no matter how much of the credit can be recovered) whereas the

effect on the float side (default payment) can be recovery-type. Such a setup would

be necessary, for example, if a basket CDS has to be modelled as basket CDS tranche.

If such a tranche must be priced, two tranche notionals must be distinguished: The

fixed side tranche notional and the float side tranche notional.
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Chapter 2

Pricing Multi-Name Credit
Derivatives

With the increasing popularity of credit products having a payoff profile depending

on a whole credit portfolio modelling correlated defaults has also gained importance.

Examples of such products are basket default swaps (kth-to-default swap) and basket

CDS tranches or CDOs (Collateralized Debt Obligations). To price such multi-name

credit products, it is not suffcient to know the default probabilities for all credits,

but it is also necessary to determine the joint distribution of all credits in order to

evaluate correlated default effects.

The next sections contain an outline of the theoretical background for pricing multi-

name credit derivatives. The key idea of modelling correlated default, the so-called

copulae, are described. After the copula concept has been introduced, pricing basket

default swaps and basket CDS tranches are discussed in detail. These concepts are

used to implement different programs to price kth-to-default basket default swaps and

basket CDS tranches. The implementation is described in Chapter 3.

2.1 Copulae

A useful concept for computing joint distribution functions are copulae (a detailed

description can be found in [18]). Copulae can be used to generate the joint distribu-

tion function of a credit portfolio containing n credits if the marginal distributions of

all credits are known. Mathematically, a copula is a function [0, 1]n → [0, 1] with the

following properties:

C(u1, u2, ..., 0, ..., un) = 0 (2.1)

C(1, . . . , 1, uk, 1, . . . , 1) = uk (2.2)

12



Furthermore, for every ā and b̄ in [0, 1]n such that ai ≤ bi for all i, the volume of the

n-box [ā, b̄] is V ([ā, b̄]) ≥ 0.

2.1.1 Sklar’s Theorem

The probably most important property of copulae is summarized in Sklar’s theorem:

Sklar’s theorem states that for any n-dimensional distribution function H(x1, ..., xn)

with marginal distribution functions F1(x1), ..., Fn(xn) there exists a n-dimensional

copula, such that

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (2.3)

Using different copulae C1, C2, .. different joint distribution functions can be gener-

ated having the same marginal distribution functions F1(x1), ..., Fn(xn) of the random

variables X1, . . . , Xn.

2.1.2 Gaussian Normal Copula

The most popular copula is the Gaussian normal copula, which models joint distribu-

tion as n-dimensional Gaussian normal distribution. For the general case the copula

of a n-dimensional distribution is given by

CΣ(u1, . . . , un) =
1

(2π)
n
2

√
det Σ

Φ−1(u1)∫
−∞

. . .

Φ−1(un)∫
−∞

exp

(
−1

2
x̄Σ−1x̄

)
dx1 . . . dxn (2.4)

where Σ is the linear correlation matrix.

Although often not explicitly mentioned, the Gaussian normal copula is used in

many models. For example, in the models of KMV [11] and CreditMetrics [17] the

joint distribution is also a multi-variate normal, and if one is familiar with market

Value-at-Risk calculations, one recognizes the algorithm given above to be exactly

the same as for modelling the evolution of market risk factors.

Equation (2.4) describes the n-dimensional joint distribution for a Gaussian nor-

mal copula, but this is not sufficient to create correlated random numbers following

the joint distribution of a Gaussian normal copula. These numbers are required for

Monte Carlo simulations. An algorithm generating the required random numbers Xi

can be formulated as follows:

� Generate the Cholesky decomposition of the correlation matrix Σ = AAT ;
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� Generate vector z̄ as m independent standard normally distributed random

numbers z1, . . . , zm ∈ N(0, 1);

� Generate vector X̄ as X̄ = Az̄.

Having performed all steps above, correlated random numbers fitting the joint normal

distribution can be found in Xi.

2.1.3 Student t Copula

Besides the Gaussian normal copula there are other copulae which can be used to gen-

erate joint distribution functions. The Student t distribution is a generalization of the

normal distribution in the sense that the Student t distribution contains the Gaus-

sian normal distribution as limit. The Student t distribution contains the additional

parameter ν, named degrees of freedom. With ν →∞ the Student t distribution con-

verges to the normal distribution. Compared to the normal distribution the Student

t distribution shows higher probabilities at the margins1.

The probability density function of a Student t distribution is given by

fν(x) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

(2.5)

where Γ(x) is the Gamma function

Γ(x) =

∞∫
0

tx−1e−tdt (2.6)

If the Γ function is used with even values of ν, then only the following properties

of the Γ function are required:

Γ(x+ 1) = xΓ(x) (2.7)

Γ(1) = 1 (2.8)

Γ(0.5) =
√
π (2.9)

The Student t distribution is

tν(x) =

x∫
−∞

fν(y)dy (2.10)

1The higher probability mass at the margins is often called “fat tails”.
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In the case n = 2 the Student t copula is given by

Cν,ρ12(u, v) =

t−1
ν (u)∫
−∞

t−1
ν (v)∫
−∞

1

2π
√

1− ρ2
12

(
1 +

s2 − 2ρ12st+ t2

ν(1− ρ2
12)

)− ν+2
2

ds dt (2.11)

where ρ12 is the correlation between random variable 1 and random variable 2.

The procedure to generate random numbers fitting a Student t copula is similiar

to the generation of standard normally distributed random numbers and comprises

the following steps:

� Generate the Cholesky decomposition of the correlation matrix Σ = AAT ;

� Generate vector z̄ as m independent standard normally distributed random

numbers z1, ..., zm ∈ N(0, 1);

� Generate one χ2
ν distributed random number s;

� Generate vector ȳ as ȳ = Az̄;

� Generate vector x̄ as x̄ =
√

ν√
s
ȳ.

2.1.4 Archimedean Copulae

In order to introduce the Archimedean copula family, a continuous, strictly decreasing

and convex function ϕ(u) : [0, 1] → [0,∞) for all u ∈ [0, 1] is considered. The function

ϕ is called generator of the copula. The pseudo-inverse of ϕ defined as

ϕ−1(z) =
{ ϕ−1(z) if 0 < z ≤ ϕ(0)

0 if ϕ(0) ≤ z <∞

is required if ϕ(0) = ∞. If ϕ(0) 6= ∞, then ϕ−1 is the ordinary inverse function.

With ϕ and ϕ−1 the function C : [0, 1]n → [0, 1]

C(u1, u2, . . . , un) = ϕ−1(ϕ(u1) + ϕ(u2) + . . .+ ϕ(un)) (2.12)

is an Archimedean copula if ϕ−1 is monotone. Examples of the Archimedean copula

family are

Gumbel Copula The Gumbel copula has the generator ϕ(u) = (− ln(u))α with

α ∈ (1,∞) and is defined as

C(u1, u2) = exp
{
−[(− ln(u1))

α + (− ln(u2))
α]

1
α

}
(2.13)
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Clayton Copula The Clayton copula is defined via the generator ϕ(u) = u−α− 1.

For α ∈ (0,∞) the Clayton copula can be written as

C(u1, u2) = (u−α
1 + u−α

2 − 1)−
1
α (2.14)

Frank Copula For the Frank copula the generator is ϕ(u) = ln
(

exp(−αu)−1
exp(−α)−1

)
with

α ∈ R\{0}. The Frank copula is

C(u1, u2) = − 1

α
ln

(
1 +

(exp(−αu1)− 1)(exp(−αu2)− 1)

exp(−α)− 1

)
(2.15)

General algorithm to create random numbers for a given copula Embrechts

et al. [7] propose an algorithm with which random numbers can be created for any

copula. They point out that this algorithm is efficient only under certain conditions (it

must be possible to write C−1
k (·|u1, . . . , uk−1) in closed form). First the k-dimensional

marginal distribution of C is defined as

Ck(u1, u2, . . . , un) = C(u1, . . . , uk, 1, . . . , 1) (2.16)

The random numbers U1, . . . , Un follow the joint distribution C. The conditional

distribution of Uk for given U1, . . . , Uk−1 is

Ck(uk|u1, . . . , uk−1) = P(Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1) (2.17)

=

∂k−1Ck(u1,...,uk)
∂u1...∂uk−1

∂k−1Ck−1(u1,...,uk−1)

∂u1...∂uk−1

=
C

(k−1)
k (u1, . . . , uk)

C
(k−1)
k−1 (u1, . . . , uk−1)

(2.18)

In order to generate random numbers, the following steps have to be accomplished:

� Create n independent uniform random numbers v1, . . . , vn ∈ U(0, 1);

� First random number: u1 = v2;

� Second random number u2 ∈ C2(u2|u1)

with v2 = C2(u2|u1) follows u2 = C−1
2 (v2|u1)

� Third random number u3 ∈ . . .

� nth random number un ∈ Cn(un|u1, . . . , un−1)

with vn = Cn(un|u1, . . . , un−1) follows un = C−1
n (vn|u1, . . . , un−1)
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In case of an Archimedean copula C−1
k (uk|u1, . . . , uk−1) can be written in closed form

and thus the algorithm described above can be used to generate random numbers.

For an Archimedean copula (2.12) the conditional distribution Ck(uk|u1, . . . , uk−1)

can be formulated as

Ck(uk|u1, . . . , uk−1) =
ϕ−1(k−1)(ϕ(u1) + ϕ(u2) + . . .+ ϕ(uk))

ϕ−1(k−1)(ϕ(u1) + ϕ(u2) + . . .+ ϕ(uk−1))
(2.19)

For the Clayton copula with the generator ϕ(u) = u−α − 1 and its inverse ϕ−1(v) =

(v+1)−
1
α the first derivative of ϕ−1 is ϕ−1(1)(v) = − 1

α
(v+1)−

1
α
−1 and the kth derivative

of ϕ−1 is

ϕ−1(k)(v) = (−1)k (α+ 1)(α+ 2) · . . . · (α+ k − 1)

αk
(v + 1)−

1
α
−k (2.20)

According to the above algorithm the following steps have to be performed:

� Generate n independent uniform random variables (v1, v2, . . . , vn) from U(0, 1)

� The first random variable is u1 = v1

� Set v2 = C2(u2|u1) = ϕ−1(1)(c2)

ϕ−1(1)(c1)
. With c1 = ϕ(u1) = u−α

1 − 1 and c2 = ϕ(u1) +

ϕ(u2) = u−α
1 + u−α

2 − 2 this is

v2 =

(
u−α

1 + u−α
2 − 1

u−α
1

)− 1
α
−1

(2.21)

This can be solved in u2 giving

u2 =
(
v−α

1

(
v
− α

α+1

2 − 1
)

+ 1
)− 1

α

(2.22)

� . . .

� Set vn = Cn(un|u1, . . . , un−1) = ϕ−1(n−1)(cn)

ϕ−1(n−1)(cn−1)
.

vn =

(
u−α

1 + u−α
2 + . . .+ u−α

n−1 + u−α
n − n+ 1

u−α
1 + u−α

2 + . . .+ u−α
n−1 − n+ 2

)− 1
α
−n+1

(2.23)

This can be solved in un giving

un =
{(
u−α

1 + u−α
2 + . . .+ u−α

n−1 − n+ 2
) (
v

α
α(1−n)−1
n − 1

)
+ 1
}− 1

α

(2.24)
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2.1.5 Measure of dependence

Given two random variablesX1 andX2, there are different measures characterizing the

dependence structure betweenX1 andX2. For some distributions, like for example the

elliptical distributions (e.g. the Gaussian normal or Student t distribution), the linear

correlation coefficient provides a good method to describe dependence. As pointed out

by Embrechts et al. [7] for other distributions like the Archimedean distributions the

linear coefficient is inappropriate or can even be misleading2. For such distributions

Kendall’s tau and Spearman’s rho are alternatives to describe dependence.

