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Abstract

This is a discussion of algorithms and computer code for advanced financial calculations. It was written for
use in a course teaching derivative securities. It contains the basic and some advanced algorithms for option
pricing, and some algorithms dealing with term structure modeling and pricing of fixed income securities.

All computer code is in the C++ language, and implemented as self–contained subroutines that can be
compiled on any standard C++ compiler.
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Chapter 1

Introduction.

Very often, when teaching finance, we only present the formula that gives the answer to how to calculate a
given number. For teaching the material it is often useful to actually look at the implementation of how the
calculation is done in practice.

In this document I am trying to show how some finance algorithms actually are implemented in addition to
describing them. The implementation will be in the form of computer subroutines. The actual programming
language is not important, but we do need that the algorithms are testable, so I have chosen to use C++as
the programming language. C++has other advantages, but that is in a larger setting. I have tried to make
the algorithms as “generic” as possible, without relying on particularities of any given language, but I have
found it necessary to use some algoritms and templates from the new C++library standard. (The Standard
Template Library)

Unfortunately, it turned out to be impossible to be completely “generic,” in particular when using the term
structure of interest rates. In many financial algorithms we need to take present values using the term
structure. The problem is that there is a large numbers of ways to actually calculate/approximate/model
a term structure. I have therefore hidden this complexity, by defining a class that is just an abstract
representation of a term structure, which the various algorithms use. To give a full description of this class
would take too long. Companion documents describing various classes for data structuring is available from
my homepage.

I will first document the algorithm, and then present code that implements it. Note that I do not make any
guarantees about the correctness of the algorithms, these are meant for teaching.

As you will see, this document is by no means complete, but it is being gradually added to as I get time.

This is not a textbook in the underlying theory, for that there are many good alternatives. For most of the
material the best textbook to refer to is Hull [1993], since I have used that as a reference, and the notation
follows that.
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Chapter 2

Cash flow algoritms.

We look at some of the “basic” calculations in finance, used for project evaluation etc.

2.1 Present value.

The calculation of present value is one of the basics of finance. The present value is the current value of a
stream of future payments. Let Ct be the cash flow at time t and r be the interest rate. Suppose we have
N future cash flows that occur at times t1, t2, · · · , tN .

If compounding is continous, would calculate the present value as follows

PV =
N∑
i=1

e−rtiCti

This calculation is implemented as follows:

// file cflow pv.cc
// author: Bernt Arne Oedegaard.

#include <cmath>
#include <vector>

double cash flow pv( vector<double>& cflow times, vector<double>& cflow amounts, double r){
// calculate present value of cash flow, continous discounting
double PV=0.0;
for (unsigned int t=0; t<cflow times.size();t++) {

PV += cflow amounts[t] ∗ exp( -r ∗ cflow times[t]);
};
return PV;

};

If discounting was discrete, would calculate the present value as

PV =
N∑
i=1

Cti
(1 + r)t

which is implemented as

// file cflow pv discrete.cc
// author: Bernt Arne Oedegaard.
// calculate the present value of a stream of cash flows using discrete compounding

#include <cmath>
#include <vector>

double cash flow pv discrete( vector<double>& cflow times,
vector<double>& cflow amounts,
double r){

double PV=0.0;
for (unsigned int t=0; t<cflow times.size();t++) {

PV += cflow amounts[t] / pow(1+r,cflow times[t]);
};
return PV;

};
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2.2 Internal rate of return.

The internal rate of return of a cash flow is the interest rate that makes the present value of a cash flow
equal to zero.

Finding an internal rate of return is thus to find a root of of the equation

PV (C, t, r) = 0

As any textbook in basic finance, such as Brealey and Myers [1996], Ross et al. [1996] or Sharpe and
Alexander [1990] will tell, there is a number of problems with the IRR, most of them stemming from the
possibility for more than one interest rate being defined.

If we know that there is one IRR, the following method is probably simplest, bisection. It is an adaption
of the bracketing approach discussed in Press et al. [1992], chapter 9. Note that this approach will only
find one interest rate, if there is more than one irr, the simplest is always to graph the PV as a function of
interest rates, and use that to understand when an investment is a good one.

// file cflow irr.cc
// author: Bernt A Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

#include ”fin algoritms.h”

const double ERROR=-1e30;

double cash flow irr(vector<double>& cflow times, vector<double>& cflow amounts) {
// simple minded irr function. Will find one root (if it exists.)
// adapted from routine in Numerical Recipes in C.

if (cflow times.size() 6=cflow amounts.size()) return ERROR;
const double ACCURACY = 1.0e-5;
const int MAX ITERATIONS = 50;
double x1=0.0;
double x2 = 0.2;

// create an initial bracket, with a root somewhere between bot,top
double f1 = cash flow pv(cflow times, cflow amounts, x1);
double f2 = cash flow pv(cflow times, cflow amounts, x2);
int i;
for (i=0;i<MAX ITERATIONS;i++) {

if ( (f1∗f2) < 0.0) { break; }; //
if (fabs(f1)<fabs(f2)) { f1 = cash flow pv(cflow times,cflow amounts, x1+=1.6∗(x1-x2)); }
else {f2 = cash flow pv(cflow times,cflow amounts, x2+=1.6∗(x2-x1)); };

};
if (f2∗f1>0.0) { return ERROR; };
double f = cash flow pv(cflow times,cflow amounts, x1);
double rtb;
double dx=0;
if (f<0.0) { rtb = x1; dx=x2-x1; }
else { rtb = x2; dx = x1-x2; };
for (i=0;i<MAX ITERATIONS;i++){

dx ∗ = 0.5;
double x mid = rtb+dx;
double f mid = cash flow pv(cflow times,cflow amounts, x mid);
if (f mid≤0.0) { rtb = x mid; }
if ( (fabs(f mid)<ACCURACY) || (fabs(dx)<ACCURACY) ) return x mid;

};
return ERROR; // error.

};
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2.2.1 Check for unique irr.

If you worry about finding more than one IRR, the following implements a simple check for that. It is only
a neccesary condition for a unique IRR, not sufficient, so you may still have a well-defined IRR even if this
returns false.

The first test is just to count the number of sign changes in the cash flow. From Descartes rule we know that
the number of real roots is one if there is only one sign change. If there is more than one change in the sign
of cash flows, we can go further and check the aggregated cash flows for sign changes (See Norstrom [1972],
or Berck and Sydsæter [1995]).

// file cflow irr test unique.cc
// author Bernt A Oedegaard

#include <cmath>
#include <vector>

inline int sgn(double& r){ if (r≥0) {return 1;} else {return -1;}; };

bool cash flow unique irr(vector<double>& cflow times, vector<double>& cflow amounts) {
// check whether the cash flow has a unique irr.
int sign changes=0; // first check Descartes rule
for (unsigned t=1;t<cflow times.size();++t){

if (sgn(cflow amounts[t-1]) 6=sgn(cflow amounts[t])) sign changes++;
};
if (sign changes==0) return false; // can not find any irr
if (sign changes==1) return true;

double A = cflow amounts[0]; // check the aggregate cash flows, due to Norstrom
sign changes=0;
for (unsigned t=1;t<cflow times.size();++t){

if (sgn(A) 6= sgn(A+=cflow amounts[t])) sign changes++;
};
if (sign changes≤1) return true;
return false;

}
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Chapter 3

Basic Option Pricing, analytical solutions.

The pricing of options and related instruments has been a major breakthrough for the use of financial theory
in practical application. Since the original papers of Black and Scholes [1973] and Merton [1973], there has
been a wealth of practical and theoretical applications. In this chapter we will discuss ways of calculating
the price of an option in the setting discussed in these original papers. The discussion is not complete, it
needs to be supplemented by one of the standard textbooks, like Hull [1993].

3.1 Setup.

Let us start by reviewing the setup. The basic assumption used is about the stochastic process governing the
price of the underlying asset the option is written on. In the following discussion we will use the standard
example of a stock option, but the theory is not only relevant for stock options.

The price of the underlying asset, S, is assumed to follow a geometric Brownian Motion process, conveniently
written in either of the shorthand forms

dS = µSdt+ σSdZ

or

dS

S
= µdt+ σdZ

where µ and σ are constants, and Z is Brownian motion.

Using Ito’s lemma, the assumption of no arbitrage, and the ability to trade continuously, Black and Scholes
showed that the price of any contingent claim written on the underlying must solve the following partial
differential equation:

∂f

∂S
rS +

∂f

∂t
+

1
2
∂2f

∂S2
σ2S2 = rf

For any particular contingent claim, the terms of the claim will give a number of boundary conditions that
determines the form of the pricing formula.

We will start by discussing the original example solved by Black, Scholes, Merton: European call and put
options.

3.2 European call and put options, The Black Scholes analysis.

A call (put) option gives the holder the right, but not the obligation, to buy (sell) some underlying asset at
a given price X, called the exercise price, on or before some given date T .

If the option is European, it can only be used (exercised) at the maturity date. If the option is American,
it can be used at any date up to and including the maturity date.

We use the following notation:

• S: Price of the underlying, eg stock price.

• X: Exercise price.
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• r: Risk free interest rate.

• σ: Standard deviation of the underlying asset, eg stock.

• t: Current date.

• T : Maturity date.

• T − t: Time to maturity.

At maturity, a call option is worth

CT = max(0, ST −X)

and a put option is worth

PT = max(0, X − ST )

This can be used in solving the pde above, since they define a boundary condition for the pde.

3.2.1 Analytical option prices, Black Scholes case.

The pde with the boundary condition

cT = max(0, ST −X)

was shown by Black and Scholes to have an analytical solution of the following functional form

c = SN(d1)−Xe−r(T−t)N(d2)

where

d1 =
log
(
S
X

)
+ (r + 1

2σ
2)(T − t)

σ
√
T − t

=
log
(
S
X

)
+ r(T − t)

σ
√
T − t

+
1
2
σ
√
T − t

d2 = d1 − σ
√
T − t

N(·) = The cumulative normal distribution

Similarly, the price for a put option is

p = Xe−r(T−t)N(−d2)− SN(−d1)

Computer Algorithm, Black Scholes price.

// file: black scholes call
// author: Bernt A Oedegaard
// Calculation of the Black Scholes option price formula.

#include <cmath> // mathematical library
#include ”normdist.h” // this defines the normal distribution

double option price call black scholes( double S, // spot price
double X, // Strike (exercise) price,
double r, // interest rate
double sigma,
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double time)
{

double time sqrt = sqrt(time);
double d1 = (log(S/X)+r∗time)/(sigma∗time sqrt) + 0.5∗sigma∗time sqrt;
double d2 = d1-(sigma∗time sqrt);
double c = S ∗ N(d1) - X ∗ exp(-r∗time) ∗ N(d2);
return c;

};

3.2.2 Partial derivatives.

In trading of options, a number of partial derivatives of the option price formula is important.

Delta The first derivative of the option price with respect to the underlying is called the delta of the option
price. It is the derivative most people will run into, since it is important in hedging of options.

∂c

∂S
= N(d1)

∂p

∂S
= −N(−d1)

Since delta is often used, here is a subroutine that calculates it

// file: black scholes delta call.cc
// author: Bernt A Oedegaard
// The delta of the Black - Scholes formula

#include <cmath>
#include ”normdist.h”

double option price delta call black scholes(double S, // spot price
double X, // Strike (exercise) price,
double r, // interest rate
double sigma, // volatility
double time){ // time to maturity

double time sqrt = sqrt(time);
double d1 = (log(S/X)+r∗time)/(sigma∗time sqrt) + 0.5∗sigma∗time sqrt;
double delta = N(d1);
return delta;

};

The remaining derivatives are more seldom used, but all of them are relevant.

Gamma The second derivative of the option price wrt the underlying stock. These are equal for puts and
calls

Γc =
∂2c

∂S2
= Γp =

∂2p

∂S2
=
∂∆
∂S

=
n(d1)

Sσ
√
T − t

Theta The partial with respect to time–to–maturity.

Θc =
∂c

∂(T − t)
= −n(d1)Sσ

2
√
T − t

− rXe−r(T−t)N(d2)

Θp =
∂p

∂(T − t)
= −n(d1)Sσ

2
√
T − t

+ rXe−r(T−t)N(−d2)
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Vega The partial with respect to volatility.

Vegac =
∂c

∂σ
= S
√
T − tn(d1)

Vegap =
∂p

∂σ
= S
√
T − tn(d1)

Rho The partial with respect to the interest rate.

Rhoc =
∂c

∂r
= X(T − t)e−r(T−t)N(d2)

Rhop =
∂p

∂r
= −X(T − t)e−r(T−t)N(−d2)

Computer algorithm, Black Scholes partials. Here is the algorithm that calculates all the above
derivatives.

// black scholes partials call.cc
// author: Bernt A Oedegaard
// The partial derivatives of the Black - Scholes formula

#include <cmath>
#include ”normdist.h”

void option price partials call black scholes( double S, // spot price
double X, // Strike (exercise) price,
double r, // interest rate
double sigma, // volatility
double time, // time to maturity
double& Delta, // partial wrt S
double& Gamma, // second prt wrt S
double& Theta, // partial wrt time
double& Vega, // partial wrt sigma
double& Rho){ // partial wrt r

double time sqrt = sqrt(time);
double d1 = (log(S/X)+r∗time)/(sigma∗time sqrt) + 0.5∗sigma∗time sqrt;
double d2 = d1-(sigma∗time sqrt);

Delta = N(d1);
Gamma = n(d1)/(S∗sigma∗time sqrt);
Theta =- (S∗sigma∗n(d1)) / (2∗time sqrt) - r∗X∗exp( -r∗time)∗N(d2);
Vega = S ∗ time sqrt ∗ n(d1);
Rho = X ∗ time ∗ exp(-r ∗ time) ∗ N(d2);
};

3.2.3 Implied Volatility.

In calculation of the option pricing formulas, in particular the Black Scholes formula, the only unknown is
the standard deviation of the underlying stock. A common problem in option pricing is to find the implied
volatility, given the observed price quoted in the market. For example, given c0, the price of a call option,
the following equation should be solved for the value of σ

c0 = c(S,X, r, σ, T − t)

Unfortunately, this equation has no closed form solution, which means the equation must be numerically
solved to find σ. What is probably the algorithmic simplest way to solve this is to use a binomial search
algorithm, which is implemented in the following. We start by bracketing the sigma by finding a high sigma
that makes the BS price higher than the observed price, and then, given the bracketing interval, we search
for the volatility in a systematic way.
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Computer algorithm, implied volatility, bisections.

// file black scholes imp vol bisect.cc
// author: Bernt A Oedegaard
// calculate implied volatility of Black Scholes formula

#include ”fin algoritms.h”
#include <cmath>

double option price implied volatility call black scholes bisections(
double S, double X, double r, double time, double option price)

{ // check for arbitrage violations:
// if price at almost zero volatility greater than price, return 0

double sigma low=0.0001;
double price = option price call black scholes(S,X,r,sigma low,time);
if (price>option price) return 0.0;

// simple binomial search for the implied volatility.
// relies on the value of the option increasing in volatility
const double ACCURACY = 1.0e-5; // make this smaller for higher accuracy
const int MAX ITERATIONS = 100;
const double HIGH VALUE = 1e10;
const double ERROR = -1e40;

// want to bracket sigma. first find a maximum sigma by finding a sigma
// with a estimated price higher than the actual price.
double sigma high=0.3;
price = option price call black scholes(S,X,r,sigma high,time);
while (price < option price) {

sigma high = 2.0 ∗ sigma high; // keep doubling.
price = option price call black scholes(S,X,r,sigma high,time);
if (sigma high>HIGH VALUE) return ERROR; // panic, something wrong.

};
for (int i=0;i<MAX ITERATIONS;i++){

double sigma = (sigma low+sigma high)∗0.5;
price = option price call black scholes(S,X,r,sigma,time);
double test = (price-option price);
if (fabs(test)<ACCURACY) { return sigma; };
if (test < 0.0) { sigma low = sigma; }
else { sigma high = sigma; }

};
return ERROR;

};

Implied volatility, Newton-Raphson.

Instead of this simple bracketing, which is actually pretty fast, and will (almost) always find the solution,
we can use the Newton–Raphson formula for finding the root of an equation in a single variable. If

f(x) = 0

is the equation we want to solve, given a first guess x0, we iterate by

xi+1 = xi −
f(xi)
f ′(xi)

until

|f(xi)| < ε

where ε is the desired accuracy.
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In our case

f(x) = cobs − cBS(σ)

and, each new iteration will calculate

σi+1 = σi +
cobs − cBS(σi)

−∂cBS()
∂σ

Note that to use Newton-Raphson we need the derivative of the option price. For the Black-Scholes formula
this is known, and we can use this. But for pricing formulas like the binomial, where the partial derivatives
are not that easy to calculate, simple bisection is the preferred algorithm.

Computer algoritm, implied volatility, Newton steps.

// file black scholes imp vol newt.cc
// author: Bernt A Oedegaard
// calculate implied volatility of Black Scholes formula using newton steps

#include ”fin algoritms.h”
#include ”normdist.h”
#include <cmath>

double option price implied volatility call black scholes newton(
double S, double X, double r, double time, double option price)

{
// check for arbitrage violations:
// if price at almost zero volatility greater than price, return 0
double sigma low = 1e-5;
double price = option price call black scholes(S,X,r,sigma low,time);
if (price > option price) return 0.0;

const int MAX ITERATIONS = 100;
const double ACCURACY = 1.0e-4;
double t sqrt = sqrt(time);

double sigma = (option price/S)/(0.398∗t sqrt); // find initial value
for (int i=0;i<MAX ITERATIONS;i++){

price = option price call black scholes(S,X,r,sigma,time);
double diff = option price -price;
if (fabs(diff)<ACCURACY) return sigma;
double d1 = (log(S/X)+r∗time)/(sigma∗t sqrt) + 0.5∗sigma∗t sqrt;
double vega = S ∗ t sqrt ∗ n(d1);
sigma = sigma + diff/vega;
};
return -99e10; // something screwy happened, should throw exception
};

Further Reading For the Newton-Raphson formula and bracketing, a good source is chapter 9 of Press
et al. [1992]

3.3 Adjusting for payouts of the underlying.

For options on other financial instruments than stocks, we have to allow for the fact that the underlying
may have payouts during the life of the option. For example, in working with commodity options, there is
often some storage costs if one wanted to hedge the option by buying the underlying.
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3.3.1 Continous Payouts from underlying.

The simplest case is when the payouts are done continuously. To value an European option, a simple
adjustment to the Black Scholes formula is all that is needed. Let q be the continuous payout of the
underlying commodity.

Call and put prices for European options are then given by (see [Hull, 1997, pg 263])

c = Se−q(T−t)N(d1)−Xe−r(T−t)N(d2)

p = Xe−r(T−t)N(−d2)− Se−q(T−t)N(−d1)

where

d1 =
ln
(
S
X

)
+ (r − q + 1

2σ
2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

which are implemented below.

// file: black scholes price payout call.cc
// author: Bernt A Oedegaard
// Calculation of the Black Scholes option price formula,
// special case where the underlying is paying out a yield of q.

#include <cmath> // mathematical library
#include ”normdist.h” // this defines the normal distribution

double option price european call payout( double S, // spot price
double X, // Strike (exercise) price,
double r, // interest rate
double q, // yield on underlying
double sigma, // volatility
double time) { // time to maturity

double sigma sqr = pow(sigma,2);
double time sqrt = sqrt(time);
double d1 = (log(S/X) + (r-q + 0.5∗sigma sqr)∗time)/(sigma∗time sqrt);
double d2 = d1-(sigma∗time sqrt);
double call price = S ∗ exp(-q∗time)∗ N(d1) - X ∗ exp(-r∗time) ∗ N(d2);
return call price;
};

3.3.2 Dividends.

A special case of payouts for the underlying is dividends. When the underlying pays dividends, the pricing
formula is adjusted, because the dividend changes the value of the underlying.

The case of continuous dividends is easiest to deal with. It corresponds to the continuous payouts we have
looked at previously. The problem is the fact that most dividends are paid at discrete dates.

European Options on dividend-paying stock.

To adjust the price of an European option for known dividends, we merely subtract the present value of the
dividends from the current price of the underlying asset in calculating the Black Scholes value.
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// file: bserudiv.cc
// author: Bernt A Oedegaard

#include <cmath> // mathematical library
#include ”fin algoritms.h” // define the black scholes price
#include <vector>

double option price european call dividends( double S,
double X,
double r,
double sigma,
double time to maturity,
vector<double>& dividend times,
vector<double>& dividend amounts )

// reduce the current stock price by the amount of dividends.
{

for (int i=0;i<dividend times.size();i++) {
if (dividend times[i]≤time to maturity){

S -= dividend amounts[i] ∗ exp(-r∗dividend times[i]);
};
};
return option price call black scholes(S,X,r,sigma,time to maturity);
};

3.4 American options.

American options are much harder to deal with than European ones. The problem is that it may be optimal
to use (exercise) the option before the final expiry date. This optimal exercise policy will affect the value of
the option, and the exercise policy needs to be known when solving the pde. There is therefore no general
analytical solutions for American call and put options. There is some special cases. For American Call
options on assets that do not have any payouts, the American call price is the same as the European one,
since the optimal exercise policy is to not exercise. For American Put is this not the case, it may pay to
exercise them early. The known analytical American price is the case of a call on a stock that pays a known
dividend, which is discussed next. In all other cases the American price has to be approximated using one
of the techniques discussed in later chapters: Binomial approximation, numerical solution of the partial
differential equation, or another numerical approximation.

3.4.1 Exact american call formula when stock is paying one dividend.

When a stock pays dividend, a call option on the stock may be optimally exercised just before the stock goes
ex-dividend. While the general dividend problem is usually approximated somehow, for the special case of
one dividend payment during the life of an option an analytical solution is available, due to Roll–Geske–
Whaley. A first formulation of an analytical call price with dividends was in Roll [1977]. This had some
errors, that were partially corrected in Geske [1979], before Whaley [1981] gave a final, correct formula. See
ch 10.A2 of Hull [1993] for a textbook summary.

We use the following notation:

• S stock price.

• X exercise price.

• D1: amount of dividend paid.

• t1: Time of dividend payment.

• T : Maturity date of option.
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• τ1 = T − t1: Time to dividend payment.

• τ = T − t: Time to maturity.

• C American call price.

A first check of early exercise is:

D1 ≤ X
(

1− e−r(T−t1)
)

If this inequality is fulfilled, early exercise is not optimal, and the value of the option is

c(S − e−r(t1−t)D1, X, r, σ, (T − t))

where c(·) is the regular Black Scholes formula.

Otherwise, the following is the formula for the American call value.

C = (S −D1e
−rτ1)[N(b1) +N(a1,−b1, ρ)]

+Xe−rτ)N(a2,−b2, ρ)
−(X −D1)e−rτ1N(b2)

where

ρ = −
√
τ1
τ

a1 =
log
(
S−D1e

−tτ1

X

)
+ (r + 1

2σ
2)τ

σ
√
τ

a2 = a1 − σ
√
τ

b1 =
log
(
S−D1e

−tτ1

S̄

)
+ (r + 1

2σ
2)τ1

σ
√
τ1

b2 = b1 − σ
√
τ

τ1 = t1 − t

τ = T − t

and S̄ solves

c(S̄, t1) = S̄ +D1 −X

Computer algorithm, Roll–Geske–Whaley call formula.

// file anal price am call div.cc
// author: Bernt A Oedegaard
// calculate dividend adjusted formula for american call option.

#include <cmath>
#include ”normdist.h” // define the normal distribution functions

16



#include ”fin algoritms.h” // the regular black sholes formula

double option price american call dividend(double S,
double X,
double r,
double sigma,
double tau,
double D1,
double tau1)

{
if (D1 ≤ X∗ (1.0-exp(-r∗(tau-tau1)))) // check for no exercise

return option price call black scholes(S-exp(-r∗tau1)∗D1,X,r,sigma,tau);

double ACCURACY = 1e-6; // decrease this for more accuracy

double sigma sqr = sigma∗sigma;
double tau sqrt = sqrt(tau);
double tau1 sqrt = sqrt(tau1);
double rho = - sqrt(tau1/tau);

double S bar = 0; // first find the S bar that solves c=S bar+D1-X
double S low=0; // the simplest: binomial search
double S high=S; // start by finding a very high S above S bar
double c = option price call black scholes(S high,X,r,sigma,tau-tau1);
double test = c-S high-D1+X;
while ( (test>0.0)

&& (S high≤1e10) ) {
S high ∗ = 2.0;
c = option price call black scholes(S high,X,r,sigma,tau-tau1);
test = c-S high-D1+X;

};
if (S high>1e10) { // early exercise never optimal, find BS value

return option price call black scholes(S-D1∗exp(-r∗tau1),X,r,sigma,tau);
};

S bar = 0.5 ∗ S high; // now find S bar that solves c=S bar-D+X
c = option price call black scholes(S bar,X,r,sigma,tau-tau1);
test = c-S bar-D1+X;
while ( (fabs(test)>ACCURACY)

&& ((S high-S low)>ACCURACY) ) {
if (test<0.0) { S high = S bar; }
else { S low = S bar; };
S bar = 0.5 ∗ (S high + S low);
c = option price call black scholes(S bar,X,r,sigma,tau-tau1);
test = c-S bar-D1+X;

};
double a1 = (log((S-D1∗exp(-r∗tau1))/X) +( r+0.5∗sigma sqr)∗tau)

/ (sigma∗tau sqrt);
double a2 = a1 - sigma∗tau sqrt;
double b1 = (log((S-D1∗exp(-r∗tau1))/S bar) + (r+0.5∗sigma sqr)∗tau1)

/ (sigma∗tau1 sqrt);
double b2 = b1 - sigma ∗ tau1 sqrt;
double C = (S-D1∗exp(-r∗tau1)) ∗ N(b1)

+ (S-D1∗exp(-r∗tau1)) ∗ N(a1,-b1,rho)
- (X∗exp(-r∗tau))∗N(a2,-b2,rho)
- (X-D1)∗exp(-r∗tau1)∗N(b2);

return C;
};
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Chapter 4

Binomial option pricing.

4.1 Introduction

When valuing options using the binomial approach, we assume the underlying option price follows a process
where at given times the price can jump either up or down.
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One way to think about what is happening is that we are approximating the terminal distribution of the
price of the underlying at the maturity date of the option. At each node of this tree, the value of the option
can be found using simple arbitrage arguments, it is possible to construct a portfolio by combining riskless
borrowing and the risky asset to duplicate the payoff of an option, which means the price of the option is
easy to find.

To value an option using this approach, we specify the number n of periods to split the time to maturity
(T − t) into, and then calculate the option using a binomial tree with that number of steps.

Given S,X, r, σ, T and the number of periods n, calculate

∆t =
T − t
n

u = eσ
√

∆t

d = e−σ
√

∆t

We also define the “risk neutral probabilities”

R = er∆t

p =
R− d
u− d

To find the option price, will “roll backwards:” At node t, calculate the call price as a function of the two
possible outcomes at time t+ 1. For example, if there is one step,
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Cu = max(0, Su −X)

Cd = max(0, Sd −X)

find the call price at time 0 as

C0 = e−r(pCu + (1− p)Cd)

The original source for binomial option pricing was the paper by Cox et al. [1979]. Good textbook discussions
are in Cox and Rubinstein [1985] and Hull [1993].

4.2 European Options.

For European options, binomial trees are not that much used, since the Black Scholes model will give the
correct answer, but it is useful to see the construction of the binomial tree without the checks for early
exercise, which is the American case.

Computer algorithm.

The computer algorithm for a binomial in the following merits some comments. There is only one vector of
call prices, and one may think one needs two, one at time t and another at time t + 1. (Try to write down
the way you would solve it before looking at the algorithm below.) But by using the fact that the branches
reconnect, it is possible to get away with the algorithm below, using one less array. You may want to check
how this works. It is also a useful way to make sure one understands binomial option pricing.

// file bin eur call.cc
// author: Bernt A Oedegaard
// calculate the binomial option pricing formula for an european call

#include <cmath> // standard mathematical library
#include <algorithm> // defining the max() operator
#include <vector> // STL vector templates

double option price call european binomial( double S, // spot price
double X, // exercice price
double r, // interest rate
double sigma, // volatility
double t, // time to maturity
int steps) // no steps in binomial tree

{
double R = exp(r∗(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma∗sqrt(t/steps)); // up movement
double uu = u∗u;
double d = 1.0/u;
double p up = (R-d)/(u-d);
double p down = 1.0-p up;
vector<double> prices(steps+1); // price of underlying
prices[0] = S∗pow(d, steps); // fill in the endnodes.
for (int i=1; i≤steps; ++i) prices[i] = uu∗prices[i-1];
vector<double> call values(steps+1); // value of corresponding call
for (int i=0; i≤steps; ++i) call values[i] = max(0.0, (prices[i]-X)); // call payoffs at maturity
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for (int step=steps-1; step≥0; --step) {
for (int i=0; i≤step; ++i) {

call values[i] = (p up∗call values[i+1]+p down∗call values[i])∗Rinv;
};

};
return call values[0];

};

4.3 American Options.

An American option differs from an European option by the exercise possibility. An American option can
be exercised at any time up to the maturity date, unlike the European option, which can only be exercised
at maturity. In general, there is unfortunately no analytical solution to the American option problem, but
in some cases it can be found. For example, for an American call option on non-dividend paying stock, the
American price is the same as the European call.