Pearson’s correlation coefficient ρ The most popular correlation measure is

Pearson’s linear correlation coefficient. For two random variables X1 and X2 with

finite variances the linear correlation coefficient is

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
=
E(X1, X2)− E(X1)E(X2)√

Var(X1)Var(X2)
(2.25)

Kendall’s tau Two observations (x1, x2) and (x′1, x
′
2) of the random vector (X1, X2)

are concordant if (x1 − x′1)(x2 − x′2) > 0 and discordant if (x1 − x′1)(x2 − x′2) < 0.

Kendall’s tau is defined for the random variables X1 and X2 as the probability of

concordance minus the probability of discordance:

τ(X1, X2) = P[(X1 −X ′
1)(X2 −X ′

2) > 0]− P[(X1 −X ′
1)(X2 −X ′

2) < 0] (2.26)

where (X ′
1, X

′
2) is a independent copy of (X1, X2).

With the copula C(u1, u2) modelling the correlation structure of the random vari-

ables X1 and X2 this can be written as

τ(X1, X2) = 4

∫∫
[0,1]2

C(u1, u2)du1du2 − 1 (2.27)

Kendall’s tau is equal to −1 if two random variables are countermonotonic, +1 if two

random variables are comonotonic and 0 if two random variables are independent.

For the Clayton copula Kendall’s tau is equal to τ = α
α+2

. Thus the parameter

α describes the dependence in a Clayton copula correlation structure; increasing α

has the same qualitative effect as increasing correlation within the Clayton copula

correlation structure.

2An example, how the usage of the linear correlation coefficient for Archimedean copulae results
in misleading implications, can be found in [7].
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Spearman’s rho Spearman’s rho is defined as

ρS(X1, X2)

3
= P[(X1 −X ′

1)(X2 − X̄2) > 0]− P[(X1 −X ′
1)(X2 − X̄2) < 0] (2.28)

where (X ′
1, X

′
2) and (X̄1, X̄2) are independent copies of (X1, X2).

2.2 Pricing Basket Default Swaps

A kth-to-default basket default swap gives protection against the kth default in the

underlying pool of credits. Because of this, the whole joint distribution of all under-

lyings must be taken into account. There are two ways of computing the value of a

basket default swap:

� Simulate a large number of random scenarios with random numbers following

the joint distribution.

� Use a factor model to make semi-explicit computations tractable.

2.2.1 Monte Carlo Method

The present value of a kth-to-default basket depends on the time the kth credit de-

faults. In order to determine the default time of the kth credit, the default times of

all credits in the underlying basket must be known. Pricing a kth-to-default basket

default swap thus can be split up into the following steps:

� Generate the correlated default times τi for all underlyings in the basket

� Sort the credits with respect to their default time τi

� Determine the kth default time τ k

� Determine the present value of the premium leg

� Determine the present value of the default leg

� Repeat all steps above until the required number of scenarios has been simulated

The subsequent sections give a detailed description of these steps.
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Generating the correlated default times At this point the marginal distribution

of the underlying credits as well as the chosen model for the joint distribution become

important. In general this step consists of creating random numbers, which are

transformed to follow the joint distribution, and computing the default times τi out

of the random numbers. In order to make things a bit more specific, a Gaussian

normal copula is considered. As already described in Section 2.1.2 about Gaussian

normal copulae the computation consists of

� generating correlated normal random numbers as in Section 2.1.2

� generating [0, 1] distributed numbers ui = Φ(xi) where Φ(x) is the normal

distribution function

� computing the default times τi = F−1
i (ui) where Fi(t) = P(τi ≤ t) is the

marginal distribution of credit i

With the last two steps the realization xi of the latent variable Xi is linked to the

default probabilities of the underlying credit and the default time τ is computed.3

The vector τ̄ contains the default times τi of all n underlyings in the basket. For

a kth-to-default basket default swap the default times have to be brought into an

ascending order, and the kth credit defaulting at time τ k has to be found.

Computing the present value of the premium leg The payments of the pre-

mium leg are the compensation the protection seller receives for taking over the credit

risk of the underlying. The premium is paid as long as the underlying credit has not

defaulted but not longer than to the maturity of the contract. Whether accrued

premium payments between payment dates are taken into account, depends on the

contractual agreement. With the kth default time τ k given, the present value of the

premium leg can be computed by

PVPremium = sN
∑

j

B(0, tj)∆j−1,j (2.29)

where N is the nominal of the BDS, tj are the payment dates of the premium leg

(tj ≤ T ), s is the percentile amount of the nominal to be paid at payment dates and

3In the section about Merton’s model the equation Di = Φ−1(Fi(t)) is given: Expressed in terms
of the latent variable default occurs if Xi ≤ Di = Φ−1(Fi(t)). Let τi be the time the threshold Di is
hit and default occurs. Then the above equation can be reformulated as τi = F−1

i (Φ(Di)): In this
context default occurs if t ≥ τi = F−1

i (Φ(Di)).
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∆j−1,j is the time between two premium payments:

∆j−1,j =
{ (tj − tj−1) 1{τk>tj}

(τ − tj−1) 1{τk≤tj∧τk>tj−1} (accrued premium payment)

If τ k ≤ tj and accrued premium payments are agreed, the year fraction ∆j−1,j is

τ − tj−1; if accrued premium payments are not agreed, ∆j−1,j is 0.

Computing the present value of the default leg With the kth default time

τ k given, the present value of the default leg can be computed with the subsequent

equation

PVDefault = B(0, τ k)N(1−Rk)1{τk≤T} (2.30)

where T is the maturity of the BDS, Rk is the recovery rate of the kth defaulted credit

and B(0, t) is the discount factor, which gives the present value of one unit paid at

time t.

Pricing the Basket Default Swap The term of pricing a basket default swap

can be understood in two ways:

� For a given BDS with a fixed spread rate the value of the contract has to be

determined. This can be done by calculating the difference between the present

values of the default and premium leg. From the protection seller’s point of

view this can be formulated as

PV =
1

N

(
N∑

i=1

PVPremium(i)−
N∑

i=1

PVDefault(i)

)
(2.31)

where i is the index of the scenario.

� For a given BDS the basket spread rate has to be determined, which makes the

BDS worthless for both sides. This can be done by dividing the present value

of the default leg through the present value of the premium leg (calculated with

s = 1 in Equation 2.29).

s =

∑
i PVDefault(i)∑

i PVPremium(i)
(2.32)
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2.2.2 Semi-Explicit Approach

While the Monte Carlo method prices credit products by simulating the default times

and calculating the price of the product with respect to the simulated default times

in a large number of scenarios, in the semi-explicit approach developed by Laurent

and Gregory [12] the probabilities required to compute the present value of the kth-to-

default basket CDS, namely the probability P(N(t) = m) that a certain number of

credits has defaulted at time t and the probability Zi
k(t) that at time t credit i has

defaulted as kth credit in the basket, are determined. Given these probabilities, the

present value of the premium and default leg can be calculated analytically.

Factor Copulae In order to determine the required default probabilities, Laurent

and Gregory use a factor copula approach to model Xi, which is the default deter-

mining property of a credit. In the factor model Xi consists of two parts: The first

part is a for all credits identical Gaussian random variable V and the second part is

a for each credit specific Gaussian random variable Vi:

Xi = βiV + Vi

√
1− β2

i (2.33)

The factor βi determines how strong Xi is linked to the evolution of the global random

variable V . V and Vi are independent standard normally distributed random numbers.

Because of this, the correlation between two credits is Cov(Xi, Xj) = βiβj. The link

between the Xi and the default time τi is given via the marginal distribution of the

default time P(τi ≤ t) = Fi(t):

Xi = βiV + Vi

√
1− β2

i ≤ Φ−1(Fi(t)) (2.34)

With the equation above the condition that credit i defaults can be expressed in terms

of Vi as

Vi ≤
Φ−1(Fi(t))− βiV√

1− β2
i

⇐⇒ τi ≤ t (2.35)

The conditional default probability p
i|V
t that credit i defaults at time t conditional

on V is

p
i|V
t = P(τi ≤ t|V ) = Φ

(
Φ−1(Fi(t))− βiV√

1− β2
i

)
(2.36)
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Because of the independence of V and Vi the Gaussian factor copula can be written

as:

C(u1, . . . , un) =

∫ ( n∏
i=1

Φ

(
Φ−1(Fi(t))− βiv√

1− β2
i

))
ϕ(v)dv (2.37)

where ϕ(v) is the normal probability density function of v.

Probability P(N(t) = k) of having k credits defaulted at time t Let N(t)

be the number of defaulted credits at t: N(t) =
∑

iNi(t) with Ni(t) = 1{τi≤t}. The

probability P(N(t) = k) is required to compute the present value of the premium leg

of a basket default swap. Furthermore, P(N(t) = k) is required for a homogeneous

basket default swap to compute the present value of the default leg.

Using a probability generating function approach, the probability P(N(t) = k)

that k credits have defaulted at time t can be determined:

ψN(t)(u) = E[uN(t)] =
n∑

k=0

P(N(t) = k)uk (2.38)

This can be written as

E[uN(t)] = E[E[uN(t)|V ]] = E

[
E

[∏
i

uNi(t)|V

]]
(2.39)

and if it is taken into account that E[uNi(t)|V ] = 1 − p
i|V
t + u p

i|V
t , the probability

generating function looks like

ψN(t)(u) = E[uN(t)] =
n∑

k=0

P(N(t) = k)uk = E

[
n∏

i=1

(
1− p

i|V
t + u p

i|V
t

)]
(2.40)

The required probability P(N(t) = k) can be determined by calculating the coefficient

of the uk term.

Present value of the premium leg If the probability P(N(t) = k) is known,

the present value of the premium leg can be determined. The basket default swaps,

regarded by Laurent and Gregory, have the following modalities:

� The premium s is paid on the protected nominal N ;

� The premium is paid at certain payment dates tj;

� For simplification reasons Laurent and Gregory neglect accrued premium pay-

ments;
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� The time between the payment dates tj−1 and tj is given as year fraction ∆j−1,j;

� B(0, t) is the discount factor which discounts a payment at time t to time 0.

With these assumptions the present value of the premium leg is

PV = sN
∑

j

∆j−1,jB(0, tj)P(N(tj) < k) (2.41)

= sN
∑

j

∆j−1,jB(0, tj)
k−1∑
i=0

P(N(tj) = i) (2.42)

Determining the default probability Zi
k(t). In order to evaluate the default leg

for an inhomogeneous (k + 1)th-to-default basket default swaps, the probability that

credit i defaults at time t having k credits already defaulted before time t is required

for all credits in the basket. This probability is denoted as Zi
k(t) and can be written

with Ni(t) = 1{τi≤t} and N (−i)(t) =
∑

j 6=iNj(t) as

Zi
k(t) = lim

t′→t

1

t′ − t
P(Ni(t

′)−Ni(t) = 1, N (−i)(t) = k) (2.43)

P(Ni(t
′) − Ni(t) = 1, N (−i)(t) = k) can be computed using the joint probability

generating function of (Ni(t
′)−Ni(t), N

(−i)(t)) defined by:

ψ(u, v) = E
[
uNi(t

′)−Ni(t)vN(−i)(t)
]

(2.44)

After some computations (refer to Appendix A), the subsequent equation can be

determined, in which the required probability Zi
k(t) emerges:

n−1∑
k=1

Zi
k(t)v

k = E

[
dp

i|V
t

dt

∏
j 6=i

(
1− p

j|V
t + p

j|V
t v

)]
(2.45)

The probability that credit i defaults as (k + 1)th is given by the coefficient of the vk

term.

Default Leg With the default probability Zi
k(t) given for all credits in the basket,

the present value of the default leg can be determined. The fraction of the nominal

which is paid in case of default is given by the recovery rate Ri. As consequence the

protection seller has to pay Mi = Ni(1−Ri) in case of default to the protection buyer.