It is in the case of American options, allowing for the possibility of early exercise, that binomial approxima-
tions are useful. At each node we calculate the value of the option as a function of the next periods prices,
and then check for the value exercising of exercising the option now

// file bin am call.cc
// author: Bernt A Oedegaard
// calculate the binomial option pricing formula for an American call

#include <cmath> // standard mathematical library
#include <algorithm> // defining the max() operator
#include <vector> // STL vector templates

double option price call american binomial( double S, // spot price
double X, // exercice price
double r, // interest rate
double sigma, // volatility
double t, // time to maturity
int steps) { // no steps in binomial tree

double R = exp(r∗(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma∗sqrt(t/steps)); // up movement
double uu = u∗u;
double d = 1.0/u;
double p up = (R-d)/(u-d);
double p down = 1.0-p up;
vector<double> prices(steps+1); // price of underlying
vector<double> call values(steps+1); // value of corresponding call

prices[0] = S∗pow(d, steps); // fill in the endnodes.
for (int i=1; i≤steps; ++i) prices[i] = uu∗prices[i-1];
for (int i=0; i≤steps; ++i) call values[i] = max(0.0, (prices[i]-X)); // call payoffs at maturity
for (int step=steps-1; step≥0; --step) {

for (int i=0; i≤step; ++i) {
call values[i] = (p up∗call values[i+1]+p down∗call values[i])∗Rinv;
prices[i] = d∗prices[i+1];
call values[i] = max(call values[i],prices[i]-X); // check for exercise

};
};
return call values[0];

};

4.4 Estimating partials.

It is always necessary to calculate the partial derivatives as well as the option price.
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The binomial methods gives us ways to approximate these as well. How to find them in the binomial case
are described in chapter 14 of Hull [1993]. The code below is for the non–dividend case.

Delta , the derivative of the option price with respect to the underlying.

// file bin am delta call.cc
// author Bernt Arne Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

double option price delta american call binomial(double S,
double X,
double r,
double sigma,
double t,
int no steps) // steps in binomial

{
vector<double> prices (no steps+1);
vector<double> call values (no steps+1);
double R = exp(r∗(t/no steps));
double Rinv = 1.0/R;
double u = exp(sigma∗sqrt(t/no steps));
double d = 1.0/u;
double uu= u∗u;
double pUp = (R-d)/(u-d);
double pDown = 1.0 - pUp;
prices[0] = S∗pow(d, no steps);
int i;
for (i=1; i≤no steps; ++i) prices[i] = uu∗prices[i-1];
for (i=0; i≤no steps; ++i) call values[i] = max(0.0, (prices[i]-X));
for (int CurrStep=no steps-1 ; CurrStep≥1; --CurrStep) {

for (i=0; i≤CurrStep; ++i) {
prices[i] = d∗prices[i+1];
call values[i] = (pDown∗call values[i]+pUp∗call values[i+1])∗Rinv;
call values[i] = max(call values[i], prices[i]-X); // check for exercise

};
};
double delta = (call values[1]-call values[0])/(S∗u-S∗d);
return delta;

};

Other hedge parameters.

// file bin part.cc
// author Bernt Arne Oedegaard

#include <cmath>
#include <algorithm>
#include ”fin algoritms.h”

void option price partials american call binomial(double S, // spot price
double X, // Exercise price,
double r, // interest rate
double sigma, // volatility
double time, // time to maturity
int no steps, // steps in binomial
double& delta, // partial wrt S
double& gamma, // second prt wrt S
double& theta, // partial wrt time
double& vega, // partial wrt sigma
double& rho) // partial wrt r
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{
vector<double> prices(no steps+1);
vector<double> call values(no steps+1);
double delta t =(time/no steps);
double R = exp(r∗delta t);
double Rinv = 1.0/R;
double u = exp(sigma∗sqrt(delta t));
double d = 1.0/u;
double uu= u∗u;
double pUp = (R-d)/(u-d);
double pDown = 1.0 - pUp;
prices[0] = S∗pow(d, no steps);
for (int i=1; i≤no steps; ++i) prices[i] = uu∗prices[i-1];
for (int i=0; i≤no steps; ++i) call values[i] = max(0.0, (prices[i]-X));
for (int CurrStep=no steps-1; CurrStep≥2; --CurrStep) {

for (int i=0; i≤CurrStep; ++i) {
prices[i] = d∗prices[i+1];
call values[i] = (pDown∗call values[i]+pUp∗call values[i+1])∗Rinv;
call values[i] = max(call values[i], prices[i]-X); // check for exercise

};
};
double f22 = call values[2];
double f21 = call values[1];
double f20 = call values[0];

for (int i=0;i≤1;i++) {
prices[i] = d∗prices[i+1];
call values[i] = (pDown∗call values[i]+pUp∗call values[i+1])∗Rinv;
call values[i] = max(call values[i], prices[i]-X); // check for exercise

};
double f11 = call values[1];
double f10 = call values[0];

prices[0] = d∗prices[1];
call values[0] = (pDown∗call values[0]+pUp∗call values[1])∗Rinv;
call values[0] = max(call values[0], S-X); // check for exercise on first date

double f00 = call values[0];
delta = (f11-f10)/(S∗u-S∗d);
double h = 0.5 ∗ S ∗ ( uu - d∗d);
gamma = ( (f22-f21)/(S∗(uu-1)) - (f21-f20)/(S∗(1-d∗d)) ) / h;
theta = (f21-f00) / (2∗delta t);
double diff = 0.02;
double tmp sigma = sigma+diff;
double tmp prices

= option price call american binomial(S,X,r,tmp sigma,time,no steps);
vega = (tmp prices-f00)/diff;
diff = 0.05;
double tmp r = r+diff;
tmp prices = option price call american binomial(S,X,tmp r,sigma,time,no steps);
rho = (tmp prices-f00)/diff;

};

4.5 Binomial approximation, dividends.

If the underlying asset is a stock paying dividends during the maturity of the option, the terms of the option
is not adjusted to reflect this cash payment, which means that the option value will reflect the dividend
payments.

In the binomial model, the adjustment for dividends depend on whether the dividends are discrete or pro-
portional.
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4.5.1 Proportional dividends.

For proportional dividends, we simply multiply with an adjustment factor the stock prices at the ex–dividend
date, the nodes in the binomial tree will “link up” again, and we can use the same “rolling back” procedure.

// file bin am prop div call.cc
// author: Bernt Arne Oedegaard
// binomial option pricing adjusting for dividends.

#include <cmath>
#include <algorithm>
#include <vector>
#include ”fin algoritms.h”

double option price call american proportional dividends binomial(
double S,
double X,
double r,
double sigma,
double time,
int no steps,
vector<double>& dividend times,
vector<double>& dividend yields)

// given a dividend yield, the binomial tree recombines
{

int no dividends=dividend times.size();
if (no dividends == 0) // just take the regular binomial

return option price call american binomial(S,X,r,sigma,time,no steps);
double R = exp(r∗(time/no steps));
double Rinv = 1.0/R;
double u = exp(sigma∗sqrt(time/no steps));
double uu= u∗u;
double d = 1.0/u;
double pUp = (R-d)/(u-d);
double pDown = 1.0 - pUp;

vector<int> dividend steps(no dividends); // when dividends are paid
for (int i=0; i<no dividends; ++i) {

dividend steps[i] = (int)(dividend times[i]/time∗no steps);
};
vector<double> prices(no steps+1);
vector<double> call prices(no steps+1);
prices[0] = S∗pow(d, no steps);
for (int i=0; i<no dividends; ++i) { prices[0]∗ =(1.0-dividend yields[i]); };
for (int i=1; i≤no steps; ++i) prices[i] = uu∗prices[i-1]; // terminal tree nodes
for (int i=0; i≤no steps; ++i) call prices[i] = max(0.0, (prices[i]-X));
for (int step=no steps-1; step≥0; --step) {

for (int i=0;i<no dividends;++i) { // check whether dividend paid
if (step==dividend steps[i]) {

for (int j=0;j≤step;++j) {
prices[j]∗ =(1.0/(1.0-dividend yields[i]));

};
};

};
for (int i=0; i≤step; ++i) {

prices[i] = d∗prices[i+1];
call prices[i] = (pDown∗call prices[i]+pUp∗call prices[i+1])∗Rinv;
call prices[i] = max(call prices[i], prices[i]-X); // check for exercise

};
};
return call prices[0];

};
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4.5.2 Discrete dividends.

The problem is when the dividends are constant dollar amounts.

In that case the nodes of the binomial tree do not “link up,” and the number of branches increases dramat-
ically, which means that the time to do the calculation is increased.

The algorithm presented here implements this case, with no linkup, by constructing a binomial tree up to
the ex-dividend date, and then, at the terminal nodes of that tree, call itself with one less dividend payment,
and time to maturity the time remaining at the ex-dividend date. Doing that calculates the value of the
option at the ex-dividend date, which is then compared to the value of exercising just before the ex-dividend
date. It is a cute example of using recursion in simplifying calculations, but as with most recursive solutions,
it has a cost in computing time. For large binomial trees and several dividends this procedure will take a
long time. In that case it will be a good deal faster to avoid the recursive calls. Look in [Hull, 1993, pg 347]
for ways to achieve this by making some small assumptions.

Computer algorithm, binomial pricing with discrete dividends.

// file bin am div call.cc
// author: Bernt Arne Oedegaard
// binomial option pricing adjusting for dividends.

#include <cmath>
#include <vector>
#include ”fin algoritms.h”

double option price call american discrete dividends binomial(double S,
double X,
double r,
double sigma,
double t,
int steps,
vector<double>& dividend times,
vector<double>& dividend amounts)

// given an amount of dividend, the binomial tree does not recombine, have to
// start a new tree at each ex-dividend date.
// do this recursively, at each ex dividend date, at each step, call the
// binomial formula starting at that point to calculate the value of the live
// option, and compare that to the value of exercising now.
{

int no dividends = dividend times.size();
if (no dividends == 0) // just take the regular binomial

return option price call american binomial(S,X,r,sigma,t,steps);
int steps before dividend = (int)(dividend times[0]/t∗steps);

double R = exp(r∗(t/steps));
double Rinv = 1.0/R;
double u = exp(sigma∗sqrt(t/steps));
double uu= u∗u;
double d = 1.0/u;
double pUp = (R-d)/(u-d);
double pDown = 1.0 - pUp;
double dividend amount = dividend amounts[0];
vector<double> tmp dividend times(no dividends-1); // temporaries with
vector<double> tmp dividend amounts(no dividends-1); // one less dividend
for (int i=0;i<no dividends-1;++i){

tmp dividend amounts[i] = dividend amounts[i+1];
tmp dividend times[i] = dividend times[i+1] - dividend times[0];

};
vector<double> prices(steps before dividend+1);
vector<double> call values(steps before dividend+1);

prices[0] = S∗pow(d, steps before dividend);
for (int i=1; i≤steps before dividend; ++i) prices[i] = uu∗prices[i-1];
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for (int i=0; i≤steps before dividend; ++i){
double value alive

= option price call american discrete dividends binomial(
prices[i]-dividend amount,
X, r, sigma,
t-dividend times[0], // time after first dividend
steps-steps before dividend,
tmp dividend times,
tmp dividend amounts);

// what is the value of keeping the option alive? Found recursively,
// with one less dividend, the stock price is current value
// less the dividend.
call values[i] = max(value alive,(prices[i]-X)); // compare to exercising now

};
for (int step=steps before dividend-1; step≥0; --step) {

for (int i=0; i≤step; ++i) {
prices[i] = d∗prices[i+1];
call values[i] = (pDown∗call values[i]+pUp∗call values[i+1])∗Rinv;
call values[i] = max(call values[i], prices[i]-X); // check for exercise

};
};
return call values[0];

};
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Chapter 5

Finite Differences

The method of choice for any engineer given a differential equation to solve is to numerically approximate it
using a finite difference scheme, which is to approximate the continous differential equation with a discrete
difference equation, and solve this difference equation.

In the following we implement the two schemes described in chapter 14.7 of Hull [1993], the implicit finite
differences and the the explicit finite differences.

5.1 European Options.

For European options we do not need to use the finite difference scheme, but we show how one would find
the european price for comparison purposes.

Computer algoritm, implicit finite differences. The following follows the discussion of finite differ-
ences on page 354 of Hull [1993]. Note the use of a linear algebra library to simplify the algoritm.

#include <cmath>
#include ”newmat.h” // definitions for newmat matrix library
#include <vector> // standard STL vector template
#include <algorithm>

double option price put european finite diff implicit(
double S, double X, double r, double sigma, double time,
int no S steps, int no t steps)

{
double sigma sqr = sigma∗sigma;
// need no S steps to be even:
int M; if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0∗S/M;
vector<double> S values(M+1);
for (int m=0;m≤M;m++) { S values[m] = m∗delta S; };
int N=no t steps;
double delta t = time/N;

BandMatrix A(M+1,1,1); A=0.0;
A.element(0,0) = 1.0;
for (int j=1;j<M;++j) {

A.element(j,j-1) = 0.5∗j∗delta t∗(r-sigma sqr∗j); // a[j]
A.element(j,j) = 1.0 + delta t∗(r+sigma sqr∗j∗j); // b[j];
A.element(j,j+1) = 0.5∗j∗delta t∗(-r-sigma sqr∗j); // c[j];

};
A.element(M,M)=1.0;
ColumnVector B(M+1);
for (int m=0;m≤M;++m){ B.element(m) = max(0.0,X-S values[m]); };
ColumnVector F=A.i()∗B;
for(int t=N-1;t>0;--t) {

B = F;
F = A.i()∗B;

};
return F.element(M/2);

};

Computer algoritm, explicit finite differences. An alternative to the implicit finite differences is the
explicit finite difference method. The explicit version is faster, but a problem with the explicit version is
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that it may not converge. The following follows the discussion of finite differences starting on page 356 of
Hull [1993].

// findiff exp eur put.cc
// author: Bernt A Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

double option price put european finite diff explicit(double S,
double X,
double r,
double sigma,
double time,
int no S steps,
int no t steps) {

double sigma sqr = sigma∗sigma;

unsigned int M; // need M = no S steps to be even:
if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0∗S/M;
vector<double> S values(M+1);
for (unsigned m=0;m≤M;m++) { S values[m] = m∗delta S; };
int N=no t steps;
double delta t = time/N;

vector<double> a(M);
vector<double> b(M);
vector<double> c(M);
double r1=1.0/(1.0+r∗delta t);
double r2=delta t/(1.0+r∗delta t);
for (unsigned int j=1;j<M;j++){

a[j] = r2∗0.5∗j∗(-r+sigma sqr∗j);
b[j] = r1∗(1.0-sigma sqr∗j∗j∗delta t);
c[j] = r2∗0.5∗j∗(r+sigma sqr∗j);

};
vector<double> f next(M+1);
for (unsigned m=0;m≤M;++m) { f next[m]=max(0.0,X-S values[m]); };
double f[M+1];
for (int t=N-1;t≥0;--t) {

f[0]=X;
for (unsigned m=1;m<M;++m) {

f[m]=a[m]∗f next[m-1]+b[m]∗f next[m]+c[m]∗f next[m+1];
};
f[M] = 0;
for (unsigned m=0;m≤M;++m) { f next[m] = f[m]; };

};
return f[M/2];

};

5.2 American Options.

We now compare the American versions of the same algoritms, the only difference being the check for exercise
at each point.

Computer algoritm, implicit finite differences.

#include <cmath>
#include ”newmat.h” // definitions for newmat matrix library
#include <vector>
#include <algorithm>
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double option price put american finite diff implicit(
double S, double X, double r, double sigma, double time,
int no S steps, int no t steps)

{
double sigma sqr = sigma∗sigma;
// need no S steps to be even:
int M; if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0∗S/M;
double S values[M+1];
for (int m=0;m≤M;m++) { S values[m] = m∗delta S; };
int N=no t steps;
double delta t = time/N;

BandMatrix A(M+1,1,1); A=0.0;
A.element(0,0) = 1.0;
for (int j=1;j<M;++j) {

A.element(j,j-1) = 0.5∗j∗delta t∗(r-sigma sqr∗j); // a[j]
A.element(j,j) = 1.0 + delta t∗(r+sigma sqr∗j∗j); // b[j];
A.element(j,j+1) = 0.5∗j∗delta t∗(-r-sigma sqr∗j); // c[j];

};
A.element(M,M)=1.0;
ColumnVector B(M+1);
for (int m=0;m≤M;++m){ B.element(m) = max(0.0,X-S values[m]); };
ColumnVector F=A.i()∗B;
for(int t=N-1;t>0;--t) {

B = F;
F = A.i()∗B;
for (int m=1;m<M;++m) { // now check for exercise

F.element(m) = max(F.element(m), X-S values[m]);
};

};
return F.element(M/2);

};

Computer algoritm, explicit finite differences.

// file: findiff exp am put.cc
// author: Bernt A Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

double option price put american finite diff explicit( double S,
double X,
double r,
double sigma,
double time,
int no S steps,
int no t steps) {

double sigma sqr = sigma∗sigma;

int M; // need M = no S steps to be even:
if ((no S steps%2)==1) { M=no S steps+1; } else { M=no S steps; };
double delta S = 2.0∗S/M;
vector<double> S values(M+1);
for (int m=0;m≤M;m++) { S values[m] = m∗delta S; };
int N=no t steps;
double delta t = time/N;

vector<double> a(M);
vector<double> b(M);
vector<double> c(M);
double r1=1.0/(1.0+r∗delta t);
double r2=delta t/(1.0+r∗delta t);
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for (int j=1;j<M;j++){
a[j] = r2∗0.5∗j∗(-r+sigma sqr∗j);
b[j] = r1∗(1.0-sigma sqr∗j∗j∗delta t);
c[j] = r2∗0.5∗j∗(r+sigma sqr∗j);

};
vector<double> f next(M+1);
for (int m=0;m≤M;++m) { f next[m]=max(0.0,X-S values[m]); };
vector<double> f(M+1);
for (int t=N-1;t≥0;--t) {

f[0]=X;
for (int m=1;m<M;++m) {

f[m]=a[m]∗f next[m-1]+b[m]∗f next[m]+c[m]∗f next[m+1];
f[m] = max(f[m],X-S values[m]); // check for exercise

};
f[M] = 0;
for (int m=0;m≤M;++m) { f next[m] = f[m]; };

};
return f[M/2];

}

Further Reading Brennan and Schwartz [1978] is one of the first finance applications of finite differences.
Section 14.7 of Hull [1993] has a short introduction to finite differences. Wilmott et al. [1994] is an exhaustive
source on option pricing from the perspective of solving partial differential equations.
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Chapter 6

Simulation

We now consider using simulations to estimate the price of an option.

For a call option, this is to calculate the current expected value of

max(0, ST −X)

or

ct = e−r(T−t)E[max(0, ST −X)]

One way to estimate the value of the call is to simulate a large number of sample values of ST according to
the assumed underlying process, and find the estimated call price as the average of the simulated values. By
a Law of Large Numbers, this average will converge to the actual call value, where the rate of convergence
will depend on the way we simulate the sample path, and how many simulations we perform.

6.1 Simulating the sample path.

The assumed underlying price process is the geometric Brownian Motion

dS

S
= µdt+ σdB

or

dS = µdtS + σSdB

To simulate this, we need to discretise the process, by splitting the time between 0 and T into a number of
periods of length ∆t,

dt ≈ ∆t

dS ≈ ∆S = St − St−1

To simulate the term due to the Brownian motion (dB), remember that one of the defining characteristics
of Brownian Motion is that the increment for any finite period of length s is distributed normally with mean
zero and variance s. Since the variance is s, the standard deviation is

√
s. Thus, if εt is normally distributed

with mean zero and unit variance, we can simulate the discrete process by

St − St−1 = µ∆tSt−1 + σSt−1

√
∆tεt

or

St = St−1 + µ∆tSt−1 + σSt−1

√
∆tεt

This expression can be used to generate a series of sample paths, which will approximate the sample path
of a Brownian Motion process as the sampling interval ∆t decreases.
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This discretization is not recommended for actual use. Here we take into account that it is the log of the
underlying price that follows a Brownian motion. A more correct discretization is to use

St = St−1exp

((
µ− 1

2
σ2

)
∆t+ σεt

√
∆t
)

This is the discretization used when the payoff depend on the evolution of the underlying throughout the
period. For examples of this, see the chapter on exotic options.

European Calls and Puts, however, do not depend on any intermediate observations, so it is therefore only
necessary to simulate the terminal observation of the underlying.

Computer Algorithm, Monte Carlo European Option.

// file: simulated call euro.cc
// author: Bernt Arne Oedegaard

#include <cmath> // standard mathematical functions
#include ”random.h” // definition of random number generator
#include <algorithm> // define the max() function

double option price call european simulated( double S,
double X,
double r,
double sigma,
double time,
int no sims)

{
double sigma sqr = sigma ∗ sigma;
double R = (r - 0.5 ∗ sigma sqr)∗time;
double SD = sigma ∗ sqrt(time);
double sum payoffs = 0.0;
for (int n=1; n≤no sims; n++) {

double S T = S∗ exp(R + SD ∗ random normal());
sum payoffs += max(0.0, S T-X);

};
double c = exp(-r∗time) ∗ (sum payoffs/double(no sims));
return c;

};

6.2 Hedge parameters

// file simulated delta call.cc
// author: Bernt A Oedegaard
// estimation of the partials when doing monte carlo

#include <cmath> // standard mathematical functions
#include ”random.h” // definition of random number generator
#include <algorithm> // define the max() function

double option price delta call european simulated( double S,
double X,
double r,
double sigma,
double time,
int no sims)

// estimate the price using two different S values
{

double sigma sqr = sigma ∗ sigma;
double R = (r - 0.5 ∗ sigma sqr)∗time;
double SD = sigma ∗ sqrt(time);
double sum payoffs = 0.0;
double sum payoffs 2 = 0.0;
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double q = S∗0.01;
for (int n=1; n≤no sims; n++) {

double Z = random normal();

double S T = S∗ exp(R + SD ∗ Z);
sum payoffs += max(0.0, S T-X);

double S T 2 = (S+q)∗ exp(R + SD ∗ Z);
sum payoffs 2 += max(0.0, S T 2-X);

};
double c = exp(-r∗time) ∗ ( sum payoffs/no sims);
double c2 = exp(-r∗time) ∗ ( sum payoffs 2/no sims);
return (c2-c)/q;

};

Further Reading Boyle [1977]
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Chapter 7

Approximations

There has been developed some useful approximations to various specific options. It is of course American
options that are approximated. The particular example we will look at, is a general quadratic approximation
to American call and put prices.

7.1 A quadratic approximation to American prices due to Barone–Adesi and Whaley.

We now discuss an approximation to the option price of an American option on a commodity having a
continuous payout, described in Barone-Adesi and Whaley [1987] (BAW). Their solution technique finds an
approximate solution to the differential equation

1
2
σ2S2VSS + bSVS − rV + Vt = 0 (7.1)

The case we look at here is an option written on a commodity paying b as a continuous payout. Here V
is the (unknown) formula that determines the price of the contingent claim. For an European option this
can be explicitly solved, with the adjusted Black Scholes formula as the solution, but for American options,
which may be exercised early, there is no known analytical solution.

To do their approximation, BAW decomposes the American price into the European price and the early
exercise premium

C(S, T ) = c(S, T ) + εC(S, T )

Here εC is the early exercise premium. This will also have to satisfy the partial differential equation. To
come up with an approximation BAW transformed equation (7.1) into one where the terms involving Vt are
neglible, removed these, and ended up with a standard linear homeogenous second order equation, which
has a known solution.

The functional form of the approximation is

C(S, T ) =
{
c(S, T ) +A2

(
S
S∗

)q2 if S < S∗

S −X if S ≥ S∗

where

M =
2r
σ2

N =
2b
σ2

K(T ) = 1− e−r(T−t)

q2 =
1
2

[−(N − 1) +

√
(N − 1)2 +

4M
K

A2 =
S∗

q2

(
1− e(b−r)(T−t)N(d1(S∗))

)
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and S∗ solves

S∗ −X = c(S∗, T ) +
S∗

q2

(
1− e(b−r)(T−t)N(d1(S∗))

)
In implementing this, the only problem is finding the critical value S∗.

This is the classical problem of finding a root of the equation

g(S∗) = S∗ −X − c(S∗)− S∗

q2

(
1− e(b−r)(T−t)N(d1(S∗))

)
= 0

This is solved using Newton’s algorithm for finding the root.

We start by finding a first “seed” value S0. The next estimate of Si is found

Si+1 = Si −
g()
g′

At each step we need to evaluate g() and its derivative g′().

Call option

g(S) = S −X − c(S)− 1
q2
S(1− e(b−r)(T−t)N(d1)

g′(S) = (1− 1
q2

)(1− e(b−r)(T−t)N(d1)) +
1
q2

(e(b−r)(T−t)n(d1))
1

σ
√
T − t

where c(S) is the Black Scholes value for commodities.

Similarly, for a put option the approximation is

P (S) = p(S, T ) +A1

(
S
S∗∗

)q1 if S > S∗

X − S if S ≤ S∗

A1 = −S
∗∗

q1
(1− e(b−r)(T−t)N(−d1(S∗∗))

and we solve for S∗∗ again by Newton’s procedure, where now

g(S) = X − S − p(S) +
S

q1
(1− e(b−r)(T−t))

g′(S) = (
1
q1
− 1)(1− e(b−r)(T−t)N(−d1)) +

1
q1
e(b−r)(T−t) 1

σ
√
T − t

n(−d1)

// file approx am call.cc
// author: Bernt Arne Oedegaard
// implements the quadratic approximation of Barone-Adesi and Whaley
// described in Journal of Finance, june 87.

#include <cmath>
#include <algorithm>
#include ”normdist.h” // normal distribution
#include ”fin algoritms.h” // define other option pricing formulas

const double ACCURACY=1.0e-6;
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double option price american call approximated baw( double S,
double X,
double r,
double b,
double sigma,
double time)

{
double sigma sqr = sigma∗sigma;
double time sqrt = sqrt(time);
double nn = 2.0∗b/sigma sqr;
double m = 2.0∗r/sigma sqr;
double K = 1.0-exp(-r∗time);
double q2 = (-(nn-1)+sqrt(pow((nn-1),2.0)+(4∗m/K)))∗0.5;

// seed value from paper
double q2 inf = 0.5 ∗ ( (-nn-1.0) + sqrt(pow((nn-1),2.0)+4.0∗m));
double S star inf = X / (1.0 - 1.0/q2 inf);
double h2 = -(b∗time+2.0∗sigma∗time sqrt)∗(X/(S star inf-X));
double S seed = X + (S star inf-X)∗(1.0-exp(h2));

int no iterations=0; // iterate on S to find S star, using Newton steps
double Si=S seed;
double g=1;
double gprime=1.0;
while ((fabs(g) > ACCURACY)

&& (fabs(gprime)>ACCURACY) // to avoid exploding Newton’s
&& ( no iterations++<500)
&& (Si>0.0)) {

double c = option price european call payout(Si,X,r,b,sigma,time);
double d1 = (log(Si/X)+(b+0.5∗sigma sqr)∗time)/(sigma∗time sqrt);
g=(1.0-1.0/q2)∗Si-X-c+(1.0/q2)∗Si∗exp((b-r)∗time)∗N(d1);
gprime=( 1.0-1.0/q2)∗(1.0-exp((b-r)∗time)∗N(d1))

+(1.0/q2)∗exp((b-r)∗time)∗n(d1)∗(1.0/(sigma∗time sqrt));
Si=Si-(g/gprime);

};
double S star = 0;
if (fabs(g)>ACCURACY) { S star = S seed; } // did not converge
else { S star = Si; };
double C=0;
double c = option price european call payout(S,X,r,b,sigma,time);
if (S≥S star) {

C=S-X;
}
else {

double d1 = (log(S star/X)+(b+0.5∗sigma sqr)∗time)/(sigma∗time sqrt);
double A2 = (1.0-exp((b-r)∗time)∗N(d1))∗ (S star/q2);
C=c+A2∗pow((S/S star),q2);

};
return max(C,c); // know value will never be less than BS value

}

For further details of the Barone Adesi quadratic approximation: Main source is the original paper: Barone-
Adesi and Whaley [1987]. The approximation is also discussed in section 14A of Hull [1993].

7.2 An approximation to the American Put due to Geske and Johnson

In Geske and Johnson [1984] a very nice approximation is developed for the American put problem. The
solution technique is to view the American put as an sequence of Bermudan options, with the number of
exercise dates increasing. The correct value is the limit of this sequence.

Define Pi to be the price of the put option with i dates of exercise left. P1 is then the price of an european
option, with the one exercise date the expiry date. P2 is the price of an option that can be exercised twice,
once halfway between now and expiry, the other at expiry. Geske-Johnson shows how these options may
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be priced, and then develops a sequence of approximate prices that converges to the correct price. An
approximation involving 3 option evaluations is

P̂ = P3 +
7
2

(P3 − P2)− 1
2

(P2 − P1)

P1 is the ordinary (european) Black Scholes value

P2 = Xe−r
(T−t)

2 N
(
−d2

(
S T−t

2

))
....