With the properties defined above, the value of the default leg is

PV =

T∫
0

n∑
i=1

B(0, t)MiZ
i
k−1(t)dt (2.46)

where k is the order of the basket (kth-to-default).
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2.3 Pricing Basket CDS Tranches

A basket CDS tranche, as described in detail in Section 1.3.3, gives protection to

the protection buyer against losses between the lower boundary a and the upper

boundary b. In this section a basket CDS tranche is analyzed from the perspective of

the tranche buyer (that is the protection seller). The tranche buyer receives regular

payments at times tj on the notional remaining in the tranche from the tranche seller.

Pricing basket CDS tranches can be accomplished in two ways:

� In Monte Carlo simulations the loss as well as the tranche notional are computed

for every scenario individually. With equation (2.51), (2.52) and (2.53) the

present value of the tranche is computed.

� In the semi-explicit approach the loss distribution is computed via the char-

acteristic function of the loss. A Fourier Transformation of the characteristic

function provides the loss distribution. With the loss distribution the expected

tranche notionals of the float and fixed leg can be calculated. If the expected

tranche notionals are known, the present value of the basket tranche can be

determined.

In the subsequent sections the two techniques to evaluate basket CDS tranches are

described in detail.

2.3.1 Monte Carlo Method

In order to get the loss for a credit portfolio containing n credits, the default time τi

must be determined for all n credits. As the manner a default influences the tranche

notional can be different for fixed and float side, two portfolio losses are distinguished.

Let Lfixed(t) be the portfolio loss for the fixed side at time t and Lfloat(t) the portfolio

loss for the float side.

Lfixed(t) =
n∑

i=1

Ni(1−Ri 1{fixed type=recovery}) 1{τi≤t} (2.47)

Lfloat(t) =
n∑

i=1

Ni(1−Ri 1{float type=recovery}) 1{τi≤t} (2.48)

In the equations above Ni is the nominal of credit i, Ri is the recovery rate of credit i

and τi is the default time of credit i. With a lower boundary a and an upper boundary
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b the tranche notional is

Nfixed side(t) = max(b− Lfixed(t), 0)−max(a− Lfixed(t), 0) (2.49)

Nfloat side(t) = max(b− Lfloat(t), 0)−max(a− Lfloat(t), 0) (2.50)

The present value of the fixed side payments can be written as

PVfixed side = s
m∑

j=1

∆j−1,jB(0, tj)Nfixed(tj) (2.51)

where tm = T is the maturity of the basket CDS tranche, ∆j−1,j is the year fraction

between two payments, B(0, tj) is the discount factor and s is the percentile premium

the protection seller receives.

If it is assumed that compensation payments for default are paid in certain inter-

vals only, the present value of the float side payments is

PVfloat side =
l∑

j=1

(Nfloat(tj−1)−Nfloat(tj))B(0, tj) (2.52)

The present value of the tranche (from the protection seller’s point of view) is the

difference between the two present values computed above:

PVTranche = PVfixed − PVfloat (2.53)

Performing all described steps N times, adding up all present values and dividing the

sum by N gives the expected value of the tranche.

2.3.2 Semi-Explicit Approach

While in the Monte Carlo method the portfolio loss (and thus also the present value of

the tranche) is computed for each scenario with respect to the simulated default times

τi individually, and the expected value of the basket CDS tranche is the average of the

present values, in the semi-explicit approach the whole loss distribution P(L(t) = k)

is used to determine the tranche spread.

The first step in the semi-explicit approach is to determine the loss distribution

P(L(t) = k). This is accomplished by the characteristic function of L(t):

ΨL(t)(u) = E[eiL(t)u] (2.54)

= E

[
n∏

j=1

((
1− p

j|V
t

)
+ p

j|V
t · eiMju

)]

=

∫ +∞

−∞
ϕ(V )

n∏
j=1

((
1− p

j|V
t

)
+ p

j|V
t · eiMju

)
dV
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with the loss Mj on credit j in case of default (this is Nj(1−Rj) for recovery type or

Nj for binary type) and ϕ(V ) the normal probability density function for the global

latent variable V . The characteristic function (2.54) can be expressed in terms of the

Fourier Transform of φ(k):

ΨL(t)(u) =

∫ ∞

−∞
eikuφ(k)dk (2.55)

The interesting point is that the probability P (L(t) = k) is equal to the Fourier

Transform P (L(t) = k) = φ(k). The required loss distribution for a certain time t

can be determined by Fourier Transformation of the characteristic function E[eiL(t)u]:

φ(k) =
1

2π

∫ ∞

−∞
e−ikuΨL(t)(u)du (2.56)

In practice the first step to determine the probabilities P(L(t) = k) is to calculate the

characteristic function with equation (2.54) then to make a Fourier Transformation

of the characteristic function as described in equation (2.55) to get φ(k).

The second step is to determine what impact a certain portfolio loss k has on the

tranche notional. The connection between portfolio loss and tranche notional N(k)

is displayed in Figure 1.3 and can mathematically be stated as

N(k) = (b− a) + (a− k)1{k≥a} + (k − b)1{k≥b} (2.57)

This function maps a certain portfolio loss to the corresponding tranche notional. If

the leg types of fixed and float leg differ, two portfolio losses have to be determined

in the first step and in the second step the two portfolio losses have to be mapped to

two tranche notionals with equation (2.57).

With the loss distribution determined and the mapping function N(k) between

portfolio loss and tranche notional the expected tranche notional is

N = E[N ] =
+∞∑
k=0

N(k)P(L(t) = k) (2.58)

If the expected tranche notional has been computed, equation (2.51) and (2.52) pro-

vide the present value of the basket tranche.
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Chapter 3

Implementation

In this chapter the implementation of the different programs is described in detail.

The chapter starts with the definition of reference results which are used to check

the implemented programs. Then the programs using Monte Carlo simulations are

described. The chapter ends with the description of the programs using the semi-

explicit approach to price multi-name credit derivatives.

3.1 Benchmark Results - Reference Case

In order to verify whether the results in the implemented programs are reasonable,

benchmark results are required.

Schmidt and Ward published an article [21] in which they investigate a kth-to-

default basket with three underlying credits. They assume that the spread of credit

default swaps on the three underlyings are 0.9%, 1.0% and 1.1% for maturities 1

to 5 years. The recovery rate and the linear correlation of the underlyings is 20%

and 50%. This credit basket is called reference case throughout this thesis. The

results of the reference case are shown in Table 3.1. The first step to check the

Maturity (yrs) 1st 2nd 3rd

1 2.63 0.34 0.04
2 2.56 0.42 0.06
3 2.51 0.47 0.08
4 2.47 0.51 0.09
5 2.44 0.55 0.10

Table 3.1: Benchmark basket spreads from Schmidt and Ward [21].

implementation with Schmidt and Ward is to determine default probabilities for the
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underlyings which give the spreads mentioned above for the CDS. The spread of a

credit default swap is given by equation (1.12). As the CDS used by Schmidt and

Ward have the same spread for all maturities, determining the default probabilities

is done by a procedure similar to bootstrapping. Firstly, the default probability for

one year is determined by changing it as long as the resulting spread does not agree

with the required spread. Then with the one year default probability determined,

the two year default probability is changed until the resulting spread agrees with

the required one. This procedure is done for all maturities and for all three CDS in

an auxiliary Excel spreadsheet. The resulting default probabilities are shown in the

following table:

Credit 1 Credit 2 Credit 3
Spread 0.9% 1.0% 1.1%

Maturity
0 0.00000 0.00000 0.00000
1 0.01097 0.01217 0.01337
2 0.02172 0.02417 0.02653
3 0.03249 0.03600 0.03950
4 0.04304 0.04768 0.05229
5 0.05346 0.06519 0.06487
6 0.06380 0.07056 0.07730

Table 3.2: Default probabilities for the reference case.

3.2 Monte Carlo Method

General Computations Starting point for the Monte Carlo evaluation of multi-

name credit products are the correlated default times τi.

For a Gaussian normal copula correlation structure correlated N(0, 1)-distributed

random numbers are required. These numbers are generated by two algorithms.

N(0, 1) distributed random numbers are created according to Marsaglia [5] and the

uncorrelated random numbers are transformed into correlated ones (with the corre-

lation matrix Σ) by multiplying them with the Cholesky decomposed matrix A (the

relationship between Σ and A is Σ = AAT ).

For a Student t copula correlation structure the correlated N(0, 1)-distributed

random numbers are multiplied additionally with
√
ν/s where ν is the degree of

freedom of the t distribution and s is a χ2
ν-distributed random number.
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The correlated random numbers are transformed into [0, 1]-distributed numbers

(these are the default probabilities):

� ui = Φ(xi) for Gaussian normal copula

� ui = tν(yi) for Student t copula (yi =
√
ν/s xi)

For the Clayton copula the generation of random numbers is accomplished with the

algorithm described in Section 2.1.4.

With the [0, 1]-distributed numbers, the default times τi are determined by τi =

F−1
i (ui) where Fi(t) is the marginal default probability of underlying i.

3.2.1 Implementation

An overview for which products and copulae a Monte Carlo pricing program has been

implemented is given in Table 3.3:

Copula Gaussian normal Student t Clayton
Product

kth-to-default Program 1 Program 3 Program 5
Basket CDS Tranche Program 2 Program 4 Program 6

Table 3.3: Matrix of products and copulae for which Monte Carlo pricing programs
are implemented.

Progam 1 Monte Carlo simulation of an inhomogeneous kth-to-default basket de-

fault swap. Joint default is modelled as Gaussian normal copula. After the

correlated default times τi have been simulated, the value of the premium and the

default leg are determined with equations (2.29) and (2.30). With the present value

of the default and premium leg for all scenarios the spread of the BDS is determined

as quotient of the sum of the present values of the default legs divided by the sum of

the present values of the premium legs (equation (2.32)).

Program 2 Monte Carlo simulation of an inhomogeneous basket CDS tranche.

Joint default is modelled as Gaussian normal copula. With the correlated default

times τi given, the loss of the float (Nfloat as in (2.48)) and the fixed side (Nfixed as

in equation (2.47)) of the tranche can be determined at any time. Equation (2.51)

and (2.52) provide the present value of the fixed and float side.
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Program 3 Monte Carlo simulation of an inhomogeneous kth-to-default basket de-

fault swap. Joint default is modelled as Student t copula. The Student t dis-

tribution is given as integral over the Student t probability function from −∞ to

x:

tν(x) =

x∫
−∞

fν(y)dy (3.1)

Calculating the integral using Simpson’s rule would be far too slow therefore inte-

gration is accomplished with the Gaussian quadrature method.1 After the correlated

default times are determined, the spread of the BDS is computed as in Program 1.

Program 4 Monte Carlo simulation of an inhomogeneous basket CDS tranche. In

contrast to Program 2 joint default is modelled as Student t copula; all other steps

are equal to Program 2.

Program 5 Monte Carlo simulation of an inhomogeneous kth-to-default basket de-

fault swap. Joint default is modelled as Clayton copula. With exception of the

copula used this program is identical to Program 1.

Program 6 Monte Carlo simulation of an inhomogeneous basket CDS tranche.

Joint default is modelled as Clayton copula. With exception of the copula used

this program is identical to Program 2.

3.2.2 Comparison with Reference Case

In order to check the implementation of the programs, every program is parameterized

to compute spreads for the reference case (see Section 3.1):

1In the Gaussian quadrature framework the integral
∫ b

a
f(x)dx is computed as sum of N function

values f(xi) at fixed abscissae xi ∈ (a, b), where each function value is multiplied with a for the
abscissa xi specific weight w(xi):

b∫
a

f(x)dx =
N∑

i=1

w(xi)f(xi) (3.2)

The abscissae xi as well as the weights w(xi) do not depend on the function f(x) to be integrated.
An algorithm providing the abscissae xi and the weights w(xi) is given in [19].
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Program 1 Normal copula, kth-to-default basket: A basket CDS consisting of three

credits with marginal default probabilities that give CDS spreads of 0.9%, 1.0% and

1.1% is examined. Recovery is set to 20% and linear correlation coefficients to 50%.