P3 = ....

where

d1(q, τ) =

d2(q, τ) =

The evaluations of P1 and P2 are easy, the problem is the evalutation of P3, since it involves the evaluation
of a trivariate normal cumulative distribution. For this see the notes on the normal distribution, but it is a
nontrivial problem, involving some numerical integration.
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Chapter 8

Futures algoritms.

In this we discuss algoritms used in valuing futures contracts.

8.1 Pricing of futures contract.

ft = er(T−t)S

// file futurpri.cc
// author: Bernt A Oedegaard.

#include <cmath>

double futures price(double S, // value of underlying
double r, // risk free interest
double time to maturity) {

return exp(r∗time to maturity)∗S;
};

8.2 Options on futures

One of the more interesting problems with futures contracts is to value an option written on a futures
contract.

8.2.1 Black’s model

For an European option written on a futures contract, we use an adjustment of the Black Scholes solution,
which was developed in Black [1976]

See [Hull, 1993, Ch 11.4] for a textbook treatment.

• F : futures price.

• X: exercise price.

• r: interest rate.

• σ: volatility

• T − t: time to maturity

d1 =
log
(
F
X

)
+ 1

2σ
2(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

c = e−r(T−t) (FN(d1)−XN(d2))

p = e−r(T−t) (XN(−d2)− FN(−d1))
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Computer algoritm.

// file futures opt call black.cc
// author: Bernt A Oedegaard

#include <cmath> // mathematics library
#include ”normdist.h” // normal distribution

double futures option price call european black(
double F, // futures price
double X, // exercise price
double r, // interest rate
double sigma, // volatility
double time) // time to maturity

{
double sigma sqr = sigma∗sigma;
double time sqrt = sqrt(time);
double d1 = (log (F/X) + 0.5 ∗ sigma sqr ∗ time) / (sigma ∗ time sqrt);
double d2 = d1 - sigma ∗ time sqrt;
return exp(-r∗time)∗(F ∗ N(d1) - X ∗ N(d2));

};

8.2.2 Binomial approximation.

For American options, because of the feasibility of early exercise, the binomial model is often used to
approximate the option value.

// file: futures opt call bin.cc
// author: Bernt A Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

double futures option price call american binomial(
double F, double X, double r, double sigma, double time, int no steps) {

vector<double> futures prices(no steps+1);
vector<double> call values (no steps+1);
double t delta= time/no steps;
double Rinv = exp(-r∗(t delta));
double u = exp(sigma∗sqrt(t delta));
double d = 1.0/u;
double uu= u∗u;
double pUp = (1-d)/(u-d); // note how probability is calculated
double pDown = 1.0 - pUp;
futures prices[0] = F∗pow(d, no steps);
int i;
for (i=1; i≤no steps; ++i) futures prices[i] = uu∗futures prices[i-1]; // terminal tree nodes
for (i=0; i≤no steps; ++i) call values[i] = max(0.0, (futures prices[i]-X));
for (int step=no steps-1; step≥0; --step) {

for (i=0; i≤step; ++i) {
futures prices[i] = d∗futures prices[i+1];
call values[i] = (pDown∗call values[i]+pUp∗call values[i+1])∗Rinv;
call values[i] = max(call values[i], futures prices[i]-X); // check for exercise

};
};
return call values[0];

};

38



Chapter 9

Foreign Currency Algoritms

9.1 Foreign Currency Options

9.1.1 European options.

To value european options, all that is necessary is a slight adjustment of the Black-Scholes equation to adjust
for the interest-rate differential.

• S: exchange rate.

• X: exercise price.

• r: interest rate in domestic currency.

• rf : interest rate in foreign currency.

• σ: volatility of exchange rate.

• T − t: time to maturity.

c = Se−rf (T−t)N(d1)−Xe−r(T−t)N(d2)

p = Xe−r(T−t)N(−d2)− Se−rf (T−t)N(−d1)

where

d1 =
log
(
S
X

)
+
(
r − rf + 1

2σ
2
)

(T − t)
σ
√
T − t

d2 = d1 − σ
√
T − t

Computer Algoritm, European Currency Option

// file currency opt euro call.cc
// author: Bernt A Oedegaard

#include <cmath>
#include ”normdist.h” // define the normal distribution function

double currency option price call european( double S, // exchange rate,
double X, // exercise,
double r, // r domestic,
double r f, // r foreign,
double sigma, // volatility,
double time) // time to maturity

{
double sigma sqr = sigma∗sigma;
double time sqrt = sqrt(time);
double d1 = (log(S/X) + (r-r f+ (0.5∗sigma sqr)) ∗ time)/(sigma∗time sqrt);
double d2 = d1 - sigma ∗ time sqrt;
return S ∗ exp(-r f∗time) ∗ N(d1) - X ∗ exp(-r∗time) ∗ N(d2);

};
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References. The original formulations of European foreign currency option prices are in Garman and
Kohlhagen [1983] and Grabbe [1983].

See [Hull, 1993, Ch 11.3] for a textbook treatment.

9.1.2 American options.

For American options, the usual method is approximation using binomial trees, checking for early exercise
due to the interest rate differential.

Computer Algoritm, Binomial Currency Option

// file currency opt bin call.cc
// author: Bernt A Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

double currency option price call american binomial(
double S, double X, double r, double r f, double sigma,
double time, int no steps) {
vector<double> exchange rates(no steps+1);
vector<double> call values(no steps+1);
double t delta= time/no steps;
double Rinv = exp(-r∗(t delta));
double u = exp(sigma∗sqrt(t delta));
double d = 1.0/u;
double uu= u∗u;
double pUp = (exp((r-r f)∗t delta)-d)/(u-d); // adjust for foreign int.rate
double pDown = 1.0 - pUp;
exchange rates[0] = S∗pow(d, no steps);
int i;
for (i=1; i≤no steps; ++i) {

exchange rates[i] = uu∗exchange rates[i-1]; // terminal tree nodes
}
for (i=0; i≤no steps; ++i) call values[i] = max(0.0, (exchange rates[i]-X));
for (int step=no steps-1; step≥0; --step) {

for (i=0; i≤step; ++i) {
exchange rates[i] = d∗exchange rates[i+1];
call values[i] = (pDown∗call values[i]+pUp∗call values[i+1])∗Rinv;
call values[i] = max(call values[i], exchange rates[i]-X); // check for exercise

};
};
return call values[0];

};
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Chapter 10

Bond Algoritms.

In this part we look at the treatment of bonds and similar fixed income securities. What distinguishes bonds
is that the future payments (of coupon, principal) are decided when the security is issued.

10.1 Bond Price.

The price of a bond is the present value of its future cashflows. If we consider a coupon bond like a US
goverment bond (T-Bond), the cash flows look like

t = 0 1 2 3 · · · T
Coupon C C C · · · C
Face value F

The current price of the bond is

P0 =
T∑
t=1

C

(1 + r)t
+

F

(1 + r)T

with discrete compounding, and

P0 =
T∑
t=1

e−rtC + e−rTF

with continous compounding. The interest rate r is fixed, which means that the term structure is “flat.”

Let us look at two versions of the bond price algorithm for the continous case.

// file bonds price both.cc
// author: Bernt A Oedegaard.

#include <cmath>
#include <vector>

double bonds price(const vector<double>& coupon times,
const vector<double>& coupon amounts,
const vector<double>& principal times,
const vector<double>& principal amounts,
const double& r)

// calculate bond price when term structure is flat,
// given both coupon and principals
{

double p = 0;
for (unsigned i=0;i<coupon times.size();i++) {

p += exp(-r∗coupon times[i])∗coupon amounts[i];
};
for (unsigned i=0;i<principal times.size();i++) {

p += exp(-r∗principal times[i])∗principal amounts[i];
};
return p;

};
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// file bonds price.cc
// author: Bernt A Oedegaard.

#include <cmath>
#include <vector>

double bonds price(const vector<double>& cashflow times,
const vector<double>& cashflows,
const double& r) {

// calculate bond price when term structure is flat,
double p=0;
for (unsigned i=0;i<cashflow times.size();i++) {

p += exp(-r∗cashflow times[i])∗cashflows[i];
};
return p;

};

There are two version of the routine listed, one which is called with both interest and principal vectors,
another which is simply called with the cashflows. I put up both to make one think about the fact that for
most purposes the distinction between coupons and principals is not necessary to make, what counts is the
cashflows, which is the sum of coupons and principal. There are cases where the distinction is important, for
example when taxes are involved. Then we need to keep track of what is interest and what is principal. But
in the simple cases considered here we stick to the case of cashflows, it makes the routines easier to follow.

Let us also look at the case of discrete (annual) compounding :

// file bonds price.cc
// author: Bernt A Oedegaard.

#include <cmath>
#include <vector>

double bonds price discrete(const vector<double>& cashflow times,
const vector<double>& cashflows,
const double& r) {

// calculate bond price when term structure is flat,
double p=0;
for (unsigned i=0;i<cashflow times.size();i++) {

p +=cashflows[i]/(pow((1+r),cashflow times[i]));
};
return p;

};

In the previous we assumed the term structure was flat. In most cases that is not a reasonable assumption,
we need to use a general term structure for discounting.

P0 =
T∑
t=1

d(t)C + d(T )F,

where d(t) is a function that discounts a payment at time t to its value today. For example, a flat term
structure has the following simple discount function:

d(t) =
1

(1 + r)t
.

For routines involving the term structure a term structure class is assumed available.1 For the purposes of
the “algoritms paper,” think of it as an abstract function that either return a discount factor or a yield.

1The term structure class is available in the same place this document is found.
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// file bonds price termstru.cc
// author: Bernt Arne Odegaard

#include <vector>
#include ”term structure class.h”

double bonds price(const vector<double>& cashflow times,
const vector<double>& cashflows,
const term structure class& d) {

double p = 0;
for (unsigned i=0;i<cashflow times.size();i++) {

p += d.discount factor(cashflow times[i])∗cashflows[i];
};
return p;

};

10.2 Yield to maturity.

The yield to maturity is the interest rate that makes the present value of the future coupon payments equal
to the current bondprice, that is, for a known price P0, the yield is the solution y to the equation

P0 =
T∑
t=1

e−ytC + e−yTF

The algoritm that follows is simple bisection, we know that the yield is above zero, and find a maximium
yield which the yield is below, and then bisect the interval until we are “close enough.”

// file bonds yield.cc
// author: Bernt A Oedegaard
// calculate Yield to maturity for bond

#include <cmath>
#include ”fin algoritms.h”

double bonds yield to maturity( const vector<double>& cashflow times,
const vector<double>& cashflow amounts,
const double& bondprice) {

const float ACCURACY = 1e-5;
const int MAX ITERATIONS = 200;
double bot=0, top=1.0;
while (bonds price(cashflow times, cashflow amounts, top) > bondprice) {

top = top∗2;
};
double r = 0.5 ∗ (top+bot);
for (int i=0;i<MAX ITERATIONS;i++){

double diff = bonds price(cashflow times, cashflow amounts,r) - bondprice;
if (fabs(diff)<ACCURACY) return r;
if (diff>0.0) { bot=r;}
else { top=r; };
r = 0.5 ∗ (top+bot);
};
return r;
};

10.3 Duration.

10.3.1 Simple duration.

D1 =
∑ tC(t)P (t)∑

C(t)P (t)
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where

• C(t) is the cash flow in period t, and

• d(t) is the discount factor, the current price of a discount bond paying $1 at time t.

First, case where term structure is flat

// file bonds duration.cc
// author: Bernt Arne Odegaard

#include <cmath>
#include <vector>

double bonds duration(const vector<double>& cashflow times,
const vector<double>& cashflows,
const double& r)

// calculate the duration of a bond, simple case where the term
// structure is flat, interest rate r.
{

double S=0;
double D1=0;
for (unsigned i=0;i<cashflow times.size();i++){

S += cashflows[i] ∗ exp(-r∗cashflow times[i]);
D1 += cashflow times[i] ∗ cashflows[i] ∗ exp(-r∗cashflow times[i]);

};
return D1 / S;

};

More general term structure:

// file duration.cc
// author: Bernt A Oedegaard.

#include <vector>
#include ”term structure class.h”

double bonds duration(const vector<double>& cashflow times,
const vector<double>& cashflow amounts,
const term structure class& d ) {

double S=0;
double D1=0;
for (unsigned i=0;i<cashflow times.size();i++){

S += cashflow amounts[i] ∗ d.discount factor(cashflow times[i]);
D1 += cashflow times[i] ∗ cashflow amounts[i] ∗ d.discount factor(cashflow times[i]);

};
return D1/S;

};

10.3.2 Macaulay Duration

D2 =
∑ tC(t)e−yt∑

C(t)e−yt

where

• C(t) is the cashflow in period t, and

• y is the (continous) yield to maturity.
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// file bonds duration macaulay.cc
// author: Bernt A Oedegaard.
// calculate Macaulay duration.

#include ”fin algoritms.h”

double bonds duration macaulay(const vector<double>& cashflow times,
const vector<double>& cashflows,
const double& bond price) {

double y = bonds yield to maturity(cashflow times, cashflows, bond price);
return bonds duration(cashflow times, cashflows, y); // use YTM in duration
};

10.3.3 Modified Duration

Modified Duration =
duration

yield

// file bonds duration modified.cc
// author: Bernt A Oedegaard.

#include <vector>
#include ”fin algoritms.h”

double bonds duration modified (const vector<double>& cashflow times,
const vector<double>& cashflow amounts,
const double& bond price,
const double& r)

{
double dur = bonds duration(cashflow times, cashflow amounts, r);
double y = bonds yield to maturity(cashflow times,cashflow amounts,

bond price);
return dur/y;

};

10.4 Convexity

Convexity measures the curvature of the approximation done when using duration. It is calculated as

n∑
i=1

cit
2
i e
−yti

// file bonds convexity.cc
// author: Bernt A Oedegaard.
// calculate convexity of a bond.

#include <cmath>
#include <vector>

double bonds convexity(const vector<double>& cashflow times,
const vector<double>& cashflow amounts,
const double& y )

{
double C=0;
for (unsigned i=0;i<cashflow times.size();i++){

double t = cashflow times[i];
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C+= cashflow amounts[i] ∗ t ∗ t ∗ exp(-y∗t);
};
return C;

};
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Chapter 11

Exotic options.

With “exotic” options we think of any option with a more complicated payoff structure than the usual put
and call payoff structures. There is virtually an unlimited number of possible exotic options available, only
the imagination is the limit. In practice there is only a few that have seen much use, and we will look at
some examples of these. For a large number of analytical solutions of exotic options, see Rubinstein [1993].

11.1 Lookback options.

The payoff from lookback options depend on the maximum or minimum of the underlying achieved through
the period.

For this particular option an analytical solution has been found, due to Goldman et al. [1979], which is
implemented below.