In each simulation run N = 5·106 scenarios are created to compute the basket spread.

Table 3.4 shows the results of the calculations.

Program 2 Normal copula, basket CDS tranche: In order to map the reference case

as basket CDS tranche, a portfolio consisting of the three credits mentioned above

is set up. The premium leg type is set to binary while the default leg type is set to

recovery. Lower and upper boundary of the tranche are chosen automatically in such

a way that the relevant tranche notional is equivalent to a kth-to-default (e.g. for the

2nd-to-default case with a nominal of 300 and a recovery rate of 20% the lower and

upper boundary for the premium tranche notional are set to 100 and 200 whereas the

boundaries for the default tranche notional are set to 80 and 160).

Schmidt & Ward kth-basket Basket Tranche
Maturity 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1 2.63 0.34 0.04 2.647 0.331 0.039 2.635 0.330 0.039
2 2.56 0.42 0.06 2.558 0.412 0.060 2.546 0.407 0.061
3 2.51 0.47 0.08 2.508 0.468 0.077 2.500 0.460 0.076
4 2.47 0.51 0.09 2.463 0.509 0.092 2.451 0.501 0.090
5 2.44 0.55 0.10 2.437 0.542 0.104 2.424 0.534 0.102

Table 3.4: Comparison of kth-to-default basket (Program 1) and basket CDS tranche
(Program 2) with Schmidt & Ward [21]. Correlation structure is modelled with
Gaussian normal copula. The relative errors of the basket spreads (defined as standard
deviation of the basket spread divided by the basket spread) are found to be of equal
size for Program 1 and Program 2: The relative errors are smaller than 0.7% for
1st-to-default, smaller than 1.8% for 2nd-to-default and smaller than 5.3% for 3rd-to-
default.

Program 3 Student t copula, kth-to-default basket: In the limit of ν → ∞ the

Student t distribution is equal to the Gaussian normal distribution. To Compare

values with the reference case, very large values of ν have to be regarded. The results

displayed in Table 3.5 have been determined with ν = 1000.

Program 4 Student t copula, basket CDS tranche: The reference case is mapped as

basket tranche as already described. In order to compare the results of the Student t

copula with those computed with a normal copula, the parameter ν is set to ν = 1000.

32



As can be seen in Table 3.4 and 3.5, there are only little differences between the

results of the implemented programs and the reference results provided by Schmidt

and Ward.

Schmidt & Ward kth-basket Basket Tranche
Maturity 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1 2.63 0.34 0.04 2.63 0.34 0.04 2.63 0.33 0.04
2 2.56 0.42 0.06 2.56 0.41 0.06 2.58 0.42 0.06
3 2.51 0.47 0.08 2.50 0.47 0.08 2.51 0.47 0.08
4 2.47 0.51 0.09 2.46 0.51 0.09 2.48 0.51 0.09
5 2.44 0.55 0.10 2.43 0.55 0.10 2.46 0.54 0.10

Table 3.5: Comparison of kth-to-default basket (Program 3) and basket CDS tranche
(Program 4) with Schmidt & Ward [21]. Correlation structure is modelled with
Student t copula. The parameter degree of freedom is set to ν = 1000. The relative
errors of the basket spreads (defined as standard deviation divided by the basket
spread) are found to be of equal size for Program 3 and Program 4: The relative
errors are smaller than 0.7% for 1st-to-default, smaller than 1.9% for 2nd-to-default
and smaller than 5.4% for 3rd-to-default.

3.2.3 Convergence of Monte Carlo Method

In order to get an impression how fast the Monte Carlo method converges, a Monte

Carlo simulation2 with 30 Mio. scenarios is performed. The error in scenario i is:

Errori =
Spread(imax)− Spread(i)

Spread(imax)
∗ 100 (3.3)

Figure 3.1 shows the relative error as function of the scenario. As can be seen in

the figure, the biggest relative error is about 0.35%, and after 4 Mio. simulations the

relative error stays smaller than 0.1%.

3.3 Semi-Explicit Approach

In the semi-explicit approach a factor copula model is used to reduce the complexity

in correlation structure. This approach is implemented for a Gaussian normal copula

only. The programs implemented in this approach are:

� Program 7: This program prices inhomogeneous kth-to-default basket CDS with

a Gaussian normal copula correlation structure as described in Section 2.2.2.

2The simulation computes the spread of the 1st-to-default for Schmidt & Ward’s reference basket
where the contract has a 5 year maturity.
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Figure 3.1: This figure shows the relative error in the tranche spread as function of
the number of simulation runs.

� Program 8: This program prices inhomogeneous basket CDS tranches with a

Gaussian normal copula correlation structure via the characteristic function of

the loss (Section 2.3.2).

3.3.1 Semi-Explicit Approach: Basket CDS

The first step is to implement a function which computes the conditional default

probability as given in equation (2.36). With p
i|V
t the probability P(N(t) = k), that

the number of defaulted credits N(t) at time t is equal to k, can be determined.

This can be achieved by directly calculating the coefficient of the uk term in equation

(2.40). The expectation has to be taken with respect to V . The integral is computed

with Simpson’s-rule, that is the interval b− a is divided into n parts. The integral is

given by∫ b

a

f(x)dx =
n∑

i=1

(
f(xi) + 4 f

(
xi + xi+1

2

)
+ f(xi+1)

)
xi+1 − xi

6
(3.4)

where x1 = 1, xi+1 = xi + b−a
n

and xn = b.

With the number of defaulted credits known, the present value of the premium leg

can already be computed with (2.41). In order to compute the value of the default

leg, the probability Zi
k(t), that credit i defaults at time t after k credits already

have defaulted, is required. Equation (2.45) provides Zi
k(t) as coefficient of the vk-

term. Expanding the product in (2.45) and determining the coefficient of the vk-term

delivers the probability Zi
k(t).

3 If the probabilities Zi
k(t) are calculated for the relevant

3The implementation showed that Zi
k(t) is extremely sensitive to errors in the inverse normal

distribution. A first approximation of the inverse normal distribution, which had a relative error
less that 10−6, led to errors in the spread bigger than 10%. The final version used to calculate the
inverse normal distribution accomplishes a rational approximation with a relative error less than
10−8 and uses this result for the Halley method [1] to get an accurate result.
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k for all credits i and all relevant times t, the present value of the default leg can be

computed with equation (2.46).

This method is used for the calculation of the spread of kth-to-default baskets only.

For basket CDS tranches expanding the probability generating function ΨL(t) = E[uL(t)],

like it is done for a kth-to-default in (2.45), is not very useful, as the complete loss

distribution is needed and not only one coefficient as for a kth-to-default basket.

3.3.2 Semi-Explicit Approach: Basket CDS Tranche

In contrast to a kth-to-default basket, where simply the probability that credit i

defaults as kth credit is needed to price the default leg, for a basket CDS tranche the

complete loss distribution of the portfolio is required for valuation. Thus the main

focus is to determine the loss distribution of the portfolio, that is the probability that

the portfolio is hit by a certain loss as function of the loss P(L(t) = x). The sought

function P(L(t) = x) can be determined as Fourier Transform4 of the characteristic

function of the portfolio loss ΨL(t)(u) = E[eiL(t)u]. The integration is done with

Gaussian quadrature method.

3.3.3 Comparison with Reference Case

kth-to-default Basket In the following table the results of the Semi-Explicit ap-

proach are compared with the Schmidt & Ward case:

Schmidt & Ward Semi-Explicit
Maturity (yrs) 1st 2nd 3rd 1st 2nd 3rd

1 2.63 0.34 0.04 2.68 0.33 0.04
2 2.56 0.42 0.06 2.59 0.41 0.06
3 2.51 0.47 0.08 2.54 0.46 0.08
4 2.47 0.51 0.09 2.50 0.51 0.09
5 2.44 0.55 0.10 2.46 0.54 0.10

Table 3.6: Comparison of the semi-explicit approach with Schmidt & Ward.

Comparing the numbers above, one has to keep in mind that Schmidt and Ward

take the accrued premium payments into account whereas in Laurent and Gregory’s

semi-explicit approach these payments are neglected. Because of this, the difference

in the case of a 1st-to-default basket with maturity T = 1 between 2.63 and 2.68 is

not that surprising. A more useful indicator of the correctness of the implementation

4The Fourier Transformation is done as FFT (Fast Fourier Transformation) with the algorithm
given in [19].
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Monte Carlo Semi-Explicit
Maturity (yrs) 1st 2nd 3rd 1st 2nd 3rd

1 2.6797 0.3312 0.0395 2.6779 0.3317 0.0403
2 2.5862 0.4123 0.0601 2.5928 0.4139 0.0608
3 2.5362 0.4685 0.0765 2.5375 0.4688 0.0772
4 2.4925 0.5101 0.0916 2.4960 0.5103 0.0914
5 2.4660 0.5435 0.1037 2.4631 0.5437 0.1039

Table 3.7: Comparison between the results of the semi-explicit approach and the
Monte Carlo results. In this special implementation accrued premium payments are
not considered. The relative errors of the basket spreads (standard deviation of the
basket spread divided by the basket spread) are smaller than 0.7% for 1st-to-default,
smaller than 1.8% for 2nd-to-default and smaller than 5.3% for 3rd-to-default.

is the difference between the numbers computed in the semi-explicit approach and

those that are computed via a special Monte Carlo implementation, where the accrued

premium payments are also not considered. As can be seen in Table 3.7, there is quite

a good congruence between the results in the Monte Carlo approach and in the semi-

explicit approach.

Basket CDS tranche To check the implementation of the pricing of basket CDS

tranches, Program 8 is parameterized such that the reference case can be described

as a basket CDS tranche. In order to do so, the fixed leg type is set to binary and

the float leg type is set to recovery. The results of this computation can be seen in

the subsequent Table 3.8.

Schmidt & Ward Semi-Explicit
Tranche

Maturity (yrs) 1st 2nd 3rd 1st 2nd 3rd

1 2.63 0.34 0.04 2.639 0.328 0.040
2 2.56 0.42 0.06 2.550 0.407 0.060
3 2.51 0.47 0.08 2.497 0.461 0.076
4 2.47 0.51 0.09 2.455 0.501 0.090
5 2.44 0.55 0.10 2.421 0.534 0.102

Table 3.8: Comparison between the results of the semi-explicit approach and Schmidt
and Ward’s results if the basket CDS is modelled as homogeneous basket CDS tranche.
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3.3.4 Bimodal and binomial distribution

For certain credit portfolios the loss distribution can be computed analytically in a

simple manner. This is the case if:

� all credits have the same nominal N ;

� all credits have the same default probability p;

� all credits have the same recovery rate of R = 0;

� the correlation between all credits is the same;

� the correlation between the credits is ρ = 0 or ρ = 1.

In the ρ = 1 case the loss distribution is bimodal; that is, there are only two values

populated: Either all credits have defaulted, so that the portfolio loss is 100%, or no

credit has defaulted, so that the portfolio loss is 0%. The probability of all credits

having defaulted at time t is p and the probability of no credit having defaulted is

1 − p. This situation is shown in Figure 3.2 for p = 10%. In the ρ = 0 case the loss
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Figure 3.2: This figure shows the relative error in the tranche spread as function of
the number of simulation runs.

distribution is binomial:

P(Loss(t) = N k) = N

(
n

k

)
pk(1− p)n−k (3.5)

Figure 3.2 also shows the binomial distribution for a default probability of p = 10%

and n = 20. This special setup of a credit portfolio can be used to check whether the
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implementation of Program 8 delivers the expected loss distributions. Hence, Program

8 is parameterized as described above, and the loss distribution is determined and

compared with the theoretical expectation (as shown in Figure 3.2). There are no

differences to the theoretical values.

3.3.5 Runtime Comparison

The big advantage of the semi-explicit approach is its ability to provide results much

faster than Monte Carlo computations. In order to give an impression how big the

differences in the required runtimes implied by the chosen method are, the basket

spreads are calculated with maturities T = 1, ..., 5 for the 1st-to-default basket refer-

ence case and the observed runtimes are shown in Table 3.9.

The basket spreads are calculated via:

� Program 1 - Direct Monte Carlo: 5 · 106 scenarios;

� Program 2 - Monte Carlo Tranche: 5 · 106 scenarios, 1st-to-default is modelled

as basket CDS tranche;

� Program 8 - Semi-Explicit Approach: 1st-to-default is modelled as basket CDS

tranche, integration in equation (2.54) is done with Simpson’s rule;

� Program 8 - Semi-Explicit Approach: 1st-to-default is modelled as basket CDS

tranche, integration in equation (2.54) is done with a 20-point Gaussian Legen-

dre quadrature method5;

Table 3.9 shows the observed runtimes6.

Monte Carlo Monte Carlo Semi-Explicit Semi-Explicit
Direct Tranche Simpson’s rule Gaussian Quadrature

Runtime(s) 210 321 5 1

Table 3.9: Observed runtime to compute five 1st-to-default basket spreads for matu-
rities T = 1, 2, 3, 4, 5.

It is obvious that the semi-explicit approach is able to provide results much faster

than Monte Carlo methods.

5An implementation of a 10-point Gaussian integration algorithm can be found in [19] (see Chap-
ter 4.5).

6The calculations are performed on a 600 MHz Intel Pentium III PC with 64 MByte memory.
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Chapter 4

Results

In this chapter the results computed with the implemented programs are presented.

Section 4.1 gives the results for the reference credit basket, and in Section 4.2 the

results for a real world basket CDS tranche are shown.

4.1 Results for the Reference Case

In this section Schmidt and Ward’s reference basket [21] is subject of examination.

4.1.1 Gaussian Normal Copula - Basket Spread as Function
of the Correlations

For Gaussian normal copulae linear correlation is an important parameter. In this

section the influence of ρ on the basket spread is investigated. Changing correlation
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Figure 4.1: Basket spread as function of the linear correlation coefficient ρ. The
number of Monte Carlo simulation runs is N = 5 · 106.
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between the credits has a big influence on the basket spread of a kth-to-default basket.

Figure 4.1 displays the spread1 of a 1st-, a 2nd- and a 3rd-to-default basket as function

of the correlation for the reference case [21]. With increasing correlation the spread

of the 1st-to-default decreases whereas the spread of the 2nd- and 3rd-to-default in-

creases with increasing correlation. The explanation for this dependence is that with

increasing correlation the probability for a second or third default increases whereas

the probability for a first default decreases. Therefore the spread of the 1st-to-default

decreases while 2nd- and 3rd-to-default protection gets more expensive.

4.1.2 Student t Copula - Influence of ν on the Basket Spread

If the correlation structure is modelled as Student t copula, the additional parameter ν

influences the spread of a kth-to-default basket. The dependence of the 1st-to-default2

for the reference case is displayed in the upper left graph of Figure 4.2. With increasing

ν the spread increases also and converges to the normal copula spread. As can be seen

in the figure the difference between the spread computed with the Student t copula

and the spread computed with the Gaussian normal copula of 2.63% is already for

ν = 64 very small (about 1% difference). For small values of ν the probability of

correlated defaults increases leading to a decrease in the spread. The right upper

graph of Figure 4.2 displays the influence of ν on the spread of the 2nd-to-default

for the reference case and the lower left graph the dependence of the 3rd-to-default

basket spread on the parameter ν.

What can be seen clearly in Figure 4.2 is that the parameter ν of the Student t

copula has a dramatic influence on the basket spread.

The results are summarized in the lower right graph of figure 4.2, which shows

the relative differences of the Student t basket spread to the Gaussian normal copula

basket spread as function of ν. The maximal change is −23% for the 1st-to-default,

115% for the 2nd-to-default and 448% for the 3rd-to-default. This shows clearly what

impact the copula used for pricing has on the determined prices.

4.1.3 Clayton Copula - Influence of α on the Basket Spread

The last copula investigated for the reference case is an example of the Archimedean

copula family - the Clayton copula. The results are computed with a Monte Carlo

simulation as described for the Clayton copula in Section 2.1.4. Figure 4.3 shows the

1These results have been computed with Program 1.
2The results are computed with Program 4 for T = 1. The number of Monte Carlo simulation

runs is set to N = 5 · 106.
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Figure 4.2: Basket Spread as function of the parameter ν; the left upper graph shows
the 1st-to-default basket spread - the relative errors (standard deviation divided by
basket spread) are smaller than 1.0%; the 2nd-to-default basket spread is displayed in
the right upper graph - the relative errors are smaller than 2.9%; the right lower graph
shows the 3rd-to-default - the relative errors are smaller than 5.5%; the right lower
graph relates the Student t basket spreads to the Gaussian normal basket spreads.

basket spread for maturity T = 1 for the 1st-, 2nd- and 3rd-to-default as function of

the parameter α. The parameter α is related to the “correlation” within the Clayton

copula correlation structure. Kendall’s tau as measure of dependence is τ = α
α+2

.

Thus increasing α is analogous to increasing correlation. For the 1st-to-default basket

increasing α results in a decrease of the basket spread whereas for the 2nd- and 3rd-to-

default a decrease leads to an increase of the basket spread. The influence α has on

the basket spread thus can be compared to the influence the parameter ρ has on the

basket spread for the Gaussian normal copula. The form of the curves in Figure 4.1

and 4.3 is different but the qualitative influence of increasing correlation is in both

figures the same: An increase in correlation leads to a decrease in the 1st-to-default

basket spread and increases in the 2nd and 3rd-to-default basket spreads.
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Figure 4.3: Basket spread of the reference case as function of α if joint default is
modelled as Clayton copula. Maturity is set to T = 1 and the number of Monte
Carlo simulation runs is N = 5 · 106. Standard deviation: For the 1st-to-default the
relative errors (standard deviation divided by the basket spread) are for all values of α
smaller than 2.1%, for the 2nd-to-default smaller than 1.2% and for the 3rd-to-default
smaller than 5.2%.

For a specific value of α the Clayton copula produces nearly equal results as the

Gaussian normal copula. This value is α = 0.27 for the reference case basket. The

basket spreads are 2.626 for the 1st-to-default, 0.338 for the 2nd-to-default and 0.038

for the 3rd-to-default.

Again, the results for this copula show that the choice of the copula has an enor-

mous influence on the basket spread.

4.2 Valuation of a real world Basket CDS Tranche

Given the contractual characteristics of a real basket tranche, the implemented rou-

tines can be used to find a price for this product. The basket tranche to be priced

consists of 31 underlyings with individual marginal default probabilities and recovery

rates. The notional per underlying is 10, 000, 000 Euro and the lower limit of the

tranche is 20, 000, 000 Euro whereas the upper limit is 40, 000, 000 Euro. The fixed

and float leg type of the tranche are both recovery style. As the basket tranche to be

priced is a real world product, the data has been anonymized; that is, the underly-

ing names are called Credit 1 to Credit 31. The data can be found in Appendix C.

Some key information about the tranche is listed in the subsequent Table 4.1. Using

Program 2 for basket CDS tranche pricing with the data above, a present value of

1, 520, 203 is computed. The difference to the price provided by the protection buyer
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Property Value
Start 02-May-2003
Maturity 02-May-2008
Coupon Frequency 3 monthly
Lower Boundary 20,000,000
Upper Boundary 40,000,000
Currency Euro
Premium-Leg-Type Recovery
Default-Leg-Type Recovery
Spread 120 bps
Evaluation time (=Today) 02-May-2003
Present Value 1,529,295

Table 4.1: Basic Data of the real world basket CDS tranche.

of 9, 092 corresponds to a percentile deviation less than 1%. In the next sections this

real world basket is examined3 regarding the influence recovery rates, correlations,

default probabilities and the lower and upper boundary have on the tranche spread4.

4.2.1 Tranche Spread as Function of the Recovery Rates

In this section the influence of the recovery rate on the tranche spread is investigated.

Starting with the initial recovery rates given in Appendix C the recovery rates are
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Figure 4.4: Tranche spread of the real world basket CDS tranche as function of the
shift in the recovery rates. The shift is given as percentage.

3Computations are done with Program 2.
4With the given parameters the fair tranche spread is 3.1027% for valuation date 02-May-2003.
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changed5 and the tranche spread with the changed recovery rates is computed. Fig-

ure 4.4 shows that with increasing recovery rates the tranche spread decreases. This

is exactly what one would expect as with increasing recovery rates the severity of a

default decreases and thus also the present value of the default leg decreases.

4.2.2 Tranche Spread as Function of the Correlations

A similar analysis as with recovery rates can be done to determine the influence the

correlation has on the tranche spread. Commencing with the correlation coefficients

given in Appendix C every coefficient is shifted by the same amount. Figure 4.5

shows how the spread changes if the correlations between the underlying credits are

changed. For the regarded tranche an increase in correlation leads to an increase in

the tranche spread.
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Figure 4.5: Tranche spread of the real world basket CDS tranche as function of the
shift in the correlations. The shift is given as percentage.

4.2.3 Tranche Spread as Function of the Default Probabili-
ties

The influence of the default probabilities can be investigated by changing the default

probabilities for all underlyings by the same amount, calculating the new spread and

comparing this changed spread with the original. Figure 4.6 shows how the spread

5The recovery rates are changed on a global scale, that is, the recovery rate of all credits is shifted
by the same amount. A value of 5 in figure 4.4 means that the recovery rate of all credits of the
basket is increased by 5%. For example, credit 1 having an original recovery rate of 45% has a
changed recovery rate of 50%.
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changes if the default probabilities of all underlyings for all maturities6 are increased

by the same amount.
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Figure 4.6: Tranche spread of the real world basket CDS tranche as function of the
shift in the default probabilities. The shift is given as percentage.

As expected, an increase in the default probabilities causes an increase in the

tranche spread.

4.2.4 Tranche Spread as Function of the regarded Tranche

In this section it is investigated how the tranche spread depends on the lower and

upper boundary of the basket CDS tranche. Figure 4.7 shows the spread as function

Boundary
lower upper Tranche Spread

0 20 10.1251
20 40 3.1027
40 60 1.4895
60 80 0.8012
80 100 0.4340
100 120 0.2132

Table 4.2: This table shows the tranche spread for different tranches.

of the lower boundary. With increasing lower boundary the tranche spread decreases.

This result is quite intuitive as with an increasing lower boundary the probability

that the tranche is affected by defaults decreases.

6This corresponds to a parallel shift of the complete default curve.
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Figure 4.7: Tranche spread of the real world basket CDS tranche as function of the
shift in the lower boundary of the tranche. Upper boundary is always lower boundary
plus 20 Mio. Euro.

4.2.5 Student t Copula - Tranche Spread as Function of ν

In this section it is investigated what influence the chosen correlation structure has on

the tranche spread7. In the previous sections correlated defaults are modelled via the

Gaussian normal copula whereas in this section the tranche spread is determined for a

Student t copula correlation structure. Figure 4.8 shows the tranche spread computed
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Figure 4.8: Student t copula tranche spread relative to Gaussian normal copula
tranche spread as function of ν.

if correlated default is modelled via a Student t copula divided by the tranche spread

computed if correlated default is modelled via Gaussian normal copula for different

7Computations are done with Program 4.
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tranches. As can be seen in Figure 4.8, there are two different regimes with respect

to the influence increasing ν has on the tranche spread. If the lower boundary is

smaller than 35 · 106, then increasing ν leads to an increase in the tranche spread.