// file exotics lookback call.cc
// author: Bernt A Oedegaard

#include <cmath>
#include ”normdist.h”

double exotics lookback european call(double S,
double Smin,
double r,
double q,
double sigma,
double time){

if (r==q) return 0;
double sigma sqr=sigma∗sigma;
double time sqrt = sqrt(time);
double a1 = (log(S/Smin) + (r-q+sigma sqr/2.0)∗time)/(sigma∗time sqrt);
double a2 = a1-sigma∗time sqrt;
double a3 = (log(S/Smin) + (-r+q+sigma sqr/2.0)∗time)/(sigma∗time sqrt);
double Y1 = 2.0 ∗ (r-q-sigma sqr/2.0)∗log(S/Smin)/sigma sqr;
return S ∗ exp(-q∗time)∗N(a1)

- S ∗ exp(-q∗time)∗(sigma sqr/(2.0∗(r-q)))∗N(-a1)
- Smin ∗ exp(-r∗time)∗(N(a2)-(sigma sqr/(2∗(r-q)))∗exp(Y1)∗N(-a3));

};

An often used technique to estimate prices of various exotics is simulation, see the chapter on general
simulations.

References: Chapter 16 of Hull [1993] has a short introduction to these options.
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Chapter 12

A general approach to option pricing by simulation.

In an earlier chapter we looked at estimation of an European call option price by simulation.

Estimation by simulation is in fact completely general, and can be used to approximate the price on any
European derivative. It is not feasible to use simulation on American derivatives, because the optimal
exercise policy needs to be known. If the form of this was known, there would be a closed form solution.

But for European derivatives simulation is feasible. For more “exotic” options simulation is often the only
solution.

I will show how we can make a general framework for simulation of derivatives prices.

12.1 Simulating prices of underlying.

Let us first look at how prices are simulated. We look at two cases. One where one only need the terminal
price of the underlying at a given time. This is used for options that only depend on this, such as basic call
and put options.

// file simulate underlying terminal.cc

#include <math.h>
#include ”random.h”

double simulate terminal price(double S, // current value of underlying
double r, // interest rate
double sigma, // volatitily
double time) // time to final date

{
double R = (r - 0.5 ∗ pow(sigma,2) )∗time;
double SD = sigma ∗ sqrt(time);
return S ∗ exp(R + SD ∗ random normal());

};

More generally we need to simulate price observations of the underlying at various times during the life of
the derivative. This is what is implemented next.

// file: simulate underlying sequence.cc

#include <math.h>
#include <vector.h>
#include ”random.h”

void simulate price sequence(double S, // current value of underlying
double r, // interest rate
double sigma, // volatitily
double time, // time to final date
int no steps, // number of steps
vector<double>& prices ) {

if (prices.size() < no steps) {
prices.clear();
prices = vector<double>(no steps);

};
double delta t = time/no steps;
double R = (r-0.5∗sigma∗sigma)∗delta t;
double SD = sigma ∗ sqrt(delta t);
double S t = S; // initialize at current price
for (int i=0; i<no steps; ++i) {
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S t = S t ∗ exp(R + SD ∗ random normal());
prices[i]=S t;

};
};

12.2 Defining payoffs.

We next want to make general functions that defines the payoff of the derivative we analyze. Payoff is a
function of either the terminal price or the full price history, and other parameters.

For example, the payoff for European call or put options are functions of the terminal price of the underlying
and the exercise price of the option

cT = max(ST −X, 0)

pT = max(X − ST , 0)

The payoff is programmed as a function of two pieces of data, the terminal price and the exercise price.

// file payoff black scholes.cc

#include <algo.h>

double payoff european call(double& price, double& X){
return max(0.0,price-X);

};

double payoff european put(double& price, double& X){
return max(0.0,X-price);

};

As another example, let us look at options depending on the max or min of the price sequence. Here we
have to pass the whole price history

CT = max(0, ST − min
τ∈(0,T )

Sτ )

// file payoff max min

#include <vector.h>
#include <algo.h>

double payoff max(vector<double>& prices) {
double m = ∗max element(prices.begin(),prices.end());
return m-prices.back(); // max is always larger or equal.

};

double payoff min(vector<double>& prices) {
double m = ∗min element(prices.begin(),prices.end());
return prices.back()-m; // always positive or zero

};

One thing to note in this definition is the use of the function max element. It returns the maximum of set
of variables passed to it. It is part of the more recent additions to the C++ language, the algorithms in the
Standard Template Library.

Another example: Options on the average.

CT = max(0, ST − S̄)
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// file payoff average.cc

#include <math.h>
#include <algo.h>
#include <vector.h>

double payoff arithmetric average(vector<double>& prices) {
double sum=accumulate(prices.begin(), prices.end(),0.0);
double avg = sum/prices.size();
return max(0.0,avg-prices.back());
};

double payoff geometric average(vector<double>& prices) {
double logsum=log(prices[0]);
for (unsigned i=1;i<prices.size();++i){ logsum+=log(prices[i]); };
double avg = exp(logsum/prices.size());
return max(0.0,avg-prices.back());

};

12.3 Pricing

We can now use the two previously defined routines to implement rather general simulation routines.

// file simulate general.cc
// author: Bernt A Oedegaard
// estimation of an option price by simulation.
// This is a general routine, the payoff is defined by the user as a function
// payoff(vector<double>&) or
// payoff(vector<double>&,X),
// depending on whether there are other arguments beside the prices of the underlying needed.

#include <math.h>
#include <vector.h>
#include <algo.h>
#include ”fin algoritms.h”

double derivative price european simulated ( double S, double X, double r, double sigma, double time,
double payoff(double& price, double& X),
int no sims) {

double sum payoffs=0;
for (int n=0; n<no sims; n++) {

double S T = simulate terminal price(S,r,sigma,time);
sum payoffs += payoff(S T,X);

};
return exp(-r∗time) ∗ (sum payoffs/no sims);

};

double derivative price european simulated ( double S, double r, double sigma, double time,
double payoff(vector<double>& prices),
int no steps, int no sims) {

double sum payoffs=0;
vector <double> prices(no steps);
for (int n=0; n<no sims; n++) {

simulate price sequence(S,r,sigma,time,no steps,prices);
sum payoffs += payoff(prices);

};
prices.clear();
return exp(-r∗time) ∗ (sum payoffs/no sims);

};

double derivative price european simulated ( double S, double X, double r, double sigma, double time,
double payoff(vector<double>& prices, double& X),
int no steps, int no sims) {

double sum payoffs=0;
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vector <double> prices(no steps);
for (int n=0; n<no sims; n++) {

simulate price sequence(S,r,sigma,time,no steps,prices);
sum payoffs += payoff(prices,X);

};
prices.clear();
return exp(-r∗time) ∗ (sum payoffs/no sims);

};

12.4 Improving the estimates, control variates.

To improve on the simulation, we can use the control variate technique.

// file simulate general control variate.cc

#include ”fin algoritms.h”
#include <math.h>

double derivative price european simulated control variate (
double S,
double r,
double sigma,
double time,
double payoff(vector<double>& prices),
int no steps,
int no sims)

{
double X = S;
double c bs = option price call black scholes(S,X,r,sigma,time);
vector <double> prices(no steps,0.0);
double sum payoffs=0;
double sum payoffs bs=0;
for (int n=0; n<no sims; n++) {

simulate price sequence(S,r,sigma,time,no steps,prices);
sum payoffs += payoff(prices);
sum payoffs bs += payoff european call(prices.back(),X);

};
double c sim = exp(-r∗time) ∗ (sum payoffs/no sims);
double c bs sim = exp(-r∗time) ∗ (sum payoffs bs/no sims);
c sim += (c bs-c bs sim);
return c sim;

};

51



Chapter 13

Alternatives to the Black Scholes type option formula.

A large number of alternative formulations to the Black Scholes analysis has been proposed. Very few of
them have seen any widespread use, but we will look at some of these alternatives.

13.1 Merton’s Jump diffusion model.

Merton has proposed a model where in addition to a Brownian Motion term, the price process of the
underlying is allowed to have jumps. The risk of these jumps is assumed to not be priced.

In the following we look at an implementation of a special case of Merton’s model, described in [Hull, 1993, pg
454], where the size of the jump has a normal distribution. λ and κ are parameters of the jump distribution.
The price of an European call option is

c =
∞∑
n=0

eλ
′τ (λ′τ)n

n!
CBS(S,X, rn, σ2

n, T − t)

where

τ = T − t

λ′ = λ(1 + κ)

CBS(·) is the Black Scholes formula, and

σ2
n = σ2 +

nδ2

τ

rn = r − λκ+
n ln(1 + κ)

τ

In implementing this formula, we need to terminate the infinite sum at some point. But since the factorial
function is growing at a much higher rate than any other, that is no problem, terminating at about n = 50
should be on the conservative side. To avoid numerical difficulties, use the following method for calculation
of

eλ
′τ (λ′τ)n

n!
= exp

(
ln

(
eλ
′τ (λ′τ)n

n!

))
= exp

(
−λ′τ + n ln(λ′τ)−

n∑
i=1

ln i

)

// file merton jump diff call.cc
// author: Bernt Arne Oedegaard

#include <cmath>
#include ”fin algoritms.h”

double option price call merton jump diffusion( double S,
double X,
double r,
double sigma,
double time to maturity,
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double lambda,
double kappa,
double delta) {

const int MAXN=50;
double tau=time to maturity;
double sigma sqr = sigma∗sigma;
double delta sqr = delta∗delta;
double lambdaprime = lambda ∗ (1+kappa);
double gamma = log(1+kappa);
double c = exp(-lambdaprime∗tau)∗

option price call black scholes(S,X,sigma,r-lambda∗kappa,tau);
double log n = 0;
for (int n=1;n≤MAXN; ++n) {

log n += log(n);
double sigma n = sqrt( sigma sqr+n∗delta sqr/tau );
double r n = r-lambda∗kappa+n∗gamma/tau;
c += exp(-lambdaprime∗tau+n∗log(lambdaprime∗tau)-log n)∗

option price call black scholes(S,X,sigma n,r n,tau);
};
return c;

};

13.2 Stochastic volatity.

One of the areas of continuing research is how to adjust for changing volatility in the option price formulas.

53



Chapter 14

Mean Variance Analysis.

14.1 Introduction.

The mean variance choice is one of the oldest finance areas, dating back to work of Markowitz. The basic
assumption is that risk is measured by variance, and that the decision criterion should be to minimize
variance given expected return, or to maximize expected return for a given variance.

Mean variance analysis is very simple when expressed in vector format.

Let

e = E

 r1

...
rn


be the expected return for the n assets, and

V =

 σ11 . . . σ1n

...
σn1 . . . σnn


be the covariance matrix.

σij = cov(ri, rj)

A portfolio of assets is expressed as

ω =

 ω1

...
ωn


To find the expected return of a portfolio:

E[rp] = ω′e

and the variance of a portfolio:

σp = ω′Vω

// file mv calc.cc
// author: Bernt A Oedegaard
// basic calculations for mean variance analysis

#include ”newmat.h”
#include <cmath>

double mv calculate mean(const Matrix& e, const Matrix& w){
Matrix tmp = e.t()∗w;
return tmp.element(0,0);

54



};

double mv calculate variance(const Matrix& V, const Matrix& w){
Matrix tmp = w.t()∗V∗w;
return tmp.element(0,0);

};

double mv calculate st dev(const Matrix& V, const Matrix& w){
double var = mv calculate variance(V,w);
return sqrt(var);

};

14.2 Mean variance portfolios.

In the case where there are no short sales constraints, the minimum variance portfolio for any given expected
return has an analytical solution and is therefore easy to generate.

The portfolio given the expected return E[rp] is found as

ωp = g + hE[rp]

For the mathematics of generating the unconstrained MV frontier, see chapter 3 of Huang and Litzenberger
[1988].

// file mv calc port unconstrained.cc
// author: Bernt A Oedegaard

#include ”newmat.h”

ReturnMatrix mv calculate portfolio given mean unconstrained(const Matrix& e,
const Matrix& V,
double r){

int no assets=e.Nrows();
Matrix ones = Matrix(no assets,1); for (int i=0;i<no assets;++i){ ones.element(i,0) = 1; };
Matrix Vinv = V.i(); // inverse of V
Matrix A = (ones.t()∗Vinv∗e); double a = A.element(0,0);
Matrix B = e.t()∗Vinv∗e; double b = B.element(0,0);
Matrix C = ones.t()∗Vinv∗ones; double c = C.element(0,0);
Matrix D = B∗C - A∗A; double d = D.element(0,0);
Matrix Vinv1=Vinv∗ones;
Matrix Vinve=Vinv∗e;
Matrix g = (Vinv1∗b - Vinve∗a)∗(1.0/d);
Matrix h = (Vinve∗c - Vinv1∗a)∗(1.0/d);
Matrix w = g + h∗r;
w.Release();
return w;

};

14.3 Short sales constraints

In real applications, it is often not possible to sell assets short. In that case we need to add a constraint that
all portfolio weights shall be zero or above.

When constraining the short sales, we need to solve a quadratic program.

minω′Vω

subject to

ω′1 = 1
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ω′e = E[rp]

ωi ∈ [0, 1] ∀ i

To actually put the full code for a quadratic program here is beyond the purpose of these notes. In the
following I therefore submit the program to a quadratic solver called cfsqp. At times is it best to trust in
the OR department and their codes. The code merely indicates what the typical steps are in submitting this
to a general optimization routine. All we have to do is to define an objective function and a set of constraints
as C subroutines that can be interfaced with an optimizer.