This behaviour is similar to a 1st-to-default. If the lower boundary is bigger than

35 · 106, then increasing ν results in decreasing tranche spreads. This behaviour can

be compared to 2nd-to-default-basket.

4.2.6 Clayton Copula - Tranche Spread as Function of α

In this section the influence of the parameter α of the Clayton copula on the tranche

spread is examined. As already mentioned the parameter α describes dependence

within the Clayton copula. Using Program 8 provides the results presented in Figure

4.9. Depending on the location of the tranche within the portfolio the influence of

increasing α on the tranche spread is different. For the tranche from 0 to 20 ·106 Euro

the tranche spread decreases with increasing α, whereas for the tranches with a lower

boundary bigger than 20 ·106 Euro the tranche spread increases with increasing α. As
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 Figure 4.9: Left side: Clayton copula tranche spread as function of the parameter α.
Right side: Clayton copula tranche spread at given α divided by the tranche spread
at α = 4.8.

it is difficult to see the curve shapes in the left side of the figure for higher tranches,

the right side of the figure compares the curve shapes by dividing the tranche spread

for a certain α with the tranche spread for α = 4.8.
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Chapter 5

Conclusion

In this thesis basket default swaps and basket CDS tranches (CDOs) are priced with

two different methods. The first method is standard Monte Carlo, the second is a

factor copula based approach providing semi-explicit formulae for pricing. The semi-

explicit approach is implemented for a Gaussian normal copula correlation structure

whereas the Monte Carlo method is implemented for a Gaussian normal-, a Student

t- and a Clayton copula.

If the correlation structure of the regarded BDS is modelled with a Student t

copula, higher probability mass compared to a Gaussian normal copula is found at

the margins of the distribution leading to lower 1st-to-default and higher 2nd- and

3rd-to-default basket spreads. This effect is found to be especially large for the 3rd-

to-default basket, where the basket spread for ν = 2 is nearly 5 times the size of the

basket spread if the correlation structure is modelled via a Gaussian normal copula. A

qualitatively similar effect can be found in basket CDS tranches. Tranches covering

the first losses also show lower tranche spreads if joint default is modelled with a

Student t copula. The explanation for this behaviour is that for a Student t copula

the probability of joint defaults is higher than for a Gaussian normal copula.

In order to use the semi-explicit approach, the correlation matrix has to be mapped

to the correlation vector β of a factor copula model. If it is not possible to map the

correlation matrix to the correlation vector for the semi-explicit approach accurately,

then there is a nearly linear dependence between the error in the correlation vec-

tor determined with the least square method and the error in the calculated basket

spreads.

In certain cases an accurate mapping is possible; then both methods provide equal

results for basket and tranche spreads. The advantage of the semi-explicit method is

that the complete loss distribution can be determined via a FFT of the characteristic
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function of the loss. Compared to Monte Carlo methods this method is much faster

and thus even for very large portfolios computations are possible in a reasonable time.

In this thesis a real world basket CDS tranche is priced. The determined price

agrees with the price provided by the protection buyer. For the real world basket

CDS tranche it is examined what influence changes in the correlation matrix, in the

recovery rates, in the default probabilities and in the position of the tranche within

the credit portfolio have on the tranche spread. The results agree with the expectation

that

� increasing recovery rates lead to a decrease in the tranche spread

� increasing default probabilities result in an increase in the tranche spread

� a shift of the lower boundary of the tranche to higher values leads to lower

tranche spreads

The influence of increasing correlation on the tranche depends on the position of the

tranche within the credit portfolio. For the tranche given in the regarded real world

basket CDS tranche increasing correlation leads to an increase in the basket spread.

If a Clayton copula is used to model the correlation structure, an increase in the

parameter α describes an increase in the correlation. For a basket default swap 1st-

to-default protection gets cheaper with increasing α whereas 2nd- and 3rd-to-default

protection gets more expensive with increasing α. This observation is in good con-

cordance with the influence the linear correlation coefficient has on the basket spread

for a Gaussian normal copula. For this copula increasing correlation leads also to

higher costs for 1st-to-default protection and lower costs for 2nd- and 3rd-to-default

protection.

If the results gained with different copulae are compared, it is getting obvious that

the choice of the used copula has an enormous influence on the determined basket or

tranche spreads.
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Appendix A

Derivation of the default
probability Zik(t)

In order to price an inhomogeneous BDS, the probability Zi
k(t) defined as

Zi
k(t) = lim

t′→t

1

t′ − t
P(Ni(t

′)−Ni(t) = 1, N (−i)(t) = k) (A.1)

is required. Ni(t
′)−Ni(t) gives the number of defaulted credits between t and t′ and

N (−i)(t) =
∑

j 6=iNi(t) the number of defaulted credits before or at t where credit i is

not taken into account. The probability P(Ni(t
′) − Ni(t) = 1, N (−i)(t) = k) can be

computed via the joint probability generating function of (Ni(t
′)−Ni(t), N

(−i)(t)):

ψ(u, v) = E
[
uNi(t

′)−Ni(t)vN(−i)(t)
]

(A.2)

This equation can be written as

ψ(u, v) =
n∑

k=1

P(Ni(t
′)−Ni(t) = 0, N (−i)(t) = k)vk

+
n−1∑
k=1

P(Ni(t
′)−Ni(t) = 1, N (−i)(t) = k)u vk (A.3)

ψ(u, v) can also be stated as

ψ(u, v) = E
[
E
[
uNi(t

′)−Ni(t)vN(−i)(t)|V
]]

(A.4)

By conditional independence this is

ψ(u, v) = E
[
E
[
uNi(t

′)−Ni(t)|V
]
× E

[
vN(−i)(t)|V

]]
(A.5)

With

P (Ni(t
′)−Ni(t) = 1) = p

i|V
t′ − p

i|V
t (A.6)

P (Ni(t
′)−Ni(t) = 0) = 1−

(
p

i|V
t′ − p

i|V
t

)
(A.7)
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this can be written in terms of the conditional default probabilities p
i|V
t

ψ(u, v) = E

[(
1− p

i|V
t′ + p

i|V
t +

(
p

i|V
t′ − p

i|V
t

)
u
)
×
∏
j 6=i

(
1− p

j|V
t + p

j|V
t v

)]
(A.8)

Comparing equation (A.3) with (A.8), the subsequent identity is found

n−1∑
k=1

P(Ni(t
′)−Ni(t)=1, N(t)=k)vk =E

[
(p

i|V
t′ − p

i|V
t )

∏
j 6=i

(1− p
j|V
t + p

j|V
t v)

]
(A.9)

For smooth conditional default probabilities p
i|V
t the limit t′ → t is defined for both

sides:

n−1∑
k=1

Zi
k(t)v

k = E

[
dp

i|V
t

dt

∏
j 6=i

(
1− p

j|V
t + p

j|V
t v

)]
(A.10)

In order to determine Zi
k(t) the product on the right side of (A.10) has to be expanded.

Then the expectation of the vk term with respect to V has to be computed.
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Appendix B

Limitation of Factor Models

The idea behind factor models is to reduce the complexity of the correlation structure.

In certain cases this can be done without loss of accuracy, but in general it is not

possible to map any correlation matrix to a correlation vector for a factor model. In

this section such cases are studied, and it is investigated what impact the error in the

correlation vector for the semi-explicit approach has on the calculated spread.

General Remarks The investigation is performed for a portfolio consisting of three

credits with properties already described in the reference case (Schmidt and Ward).

Starting from a correlation structure which can be reproduced perfectly in the factor

model, the correlation matrix is changed so that the correlation structure cannot be

reproduced by the correlation β vector any longer. The initial values are chosen as

ρ12 = 0.4, ρ13 = 0.5 and ρ23 = 0.8 and the best correlation vector is determined with

the least square method. That is, ε2 = (ρ12− β1β2)
2 + (ρ13− β1β3)

2 + (ρ23− β2β3)
2 is

minimized under the additional restriction β3 ≤ 0.9999.1 The results of this procedure

can be found in Table B.1.

In order to determine the impact of an error in the β-factors on the calculated

spread in the semi-explicit approach, the difference between the spread calculated

with the correct correlation matrix with a Monte Carlo simulation and the spread

calculated with erroneous β-factors is computed. This difference is called basket

spread error and is defined as

∆Spread = SpreadMonte Carlo − SpreadSemi−Explicit Approach (B.1)

This procedure is performed for the 1st-, 2nd- and 3rd-to-default basket for maturity

T = 1, ..., 5. The data obtained in this way is displayed in Table B.2. Scenario 1

1This condition is required as otherwise there are problems in computing the conditional default
probability p

i|V
t .
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Monte Carlo Semi-Explicit Approach Error
Scenario ρ12 ρ13 ρ23 β1 β2 β3 ε2

1 0.4 0.5 0.8 0.500016043 0.800058688 0.9999 3.39e-9
2 0.3 0.5 0.8 0.457648610 0.775042609 0.9999 0.005416045
3 0.2 0.5 0.8 0.415130051 0.753282217 0.9999 0.022103115
4 0.1 0.5 0.8 0.372251102 0.735388483 0.9999 0.050702225
5 0.0 0.5 0.8 0.328658468 0.722068881 0.9999 0.091771662

Table B.1: This table contains the correlations used for Monte Carlo simulations and
the least square minimized β-factors for the semi-explicit approach.

shows a basket spread error not equal to zero. This basket spread error is regarded as

constant offset and is subtracted from all basket spread errors; the corrected basket

spread error values are displayed in Table B.3. It is clear that the basket spread error

decreases with increasing maturity. This effect can be seen also in Figure B.1, which

shows the quotient of the basket spread error at maturity T divided by the basket

spread error at maturity T = 1 for the 1st-to-default. A similar effect is found also
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Figure B.1: This figure shows the quotient of the basket spread error at maturity T
divided by the basket spread error at maturity T = 1.

for the 2nd- and 3rd-to-default.

It is of particular interest how the size of the β-error affects the basket spread

error. The basket spread errors in Table B.3 are averaged and shown in Figure B.2 as

function of the β-error. This figure implies that there is a linear dependence between

the β-error and the basket spread error.

The absolute error in the basket spread is not that meaningful as one has no

impression whether the very small basket spread errors of 3rd-to-default baskets re-

lated to the basket spread of the 3rd-to-default baskets are relatively big, small or
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Figure B.2: Average of the basket spread errors for maturities T = 1, ..., 5 as function
of the error in β

of comparable size. Therefore the basket spread error is translated into a property

which can be understood better. The starting point is the difference between the

correct basket spread sMC(Monte Carlo) and the erroneous basket spread sSE(Semi-

explicit approach). It is possible to find a special flat correlation ρ̄MC such that a

Monte Carlo simulation with the flat correlation ρ̄MC results in the correct basket

spread sMC . The same holds for the erroneous basket spread ρ̄SE: A Monte Carlo

simulation with the flat correlation ρ̄SE results in the erroneous basket spread sSE :

s(MC : ρ = ρ̄SE) = sSE. Thus the basket spread error can be transformed into a flat

correlation error: ∆ρ̄ = ρ̄MC − ρ̄SE.

Table B.4 presents the flat correlation errors for the scenarios 1 to 5 and for the

maturities T = 1, ..., 5. Again, scenario 1 shows values not equal to zero which are

regarded as constant offset and which are subtracted from the scenarios. Table B.5

contains the corrected data. With increasing maturity the amount of the flat correla-

tion errors decreases again. Figure B.3 displays the flat correlation errors as function

of the error in β. 1st- and 2nd-to-default baskets show a linear dependence whereas

the 3rd-to-default basket seems to decrease stronger than linearly as function of the

β-error.
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Figure B.3: Average of the errors in the flat correlation for the maturities T = 1, ..., 5
as function of the error in β.

Scenario 1 2 3 4 5
ε 0 0.0736 0.1487 0.2252 0.3029

Maturity 1st-to-default
1 -0.0020 -0.0437 -0.0856 -0.1190 -0.1545
2 -0.0224 -0.0606 -0.0989 -0.1340 -0.1698
3 0.0067 -0.0304 -0.0686 -0.1066 -0.1405
4 0.0088 -0.0269 -0.0636 -0.1006 -0.1359
5 0.0170 -0.0179 -0.0546 -0.0909 -0.1273

2nd-to-default
1 0.0038 0.0438 0.0847 0.1217 0.1558
2 -0.0066 0.0319 0.0721 0.1119 0.1488
3 -0.0014 0.0346 0.0742 0.1136 0.1517
4 0.0079 0.0419 0.0788 0.1184 0.1575
5 0.0071 0.0405 0.0773 0.1157 0.1556

3rd-to-default
1 0.0000 -0.0010 -0.0044 -0.0077 -0.0111
2 0.0004 -0.0012 -0.0051 -0.0104 -0.0152
3 -0.0007 -0.0015 -0.0052 -0.0109 -0.0178
4 0.0016 0.0001 -0.0041 -0.0107 -0.0183
5 0.0004 -0.0013 -0.0056 -0.0121 -0.0203

Table B.2: This table shows the error in the basket spread for maturity T = 1, ..., 5
and order 1,2 and 3.
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Scenario 1 2 3 4 5
ε 0 0.0736 0.1487 0.2252 0.3029

Maturity 1st-to-default
1 0.0000 -0.0417 -0.0836 -0.1170 -0.1524
2 0.0000 -0.0382 -0.0765 -0.1116 -0.1474
3 0.0000 -0.0371 -0.0753 -0.1133 -0.1472
4 0.0000 -0.0358 -0.0724 -0.1094 -0.1447
5 0.0000 -0.0349 -0.0716 -0.1079 -0.1443

Average 0.0000 -0.0375 -0.0759 -0.1118 -0.1472
2nd-to-default

1 0.0000 0.0400 0.0809 0.1179 0.1521
2 0.0000 0.0385 0.0787 0.1185 0.1554
3 0.0000 0.0360 0.0756 0.1150 0.1531
4 0.0000 0.0340 0.0709 0.1105 0.1496
5 0.0000 0.0334 0.0702 0.1087 0.1485

Average 0.0000 0.0364 0.0753 0.1141 0.1517
3rd-to-default

1 0.0000 -0.0010 -0.0044 -0.0077 -0.0111
2 0.0000 -0.0016 -0.0055 -0.0108 -0.0156
3 0.0000 -0.0008 -0.0045 -0.0102 -0.0170
4 0.0000 -0.0015 -0.0058 -0.0123 -0.0199
5 0.0000 -0.0017 -0.0060 -0.0125 -0.0207

Average 0.0000 -0.0013 -0.0052 -0.0107 -0.0169

Table B.3: This table shows the error in the corrected basket spread: The basket
spread of the first scenario (see Table B.2) is subtracted from all basket spreads.
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Scenario 1 2 3 4 5
ε 0 0.0736 0.1487 0.2252 0.3029

Maturity 1st-to-default
1 0.0012 0.0250 0.0519 0.0740 0.0990
2 0.0126 0.0355 0.0598 0.0840 0.1082
3 -0.0038 0.0174 0.0412 0.0656 0.0881
4 -0.0050 0.0154 0.0381 0.0615 0.0844
5 -0.0096 0.0104 0.0328 0.0556 0.0789

2nd-to-default
1 0.0031 0.0369 0.0721 0.1056 0.1361
2 -0.0059 0.0294 0.0668 0.1047 0.1398
3 -0.0013 0.0345 0.0742 0.1141 0.1529
4 0.0083 0.0445 0.0840 0.1265 0.1687
5 0.0079 0.0456 0.0873 0.1309 0.1762

3rd-to-default
1 0.0000 -0.0032 -0.0188 -0.0437 -0.0885
2 0.0008 -0.0032 -0.0166 -0.0431 -0.0793
3 -0.0014 -0.0036 -0.0148 -0.0380 -0.0756
4 0.0030 0.0003 -0.0106 -0.0332 -0.0664
5 0.0008 -0.0026 -0.0134 -0.0346 -0.0669

Table B.4: This table shows the error in the flat correlations corresponding to the
basket spread for maturity T = 1, ..., 5 and order 1,2 and 3.
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Scenario 1 2 3 4 5
ε 0 0.0736 0.1487 0.2252 0.3029

Maturity 1st-to-default
1 0.0000 0.0238 0.0507 0.0728 0.0978
2 0.0000 0.0228 0.0472 0.0714 0.0955
3 0.0000 0.0212 0.0450 0.0693 0.0919
4 0.0000 0.0204 0.0431 0.0665 0.0893
5 0.0000 0.0200 0.0424 0.0651 0.0885

Average 0.0000 0.0216 0.0457 0.0690 0.0926
2nd-to-default

1 0.0000 0.0339 0.0691 0.1025 0.1331
2 0.0000 0.0353 0.0727 0.1107 0.1457
3 0.0000 0.0358 0.0755 0.1155 0.1542
4 0.0000 0.0362 0.0757 0.1182 0.1604
5 0.0000 0.0377 0.0794 0.1230 0.1683

Average 0.0000 0.0358 0.0745 0.1140 0.1523
3rd-to-default

1 0.0000 -0.0032 -0.0188 -0.0437 -0.0884
2 0.0000 -0.0041 -0.0174 -0.0440 -0.0802
3 0.0000 -0.0022 -0.0134 -0.0366 -0.0742
4 0.0000 -0.0027 -0.0136 -0.0362 -0.0694
5 0.0000 -0.0034 -0.0142 -0.0354 -0.0676

Average 0.0000 -0.0031 -0.0155 -0.0392 -0.0760

Table B.5: This table shows the error in the corrected flat correlations: The flat
correlation of the first scenario (see Table B.4) is subtracted from all flat correlations.
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Appendix C

Evaluation Data for the real world
Basket CDS Tranche

The subsequent tables show the recovery rates, the survival probabilities of the un-

derlying credits and the correlations between the credits as of the evaluation date

02-May-2003.

Table Content
C.1 Recovery Rates and Survival Probabilities from 3m to 18m
C.2 Survival Probabilities from 21m to 39m
C.3 Survival Probabilities from 42m to 60m
C.4 Correlations
C.5 Correlations
C.6 Correlations
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Survival Probability
Underlying Recovery 3m 6m 9m 12m 15m 18m
Credit 1 0.45 0.9996 0.9992 0.9986 0.9980 0.9973 0.9966
Credit 2 0.45 0.9984 0.9968 0.9952 0.9938 0.9923 0.9909
Credit 3 0.45 0.9984 0.9968 0.9952 0.9938 0.9923 0.9909
Credit 4 0.45 0.9950 0.9897 0.9840 0.9779 0.9717 0.9654
Credit 5 0.23 0.9989 0.9978 0.9963 0.9946 0.9926 0.9905
Credit 6 0.23 0.9994 0.9987 0.9978 0.9968 0.9956 0.9943
Credit 7 0.23 0.9994 0.9988 0.9979 0.9968 0.9954 0.9938
Credit 8 0.23 0.9973 0.9944 0.9915 0.9886 0.9857 0.9827
Credit 9 0.23 0.9992 0.9983 0.9972 0.9959 0.9944 0.9927
Credit 10 0.45 0.9979 0.9956 0.9932 0.9908 0.9882 0.9855
Credit 11 0.23 0.9981 0.9960 0.9936 0.9910 0.9881 0.9851
Credit 12 0.45 0.9993 0.9986 0.9975 0.9962 0.9947 0.9931
Credit 13 0.45 0.9996 0.9993 0.9988 0.9982 0.9976 0.9969
Credit 14 0.45 0.9944 0.9884 0.9829 0.9775 0.9723 0.9673
Credit 15 0.45 0.9956 0.9909 0.9860 0.9807 0.9752 0.9695
Credit 16 0.23 0.9989 0.9977 0.9965 0.9951 0.9936 0.9920
Credit 17 0.45 0.9988 0.9975 0.9957 0.9935 0.9911 0.9885
Credit 18 0.45 0.9984 0.9968 0.9952 0.9938 0.9924 0.9910
Credit 19 0.45 0.9996 0.9993 0.9985 0.9975 0.9963 0.9948
Credit 20 0.45 0.9961 0.9919 0.9875 0.9829 0.9781 0.9733
Credit 21 0.45 0.9828 0.9648 0.9474 0.9303 0.9135 0.8970
Credit 22 0.45 0.9993 0.9985 0.9977 0.9969 0.9961 0.9952
Credit 23 0.45 0.9966 0.9931 0.9893 0.9854 0.9813 0.9772
Credit 24 0.23 0.9992 0.9985 0.9976 0.9966 0.9956 0.9945
Credit 25 0.45 0.9862 0.9717 0.9576 0.9437 0.9301 0.9166
Credit 26 0.45 0.9996 0.9992 0.9987 0.9982 0.9976 0.9970
Credit 27 0.45 0.9957 0.9912 0.9869 0.9827 0.9786 0.9746
Credit 28 0.45 0.9968 0.9933 0.9896 0.9856 0.9813 0.9769
Credit 29 0.45 0.9970 0.9938 0.9906 0.9873 0.9841 0.9809
Credit 30 0.23 0.9993 0.9986 0.9978 0.9969 0.9959 0.9949
Credit 31 0.45 0.9826 0.9646 0.9472 0.9303 0.9138 0.8978

Table C.1: Recovery Rate and survival probability for 3m to 18m.
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Survival Probability
Underlying 21m 24m 27m 30m 33m 36m 39m
Credit 1 0.9958 0.9949 0.9939 0.9929 0.9918 0.9907 0.9897
Credit 2 0.9894 0.9881 0.9865 0.9848 0.9831 0.9815 0.9795
Credit 3 0.9894 0.9881 0.9865 0.9848 0.9831 0.9815 0.9795
Credit 4 0.9585 0.9519 0.9452 0.9381 0.9312 0.9243 0.9174
Credit 5 0.9880 0.9855 0.9828 0.9798 0.9767 0.9735 0.9701
Credit 6 0.9928 0.9912 0.9896 0.9878 0.9859 0.9840 0.9819
Credit 7 0.9920 0.9900 0.9880 0.9857 0.9833 0.9808 0.9783
Credit 8 0.9796 0.9767 0.9734 0.9700 0.9667 0.9634 0.9596
Credit 9 0.9908 0.9888 0.9868 0.9845 0.9821 0.9797 0.9770
Credit 10 0.9826 0.9797 0.9767 0.9735 0.9702 0.9670 0.9634
Credit 11 0.9818 0.9784 0.9749 0.9711 0.9672 0.9632 0.9591
Credit 12 0.9912 0.9892 0.9872 0.9849 0.9827 0.9803 0.9777
Credit 13 0.9962 0.9954 0.9946 0.9937 0.9927 0.9918 0.9907
Credit 14 0.9624 0.9579 0.9535 0.9492 0.9453 0.9416 0.9378
Credit 15 0.9632 0.9571 0.9507 0.9439 0.9371 0.9304 0.9231
Credit 16 0.9902 0.9884 0.9865 0.9844 0.9823 0.9801 0.9777
Credit 17 0.9854 0.9822 0.9791 0.9756 0.9721 0.9684 0.9647
Credit 18 0.9896 0.9884 0.9870 0.9857 0.9844 0.9831 0.9817
Credit 19 0.9931 0.9912 0.9894 0.9874 0.9852 0.9830 0.9807
Credit 20 0.9680 0.9630 0.9576 0.9518 0.9460 0.9402 0.9340
Credit 21 0.8803 0.8649 0.8493 0.8335 0.8185 0.8042 0.7892
Credit 22 0.9943 0.9934 0.9925 0.9915 0.9906 0.9896 0.9887
Credit 23 0.9727 0.9683 0.9637 0.9588 0.9539 0.9490 0.9436
Credit 24 0.9933 0.9920 0.9907 0.9893 0.9878 0.9863 0.9847
Credit 25 0.9029 0.8902 0.8773 0.8642 0.8517 0.8397 0.8272
Credit 26 0.9964 0.9957 0.9950 0.9941 0.9932 0.9923 0.9913
Credit 27 0.9706 0.9670 0.9633 0.9596 0.9562 0.9529 0.9496
Credit 28 0.9720 0.9672 0.9623 0.9570 0.9517 0.9464 0.9406
Credit 29 0.9775 0.9743 0.9709 0.9674 0.9640 0.9607 0.9572
Credit 30 0.9938 0.9926 0.9913 0.9900 0.9885 0.9871 0.9855
Credit 31 0.8817 0.8670 0.8521 0.8372 0.8230 0.8097 0.7961