// file mv short.cc
// author: Bernt Arne Oedegaard
// calculate a mean variance portfolio under short sales constraints
#include ”mv calc.h”
#include ”cfsqp op.h” // optimize using CFSQP
#include ”mymatrix.h” //

int MV SHORT no assets; // global values because they need to be
double MV SHORT r; // available in criterion function
Matrix∗ MV SHORT e;
Matrix∗ MV SHORT V;

double MV SHORT objective(double x[]){
Matrix X(MV SHORT no assets,1);
for (int i=0;i<MV SHORT no assets;++i){

X.element(i,0)=x[i];
};
return mv calculate variance(∗MV SHORT V,X);

}

double MV SHORT constraints(double x[],int constraint no){
Matrix X(MV SHORT no assets,1);
for (int i=0;i<MV SHORT no assets;++i){

X.element(i,0)=x[i];
};
if (constraint no==1) { // constraint w’1=1

Matrix A = (X.t()∗ones matrix(MV SHORT no assets,1));
return A.element(0,0)-1.0;

};
if (constraint no==2) { // constraint w’e=r

Matrix A = (X.t()∗(∗MV SHORT e));
return A.element(0,0)-MV SHORT r;

};
return 0;

};

ReturnMatrix mv calculate portfolio given mean no short sales( Matrix& e,
Matrix& V,
double r){

// solve the quadratic program to minimize variance given constraints
// all weights are in [0,1]
// the weights sum to one
// expected return equals r

MV SHORT no assets = e.Nrows();
MV SHORT V = &V;
MV SHORT e = &e;
MV SHORT r = r;
Matrix w = null matrix(MV SHORT no assets, 1);
// check whether it is feasible to find optimum. Only if r is between
// min and max in e;
double r min = e.element(0,0);
double r max = e.element(0,0);
int i min = 0;
int i max = 0;
int i;
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for (i=1;i<MV SHORT no assets;++i) {
if (e.element(i,0)<r min) {

r min = e.element(i,0);
i min = i;
};
if (e.element(i,0)>r max) {

r max = e.element(i,0);
i max = i;
};
};
if ( (r>r max) || (r<r min) ) {

cerr � " can not perform optimization " � endl;
w.Release(); // returning zeros as weight
return w;
};
double ∗x = new double[MV SHORT no assets];
double ∗x min = new double[MV SHORT no assets];
double ∗x max = new double[MV SHORT no assets];
for (i=0;i<MV SHORT no assets;++i) {

x[i] = 0;
x min[i] = 0;
x max[i] = 1;
};
// now generate feasible portfolio by combining r max and r min;
double lambda = (r-r max)/(r min-r max);
x[i min]=lambda;
x[i max]=(1-lambda);
double min var = CFSQP optimize with constraints and bounds(

x,
MV SHORT no assets,
MV SHORT objective,
0,0,0,2, // 2 linear equality constraints
MV SHORT constraints,
x min,
x max);

for (i=0; i<MV SHORT no assets; ++i) {
w.element(i,0)=x[i];
};
delete [] x;
delete [] x min;
delete [] x max;
w.Release();
return w;
};
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Chapter 15

Term Structure algorithms.

In this chapter we look at various algorithms that has been used to estimate a “term structure,” i e a relation
between length of period for investment and interest rate.

15.1 Term structure calculations.

Some useful transformations. Let r(t) be the yield on a t–period discount bond, and d(t) the discount factor
for time t (the current price of a bond that pays $1 at time t. Then

d(t) = e−r(t)t

r(t) =
− log(d(t))

t

Also, the forward rate for borrowing at time t1 for delivery at time T is calculated as

ft(t1, T ) =
− log

(
d(T )
d(t1)

)
T − t1

=
log
(
d(t1)
d(T )

)
T − t1

The forward rate can also be calculated directly from yields as

fd(t, t1, T ) = rd(t, T )
T − t
T − t1

− rd(t, t1)
t1 − t
T − t1

// file term alg.cc
// author: Bernt A Oedegaard

#include ”math.h”

double term structure yield from discount factor(double dfact, double t) {
return (-log(dfact)/t);

}

double term structure discount factor from yield(double r, double t) {
return exp(-r∗t);

};

double term structure forward rate from disc facts(double d t, double d T,
double time) {

return (log (d t/d T))/time;
};

double term structure forward rate from yields(double r t1, double r T,
double t1, double T) {

return (r T∗(T/(T-t1))-r t1∗(t1/T));
};

15.2 Using the currently observed term structure.

To just use todays term structure, we need to take the observations of yields that is observed in the market
and use these to generate a term structure. The simplest possible way of doing this is to linearly interpolate
the currently observable yields.
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15.2.1 Linear Interpolation.

If we are given a set of yields for various maturities, the simplest way to construct a term structure is by
straightforward linear interpolation between the observations we have to find an intermediate time. For
many purposes this is “good enough.”

This interpolation can be on both yields and forward rates.

Computer algorithm, linear interpolation of yields. Note that the algorithm assumes the yields are
ordered in increasing order of time to maturity.

// file lin intp.cc
// author: Bernt A Oedegaard.
// given a set of yields, produce a term structure by linear interpolation.

#include ”fin algoritms.h”

double term structure yield linearly interpolated(double time,
const vector<double>& obs times,
const vector<double>& obs yields)

// assume the yields are in increasing time to maturity order.
{

int no obs = obs times.size();
if (no obs<1) return 0;

double t min = obs times[0];
if (time ≤ t min) return obs yields[0]; // earlier than lowest obs.

double t max = obs times[no obs-1];
if (time ≥ t max) return obs yields[no obs-1]; // later than latest obs

int t=1; // find which two observations we are between
while ( (t<no obs) && (time>obs times[t])) { ++t; };
double lambda = (obs times[t]-time)/(obs times[t]-obs times[t-1]);
// by ordering assumption, time is between t-1,t
double r = obs yields[t-1] ∗ lambda + obs yields[t] ∗ (1.0-lambda);
return r;

};

As an alternative to

Computer algorithm, linear interpolation of forward rates. Note that the algorithm assumes the
rates are ordered in increasing order of time to maturity.

// file lin intp.cc
// author: Bernt A Oedegaard.
// given a set of forward yields, produce a term structure by linear interpolation.

#include ”fin algoritms.h”

double term structure forward linearly interpolated(double time,
const vector<double>& obs times,
const vector<double>& obs forwards) {

// assume observations in increasing time to maturity order.
int no obs = obs times.size();
if (no obs<1) return 0;
double t min = obs times[0];
if (time ≤ t min) return obs forwards[0]; // earlier than lowest obs.

double t max = obs times[no obs-1];
if (time ≥ t max) return obs forwards[no obs-1]; // later than latest obs

int t=1; // find which two observations we are between
while ( (t<no obs) && (time>obs times[t])) { ++t; };
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double lambda = (obs times[t]-time)/(obs times[t]-obs times[t-1]);
// by ordering assumption, time is between t-1,t
double r = obs forwards[t-1] ∗ lambda + obs forwards[t] ∗ (1.0-lambda);
return r;

};

15.3 Term structure approximations.

Instead of explicitly modeling the term structure, one may want to approximate it by a flexible functional
form. The following three are examples of this, proposed in respectively Nelson and Siegel [1987], Bliss [1989]
and McCulloch [1971]. The first two model the yield, McCulloch model the discount factor (or bond price)
directly.

15.3.1 The Nelson and Siegel(1987) functional form.

r(s) = β0 + (β1 + β2)

[
1− e− t

λ

t
λ

]
+ β2

[
e−

t
λ

]

// file nels sie.cc
// author: Bernt A Oedegaard
// purpose: Calculate the term structure proposed by Nelson and Siegel
// Parsimonious Modeling of Yield Curves, Journal of Business, (1987)

#include <math.h>

double term structure yield nelson siegel(double t,
double beta0, double beta1, double beta2,
double lambda ) {

if (t==0.0) return beta0;
double tl = t/lambda;
double r = beta0 + (beta1+beta2) ∗ ((1-exp(-tl))/tl) + beta2 ∗ exp(-tl);
return r;

};

15.3.2 Bliss (1989)

In Bliss [1989] a further development of Nelson and Siegel [1987] was proposed.

r(t) = γ0 + γ1

[
1− e−

t
λ1

t
λ1

]
+ γ2

[
1− e−

t
λ2

t
λ2

− e−
t
λ2

]

This has 5 parameters to estimate: {γ0, γ1, γ2, λ1, λ2}.

// file termstru yield bliss.cc
// author: Bernt A Oedgaard

#include <math.h>

double term structure yield bliss(double t, double gamma0, double gamma1, double gamma2,
double lambda1, double lambda2) {

double r;
double t1 = t/lambda1;
double t2 = t/lambda2;
r = gamma0

+ gamma1 ∗ ( (1-exp(-t1)) / t1 )

60



+ gamma2 ∗ ( ( 1-exp(-t2)) / t2 )
+ gamma2 ∗ ( -exp(-t2));

return r;
};

15.3.3 Cubic spline.

The cubic spline parameterization was first used by McCulloch [1971] to estimate the nominal term structure.
He later added taxes in McCulloch [1975]. The cubic spline was also used by Litzenberger and Rolfo [1984].

d(t) = 1 + b1t+ c1t
2 + d1t

3 +
K∑
j=1

Fj(t− tj)31{t<tj}

Here 1{A} is the indicator function for an event A, and we have K knots.

To estimate this we need to find the 3 +K parameters:

{b1, c1, d1, F1, · · · , FK}

If the spline knots are known, this is a simple linear regression.

// file: cu spline.cc
// author: Bernt A Oedegaard

#include <math.h>
#include <vector.h>

double term structure discount factor cubic spline(double t,
double b1,
double c1,
double d1,
const vector<double>& f,
const vector<double>& knots)

{
// calculate the discount factor for the spline functional form.
double d = 1.0

+ b1∗t
+ c1∗(pow(t,2))
+ d1∗(pow(t,3));

for (int i=0;i<knots.size();i++) {
if (t ≥ knots[i]) { d += f[i] ∗ (pow((t-knots[i]),3)); }
else { break; };
};
return d;

};

15.4 Term structure models.

The previous section discussed methods that can be viewed as ways of nonparametrically estimating the
term structure function. We next look at economic models of the term structure.

15.4.1 The Vasicek model.

Proposed by Vasicek [1977].
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// file vasicek.cc
// author: Bernt A Oedegaard

#include ”math.h”

double term structure discount factor vasicek(double time,
double r,

double a, double b, double sigma){
double A,B;
double sigma sqr = sigma∗sigma;
double aa = a∗a;
if (a==0.0){

B = time;
A = exp(sigma sqr∗pow(time,3))/6.0;

}
else {

B = (1.0 - exp(-a∗time))/a;
A = exp( ((B-time)∗(aa∗b-0.5∗sigma sqr))/aa -((sigma sqr∗B∗B)/(4∗a)));

};
double d = A∗exp(-B∗r);
return d;

}

15.4.2 The original Cox Ingersoll Ross model.

The term structure model described in Cox et al. [1985] is one of the most commonly used in academic work,
because it is a general equilibrium model that still is “simple enough” to let us find closed form expressions
for derivative securities.

Calculating discount factors. The short interest rate.

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW

The discount factor for a payment at time T.

d(t, T ) = A(t, T )e−B(t,T )r(t)

where

γ =
√

(κ+ λ)2 + 2σ2

A(t, T ) =

[
2γe

1
2 (κ+λ+γ)(T−t)

(γ + κ+ λ)(eλ(T−t) − 1) + 2γ

] 2κθ
σ2

and

B(t, T ) =
2eγ(T−t) − 1

(γ + κ+ λ)(eλ(T−t) − 1) + 2γ

Five parameters

1. r – The short term interest rate.

2. κ – The mean reversion parameter.

3. λ – “market” risk parameter.

4. θ – the long–run mean of the process.

5. σ – the variance rate of the process.
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Computer algorithm.

// file termstru discfact cir.cc
// author: Bernt A Oedegaard

#include <math.h> // mathematics library

double term structure discount factor cir(double t,
double r,
double kappa,
double lambda,
double theta,
double sigma)

// this is the original CIR formulation of their term structure.
{

double sigma sqr=pow(sigma,2);
double gamma = sqrt(pow((kappa+lambda),2)+2.0∗sigma sqr);
double denum = (gamma+kappa+lambda)∗(exp(gamma∗t)-1)+2∗gamma;
double p=2∗kappa∗theta/sigma sqr;
double enum1= 2∗gamma∗exp(0.5∗(kappa+lambda+gamma)∗t);
double A = pow((enum1/denum),p);
double B = (2∗(exp(gamma∗t)-1))/denum;
double dfact=A∗exp(-B∗r);
return dfact;

};

15.4.3 The estimated CIR model used by Brown and Dybvig.

If the Cox et al. [1985] model is estimated from a cross-section of bond prices, all the parameters are not
identifiable from the data. As shown in Brown and Dybvig [1986], it is only possible to separately identify
four factors {r, φ1, φ2, φ3}.

dt(s) = A(s)e−B(s)r(t)

At(s) =
[

φ1e
φ2s

φ2(eφ1s − 1) + φ1

]φ3

Bt(s) =
eφ1s − 1

φ2(eφ1s − 1) + φ1

φ1 =
√

(κ+ λ)2 + 2σ2

φ2 = (κ+ λ+ φ1)/2
φ3 = 2κθ/σ2

Discount factor.

// file esti cir.cc
// author Bernt Arne Oedegaard

#include <math.h>

double term structure discount factor estimated cir( double t, // time to maturity.
double r, // short interest rate.
double phi1,
double phi2,
double phi3)
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{
double tmp = (phi2∗(exp(phi1∗t)-1.0)+phi1);
double A = (phi1∗exp(phi2∗t))/tmp;
A = pow(A,phi3);
double B = (exp(phi1∗t)-1.0)/tmp;
double dfact = A∗exp(-B∗r);
return dfact;
}
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Chapter 16

Fixed Income modelling, with emphasis on contingent claims.

In this part we look at more advanced modelling related to derivatives written on fixed–income securities.

16.1 Black Scholes bond pricing.

The Black Scholes model can be used under restrictive assumptions, but the constant volatility assumption
of the bond price is unrealistic.

Computer algoritm, Bond option price, Black Scholes

// file bondopt bs call.cc
// author: Bernt A Oedegaard.

#include <cmath>
#include ”normdist.h”

double bond option price call zero black scholes(
double B, double X, double r, double sigma, double time)

{
double time sqrt = sqrt(time);
double d1 = (log(B/X)+r∗time)/(sigma∗time sqrt) + 0.5∗sigma∗time sqrt;
double d2 = d1-(sigma∗time sqrt);
double c = B ∗ N(d1) - X ∗ exp(-r∗time) ∗ N(d2);
return c;

};

// file bondopt call coupon.cc
// author: Bernt A Oedegaard.

#include <cmath>
#include ”normdist.h”
#include ”fin algoritms.h”

double bond option price call coupon bond black scholes(
double B, double X, double r, double sigma, double time,
vector<double> coupon times, vector<double> coupon amounts){
for (unsigned int i=0;i<coupon times.size();i++) { // subtract present value of coupons

if (coupon times[i]≤time) { // coupon paid befor option expiry
B -= coupon amounts[i] ∗ exp(-r∗coupon times[i]);

};
};
return bond option price call zero black scholes(B,X,r,sigma,time);

};

16.2 The Rendleman and Bartter model

The Rendleman and Bartter approach to valuation of interest rate contingent claims is a particular simple
one. Essentially, it is to apply the same binomial approach that is used to approximate options in the
Black Scholes world, but the random variable is now the interest rate, which has implications for how we do
discounting.