Table C.2: Survival probability for 21m to 39m.
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Survival Probability
Underlying 42m 45m 48m 51m 54m 57m 60m
Credit 1 0.9887 0.9877 0.9867 0.9855 0.9842 0.9829 0.9815
Credit 2 0.9774 0.9752 0.9731 0.9706 0.9680 0.9653 0.9626
Credit 3 0.9774 0.9752 0.9731 0.9706 0.9680 0.9653 0.9626
Credit 4 0.9107 0.9040 0.8973 0.8906 0.8839 0.8772 0.8705
Credit 5 0.9667 0.9631 0.9594 0.9557 0.9519 0.9480 0.9440
Credit 6 0.9798 0.9776 0.9753 0.9731 0.9707 0.9683 0.9658
Credit 7 0.9757 0.9729 0.9701 0.9672 0.9643 0.9612 0.9579
Credit 8 0.9559 0.9520 0.9481 0.9442 0.9402 0.9361 0.9319
Credit 9 0.9744 0.9715 0.9686 0.9658 0.9629 0.9599 0.9568
Credit 10 0.9598 0.9561 0.9523 0.9486 0.9448 0.9409 0.9370
Credit 11 0.9550 0.9507 0.9464 0.9421 0.9377 0.9332 0.9286
Credit 12 0.9750 0.9721 0.9692 0.9665 0.9638 0.9609 0.9580
Credit 13 0.9897 0.9886 0.9875 0.9865 0.9855 0.9844 0.9834
Credit 14 0.9343 0.9309 0.9278 0.9251 0.9224 0.9200 0.9179
Credit 15 0.9158 0.9083 0.9008 0.8932 0.8854 0.8775 0.8694
Credit 16 0.9753 0.9728 0.9702 0.9676 0.9647 0.9618 0.9588
Credit 17 0.9609 0.9569 0.9528 0.9489 0.9449 0.9408 0.9366
Credit 18 0.9803 0.9789 0.9775 0.9759 0.9743 0.9726 0.9710
Credit 19 0.9784 0.9760 0.9735 0.9710 0.9685 0.9659 0.9631
Credit 20 0.9278 0.9214 0.9150 0.9082 0.9012 0.8940 0.8867
Credit 21 0.7750 0.7608 0.7472 0.7337 0.7204 0.7072 0.6945
Credit 22 0.9878 0.9870 0.9861 0.9851 0.9840 0.9828 0.9817
Credit 23 0.9381 0.9324 0.9266 0.9208 0.9149 0.9088 0.9026
Credit 24 0.9830 0.9813 0.9796 0.9777 0.9758 0.9738 0.9717
Credit 25 0.8152 0.8032 0.7917 0.7803 0.7688 0.7576 0.7466
Credit 26 0.9903 0.9893 0.9882 0.9870 0.9858 0.9846 0.9833
Credit 27 0.9465 0.9434 0.9405 0.9377 0.9350 0.9323 0.9299
Credit 28 0.9350 0.9291 0.9231 0.9173 0.9114 0.9054 0.8993
Credit 29 0.9538 0.9504 0.9470 0.9436 0.9402 0.9367 0.9332
Credit 30 0.9839 0.9823 0.9806 0.9789 0.9772 0.9755 0.9737
Credit 31 0.7832 0.7706 0.7586 0.7466 0.7348 0.7233 0.7122

Table C.3: Survival probability for 42m to 60m.
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Credit
1 2 3 4 5 6 7 8 9 10

Credit 1 1 0.651 0.607 0.225 0.751 0.710 0.595 0.647 0.641 0.432
Credit 2 0 1.000 0.848 0.309 0.796 0.808 0.701 0.686 0.529 0.575
Credit 3 0 0 1.000 0.319 0.702 0.680 0.615 0.611 0.401 0.498
Credit 4 0 0 0 1.000 0.301 0.274 0.301 0.269 0.233 0.332
Credit 5 0 0 0 0 1.000 0.909 0.808 0.878 0.848 0.661
Credit 6 0 0 0 0 0 1.000 0.730 0.714 0.693 0.582
Credit 7 0 0 0 0 0 0 1.000 0.690 0.699 0.596
Credit 8 0 0 0 0 0 0 0 1.000 0.667 0.644
Credit 9 0 0 0 0 0 0 0 0 1.000 0.498
Credit 10 0 0 0 0 0 0 0 0 0 1.000
Credit 11 0 0 0 0 0 0 0 0 0 0
Credit 12 0 0 0 0 0 0 0 0 0 0
Credit 13 0 0 0 0 0 0 0 0 0 0
Credit 14 0 0 0 0 0 0 0 0 0 0
Credit 15 0 0 0 0 0 0 0 0 0 0
Credit 16 0 0 0 0 0 0 0 0 0 0
Credit 17 0 0 0 0 0 0 0 0 0 0
Credit 18 0 0 0 0 0 0 0 0 0 0
Credit 19 0 0 0 0 0 0 0 0 0 0
Credit 20 0 0 0 0 0 0 0 0 0 0
Credit 21 0 0 0 0 0 0 0 0 0 0
Credit 22 0 0 0 0 0 0 0 0 0 0
Credit 23 0 0 0 0 0 0 0 0 0 0
Credit 24 0 0 0 0 0 0 0 0 0 0
Credit 25 0 0 0 0 0 0 0 0 0 0
Credit 26 0 0 0 0 0 0 0 0 0 0
Credit 27 0 0 0 0 0 0 0 0 0 0
Credit 28 0 0 0 0 0 0 0 0 0 0
Credit 29 0 0 0 0 0 0 0 0 0 0
Credit 30 0 0 0 0 0 0 0 0 0 0
Credit 31 0 0 0 0 0 0 0 0 0 0

Table C.4: Table of correlations.
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Credit
11 12 13 14 15 16 17 18 19 20

1 0.582 0.650 0.560 0.397 0.660 0.584 0.576 0.586 0.654 0.444
2 0.692 0.542 0.543 0.544 0.747 0.627 0.672 0.739 0.769 0.506
3 0.640 0.461 0.566 0.604 0.612 0.525 0.599 0.780 0.634 0.389
4 0.221 0.364 0.405 0.380 0.281 0.350 0.241 0.258 0.278 0.235
5 0.776 0.706 0.521 0.463 0.854 0.673 0.778 0.815 0.822 0.569
6 0.747 0.643 0.468 0.480 0.835 0.686 0.791 0.695 0.911 0.610
7 0.683 0.611 0.472 0.490 0.700 0.505 0.676 0.666 0.672 0.441
8 0.623 0.593 0.460 0.430 0.714 0.597 0.618 0.681 0.641 0.411
9 0.648 0.700 0.390 0.253 0.702 0.511 0.640 0.518 0.621 0.484
10 0.484 0.443 0.424 0.426 0.523 0.565 0.508 0.570 0.523 0.369
11 1.000 0.591 0.350 0.381 0.730 0.533 0.726 0.650 0.664 0.516
12 0 1.000 0.422 0.324 0.680 0.452 0.614 0.473 0.572 0.456
13 0 0 1.000 0.632 0.398 0.529 0.439 0.493 0.436 0.348
14 0 0 0 1.000 0.380 0.484 0.458 0.445 0.500 0.188
15 0 0 0 0 1.000 0.620 0.788 0.685 0.750 0.640
16 0 0 0 0 0 1.000 0.614 0.514 0.659 0.524
17 0 0 0 0 0 0 1.000 0.617 0.740 0.584
18 0 0 0 0 0 0 0 1.000 0.633 0.432
19 0 0 0 0 0 0 0 0 1.000 0.631
20 0 0 0 0 0 0 0 0 0 1.000
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0

Table C.5: Table of correlations.
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Credit
21 22 23 24 25 26 27 28 29 30 31

1 0.411 0.580 0.571 0.403 0.660 0.506 0.129 0.602 0.539 0.509 0.614
2 0.333 0.492 0.750 0.503 0.832 0.488 0.175 0.714 0.546 0.697 0.739
3 0.159 0.439 0.652 0.461 0.723 0.410 0.228 0.608 0.442 0.569 0.659
4 0.153 0.239 0.265 0.386 0.353 0.123 0.285 0.189 0.254 0.218 0.316
5 0.375 0.615 0.642 0.461 0.859 0.576 0.113 0.786 0.562 0.616 0.776
6 0.376 0.582 0.657 0.465 0.864 0.613 0.117 0.792 0.640 0.678 0.760
7 0.302 0.461 0.561 0.433 0.805 0.457 0.151 0.648 0.455 0.465 0.714
8 0.357 0.488 0.552 0.367 0.724 0.421 0.146 0.679 0.408 0.494 0.684
9 0.372 0.585 0.452 0.385 0.662 0.501 0.084 0.582 0.472 0.428 0.585
10 0.347 0.389 0.542 0.375 0.621 0.328 0.106 0.461 0.335 0.405 0.626
11 0.228 0.504 0.505 0.367 0.714 0.552 0.045 0.700 0.494 0.554 0.685
12 0.438 0.493 0.458 0.412 0.625 0.461 0.088 0.564 0.472 0.383 0.562
13 0.324 0.421 0.554 0.509 0.556 0.321 0.259 0.355 0.416 0.444 0.492
14 0.261 0.263 0.588 0.678 0.528 0.202 0.381 0.312 0.415 0.449 0.547
15 0.336 0.592 0.596 0.470 0.802 0.572 0.066 0.937 0.560 0.652 0.721
16 0.220 0.599 0.570 0.430 0.706 0.482 0.201 0.592 0.498 0.614 0.568
17 0.203 0.458 0.599 0.493 0.765 0.593 0.104 0.783 0.603 0.649 0.711
18 0.146 0.447 0.551 0.357 0.704 0.425 0.027 0.658 0.372 0.508 0.646
19 0.341 0.546 0.622 0.445 0.797 0.593 0.086 0.710 0.676 0.705 0.708
20 0.227 0.626 0.380 0.277 0.581 0.529 -0.019 0.619 0.733 0.653 0.510
21 1.000 0.269 0.450 0.326 0.307 0.103 0.113 0.249 0.430 0.243 0.326
22 0 1.000 0.387 0.276 0.540 0.513 0.076 0.528 0.516 0.514 0.428
23 0 0 1.000 0.617 0.677 0.438 0.277 0.540 0.523 0.580 0.709
24 0 0 0 1.000 0.484 0.233 0.333 0.375 0.368 0.407 0.510
25 0 0 0 0 1.000 0.566 0.153 0.763 0.568 0.674 0.795
26 0 0 0 0 0 1.000 0.006 0.551 0.534 0.528 0.461
27 0 0 0 0 0 0 1.000 0.047 0.120 0.146 0.177
28 0 0 0 0 0 0 0 1.000 0.504 0.639 0.665
29 0 0 0 0 0 0 0 0 1.000 0.724 0.565
30 0 0 0 0 0 0 0 0 0 1.000 0.605
31 0 0 0 0 0 0 0 0 0 0 1.000

Table C.6: Table of correlations.
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