I will follow the notation used in Hull [1993] (page 385).
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// file rend bar.cc
// author: Bernt A Oedegaard

#include <cmath>
#include <algorithm>
#include <vector>

double bond option price call zero american rendleman bartter(double X,
double option maturity,
double S,
double M, // term structure paramters
double interest, // current short interest rate
double bond maturity, // time to maturity for

underlying bond
double maturity payment,
int no steps)

// call on a zero coupon bond.
{

double delta t = bond maturity/no steps;

double u=exp(S∗sqrt(delta t));
double d=1/u;
double p up = (exp(M∗delta t)-d)/(u-d);
double p down = 1.0-p up;

vector<double> r(no steps+1);
r[0]=interest∗pow(d,no steps);
double uu=u∗u;
int i;
for (i=1;i≤no steps;++i){ r[i]=r[i-1]∗uu;};
vector<double> P(no steps+1);
for (i=0;i≤no steps;++i){ P[i] = maturity payment; };
int no call steps=int(no steps∗option maturity/bond maturity);
for (int curr step=no steps;curr step>no call steps;--curr step) {

for (i=0;i<curr step;i++) {
r[i] = r[i]∗u;
P[i] = exp(-r[i]∗delta t)∗(p down∗P[i]+p up∗P[i+1]);

};
};

vector<double> C (no call steps+1);
for (i=0;i≤no call steps;++i){ C[i]=max(0.0,P[i]-X); };
for (int curr step=no call steps;curr step≥0;--curr step) {

for (i=0;i<curr step;i++) {
r[i] = r[i]∗u;
P[i] = exp(-r[i]∗delta t)∗(p down∗P[i]+p up∗P[i+1]);
C[i]=max(P[i]-X, exp(-r[i]∗delta t)∗(p up∗C[i+1]+p down∗C[i]));

};
};
return C[0];

};

Sources for further readings. Section 15 of Hull [1993] has a short discussion.

The original references are Rendleman and Bartter [1979] and Rendleman and Bartter [1980].

16.3 Vasicek bond pricing.

If the term structure model is Vasicek’s model there is a solution for the price of a zero coupon model, due
to Jamshidan [1989].

Under Vacisek’s model the process for the short rate is assumed to follow.

dr = a(b− r)dt+ σdZ
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where a, b and σ are constants. We have seen earlier how to calculate the discount factor in this case. We
now want to consider an European Call option in this setting.

Let P (t, s) be the time t price of a zero coupon bond with a payment of $1 at time s (the discount factor).
The price at time t of a European call option maturing at time T on on a discount bond maturing at time
s is( See Jamshidan [1989] and Hull [1993])

P (t, s)N(h)−XP (t, T )N(h− σP )

where

h =
1
σP

ln
P (t, s)
P (t, T )X

+
1
2
σP

σP = v(t, T )B(T, s)

B(t, T ) =
1− e−a(T−t)

a

v(t, T )2 =
σ2(1− e−a(T−t))

2a

In the case of a = 0,

v(t, T ) = σ
√
T − t

σP = σ(s− T )
√
T − t

// file bondopt call vasicek.cc
// author: Bernt A Oedegaard.

#include <cmath>
#include ”normdist.h”
#include ”fin algoritms.h”

double bond option price call zero vasicek(double X, // exercise price
double r, // current interest rate
double option time to maturity,
double bond time to maturity,
double a, // parameters
double b,
double sigma)

{
double T t = option time to maturity;
double s t = bond time to maturity;
double T s = s t-T t;
double v t T;
double sigma P;
if (a==0.0) {

v t T = sigma ∗ sqrt ( T t ) ;
sigma P = sigma∗T s∗sqrt(T t);

}
else {

v t T = sqrt (sigma∗sigma∗(1-exp(-2∗a∗T t))/(2∗a));
double B T s = (1-exp(-a∗T s))/a;
sigma P = v t T∗B T s;

};
double h = (1.0/sigma P) ∗ log (

term structure discount factor vasicek(s t,r,a,b,sigma)/
(term structure discount factor vasicek(T t,r,a,b,sigma)∗X) )
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+ sigma P/2.0;
double c =

term structure discount factor vasicek(s t,r,a,b,sigma)∗N(h)
-X∗term structure discount factor vasicek(T t,r,a,b,sigma)∗N(h-sigma P);

return c;
};
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Appendix A

Normal Distribution approximations.

Numerical approximations to the cumulative normal distribution, univariate and bivariate.

Distribution function.

n(z) = e
1
2 z

2

If x is normally distributed with mean zero and variance 1, then

P (x < z) = N(z) =
∫ z

−∞
n(x)dx

Let x, y be bivariate normally distributed, each with mean 0 and variance 1. The correlation between x and
y is ρ, ρ ∈ [−1, 1]. Then

P (x < a, y < b) = N(a, b, ρ)

=
∫ a

−∞

∫ b

−∞

1

2π
√

1− ρ2
exp

(
−1

2
x2 − 2ρxy + y2

1− ρ2

)
dxdy

// normdist.h
// author: Bernt A Oedegaard

#ifndef NORMAL DIST H
#define NORMAL DIST H

double n(double z); // normal distribution function
double n(double r,double mu, double sigmasqr); // normal distribution function
double N(double z); // cumulative probability of normal
double N(double a, double b, double rho); // cum prob of bivariate normal

#endif

// normdist.cc
// numerical approximations to univariate N(z) and bivariate N(a,b,rho)
// normal distributions

#include <cmath> // math functions.

#ifndef PI
#define PI 3.141592653589793238462643
#endif

double n(double z) { // normal distribution function
return (1.0/sqrt(2.0∗PI))∗exp(-0.5∗z∗z);

};

double n(double r, double mu, double sigma) { // normal distribution function
double nv = 1.0/(sqrt(2.0∗PI)∗sigma);
double z=(r-mu)/sigma;
nv ∗ = exp(-0.5∗z∗z);
return nv;

};
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// cumulative univariate normal distribution.
// This is a numerical approximation to the normal distribution.
// See Abramowitz and Stegun: Handbook of Mathemathical functions
// for description. The arguments to the functions are assumed
// normalized to a (0,1 ) distribution.

double N(double z) {
double b1 = 0.31938153;
double b2 = -0.356563782;
double b3 = 1.781477937;
double b4 = -1.821255978;
double b5 = 1.330274429;
double p = 0.2316419;
double c2 = 0.3989423;

if (z > 6.0) { return 1.0; }; // this guards against overflow
if (z < -6.0) { return 0.0; };
double a=fabs(z);
double t = 1.0/(1.0+a∗p);
double b = c2∗exp((-z)∗(z/2.0));
double n = ((((b5∗t+b4)∗t+b3)∗t+b2)∗t+b1)∗t;
n = 1.0-b∗n;
if ( z < 0.0 ) n = 1.0 - n;
return n;

}

// Numerical approximation to the bivariate normal distribution,
// as described e.g. in Hulls book

inline double f(double x, double y, double aprime, double bprime, double rho) {
double r = aprime∗(2∗x-aprime) + bprime∗(2∗y-bprime)

+ 2 ∗ rho ∗ (x-aprime) ∗ (y-bprime);
return exp(r);

};

inline double sgn( double x) { // sign function
if (x≥0.0) return 1.0;
return -1.0;

};

double N(double a, double b, double rho) {
if ( (a≤0.0) && (b≤0.0) && (rho≤0.0) ) {

double aprime = a/sqrt(2.0∗(1.0-rho∗rho));
double bprime = b/sqrt(2.0∗(1.0-rho∗rho));
double A[4]={0.3253030, 0.4211071, 0.1334425, 0.006374323};
double B[4]={0.1337764, 0.6243247, 1.3425378, 2.2626645 };
double sum = 0;
for (int i=0;i<4;i++) {

for (int j=0; j<4; j++) {
sum += A[i]∗A[j]∗ f(B[i],B[j],aprime,bprime,rho);

};
};
sum = sum ∗ ( sqrt(1.0-rho∗rho)/PI);
return sum;

}
else if ( a ∗ b ∗ rho ≤ 0.0 ) {

if ( ( a≤0.0 ) && ( b≥0.0 ) && (rho≥0.0) ) {
return N(a) - N(a, -b, -rho);

}
else if ( (a≥0.0) && (b≤0.0) && (rho≥0.0) ) {

return N(b) - N(-a, b, -rho);
}
else if ( (a≥0.0) && (b≥0.0) && (rho≤0.0) ) {

return N(a) + N(b) - 1.0 + N(-a, -b, rho);
};
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}
else if ( a ∗ b ∗ rho ≥ 0.0 ) {

double denum = sqrt(a∗a - 2∗rho∗a∗b + b∗b);
double rho1 = ((rho ∗ a - b) ∗ sgn(a))/denum;
double rho2 = ((rho ∗ b - a) ∗ sgn(b))/denum;
double delta=(1.0-sgn(a)∗sgn(b))/4.0;
return N(a,0.0,rho1) + N(b,0.0,rho2) - delta;

};
return -99.9; // should never get here

};

A.1 References

Abramowiz and Stegun [1964] gives the univariate normal approximation.

This particular implementation of the bivariate normal is from [Hull, 1993, Ch 10]. See there for further
references.

71



Appendix B

A note on C++ and the source code

B.1 Source availability

The algorithms are available from my home page as a ZIP file containing the source code. These have been
tested with the latest version of the GNU C++ compiler. As the algorithms in places uses code from the
Standard Template Library, other compilers may not be able to compile all the files directly. If your compiler
complains about missing header files you may want to check if the STL header files have different names on
your system. The algorithm files will track the new ANSI standard for C++ libraries as it is being settled
on. If the compiler is more than a couple of years old, it will not have STL. Alternatively, the GNU compiler
gcc is available for free on the internet, for most current operating systems.

B.2 Libraries.

One of the major advances of C++ relative to other programming languages is its ability to use libraries to
extend the language. While I have tried to avoid use of libraries, in a few places I have used a library that
performs linear algebra. This is mainly for clarity, the algorithms can be cleanly and simply expressed in
vector notation, and implementing them directly would involve long, unnecessary loops, which has the added
disadvantage of most likely introducing trivial mistakes. Using a well-designed linear algebra library will
also in most cases be much more efficient than writing code for equation solving yourself.

The linear algebra library that is used in the algorithms is called newmat, which is a public domain library.
The current version is found as a file newmat09.zip or newmat09.tar.gz on major ftp archives. Search
using archie. The usage in the algorithms should be pretty clear from the context, and other linear algebra
C++ libraries will have similar notation, but here are some examples:

A =
[
a11 a12

a21 a22

]

b =
[
b11

b21

]
Defining the variables:
Matrix A;
ColumnVector b;

Calculations:
Take inverse, A−1: Matrix Ainv = A.i();
Matrix multiply, C = A× b′: Matrix C = A * b.t();
Solve system, Ax = b: Matrix x = A.i()*b;

For linear algebra, it is possible to take advantage of particular forms of matrices, such as banded matrices,
diagonal matrices etc. C++ is particularly useful here, a good linear algebra library will choose efficient
algorithms depending on the form of the matrices, without the need for particular choice of subroutines by
the programmer, the choice of algorithm is purely made from context. For an example of this, look at the
algorithm for option pricing using implicit finite differences.

B.3 On C++ for non-C++ programmers

In some of the algorithms we use a few things that is not obvious if you don’t know the C/C++ language.
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B.4 Mathematical operators.

B.4.1 Exponentiation.

The usual operators (+,−, ∗, /) are what you expect, but exponentiation is not a part of the language, these
and other mathematical operators are implemented as functions in the math library

• pow(x,n) calculates xn.

• exp(r) calculates er.

B.4.2 Increment and decrement.

When we want to increase the value of one item by one, in most languages this is written:

int i=0
i = i+1
i = i-1

In C++ this operation has its own shorthand

int i=0
i++
i--

While this does not seem intuitive, and it is excusable to think that this operation is not really necessary,
it does come in handy for more abstract data constructs. For example, if one defines a date class with the
necessary operations, to get the next date will simply be a matter of

date d(1,1,1995)
d++

These two statements will result in the date in d being 2jan95.

B.5 Dynamically sized arrays.

Most programming languages do not allow the programmer to specify variable-sized arrays “on the fly.” In
FORTRAN or Pascal we would usually have to set a maximum length for each array, and hope that we would
not need to exceed that length. In addition to the problem of ensuring that we did not exceed the length,
this is also wasteful in terms of space.

In the latest version of the C++ standard, a library called the Standard Template Library is included. One
of the most useful parts of this library is the vector<> template, which gets rid of the “bookkeeping”
involved in the previous array manipulations. In most of the routines I use a vector of doubles instead of an
array, because this reduces the numbers of parameters needed to pass.

B.6 The form of the for statement.

The for statement in C (and C++) is more general than similar constructs in FORTRAN and Pascal. To repeat
an operation n times, use:

for (int i=0; i<n; i++) {
some operation(i)

}
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The for statement has tree parts. The first part gives the initial condition (i=0). The next part the terminal
condition (i<n), which says to stop when i<n is not fulfilled, which is at the n’th iteration. The last part is
the increment statement (i++), saying what to do in each iteration. In this case the value of i is increased
by one in each iteration. This is the typical for statement, but one of the causes of C’s reputation for
terseness is the possibility of elaborate for constructs, which end up being almost impossible to read. In
the algorithms presented here I try to only use the typical for statement, avoiding any obfuscated ones.

B.7 The #include construct.

For the compiler to use a function, it must be defined before it is used. The solution in C/C++ is to use
header files that defines functions and macros.

For example, in many of the formulas we use in the text, the cumulative normal distribution function (N(z))
enters. This function is declared in a file normdist.h that looks like the following.

// normdist.h
// author: Bernt A Oedegaard

#ifndef NORMAL DIST H
#define NORMAL DIST H

double n(double z); // normal distribution function
double n(double r,double mu, double sigmasqr); // normal distribution function
double N(double z); // cumulative probability of normal
double N(double a, double b, double rho); // cum prob of bivariate normal

#endif

This header file declares two versions of the normal distribution, the univariate and the bivariate.

When N() is called with one argument, it is the univariate distribution that is referenced.

N(0.0) should return 0.5

When N() is called with three arguments, it is the bivariate distribution which is referenced.

N(0.0, 0.0, 0.0) should return 0.25

To make these function available in a subroutine, use the include statement to define them. Assume the
header file normdist.h holds the defintions. The following is a complete program.

#include "normdist.h"
int main(){

cout << " Bivariate cum. normal dist (0,0,0) = "
<< N(0,0,0) << endl;

}
When compiled, linked and run, the program should print

Bivariate cum. normal dist (0,0,0) = 0.25

B.8 The class concept.

B.9 Implementation in other programming languages.

The main problem in converting the algorithms presented here into FORTRAN77 and Pascal is the use of
variable–length arrays of numbers in subroutines, and in function calls. You have to come up with a different
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solution in those languages, which probably would involve fixed length arrays of some default size. For an
alternative, look at how this is handled in Numerical Recipes in the respective languages.

Translating into both Mathematica and Matlab should be a trivial.

B.10 References.

For a good introductory book on C++, see Lippman [1992].

The main source on the language is Stroustrup [1991].

For the STL see Musser and Saini [1996]
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